1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
|
/*
* Copyright 2016 Joseph Cherlin. All rights reserved.
* License: https://github.com/bkaradzic/bgfx#license-bsd-2-clause
*/
#include "common.h"
#include "camera.h"
#include "bgfx_utils.h"
#include "imgui/imgui.h"
#include <bx/rng.h>
/*
* Intro
* =====
*
* RSM (reflective shadow map) is a technique for global illumination.
* It is similar to shadow map. It piggybacks on the shadow map, in fact.
*
* RSM is compatible with any type of lighting which can handle handle
* a lot of point lights. This sample happens to use a deferred renderer,
* but other types would work.
*
* Overview:
*
* - Draw into G-Buffer
* - Draw Shadow Map (with RSM piggybacked on)
* - Populate light buffer
* - Deferred "combine" pass.
*
* Details
* =======
*
* ## G-Buffer
*
* Typical G-Buffer with normals, color, depth.
*
* ## RSM
*
* A typical shadow map, except it also outputs to a "RSM" buffer.
* The RSM contains the color of the item drawn, as well as a scalar value which represents
* how much light would bounce off of the surface if it were hit with light from the origin
* of the shadow map.
*
* ## Light Buffer
*
* We draw a lot of spheres into the light buffer. These spheres are called VPL (virtual
* point lights). VPLs represent bounced light, and let us eliminate the classic "ambient"
* term. Instead of us supplying their world space position in a transform matrix,
* VPLs gain their position from the shadow map from step 2, using an unprojection. They gain
* their color from the RSM. You could also store their position in a buffer while drawing shadows,
* I'm just using depth to keep the sample smaller.
*
* ## Deferred combine
*
* Typical combine used in almost any sort of deferred renderer.
*
* References
* ==========
*
* http: *www.bpeers.com/blog/?itemid=517
*
*/
// Render passes
#define RENDER_PASS_GBUFFER 0 // GBuffer for normals and albedo
#define RENDER_PASS_SHADOW_MAP 1 // Draw into the shadow map (RSM and regular shadow map at same time)
#define RENDER_PASS_LIGHT_BUFFER 2 // Light buffer for point lights
#define RENDER_PASS_COMBINE 3 // Directional light and final result
// Gbuffer has multiple render targets
#define GBUFFER_RT_NORMAL 0
#define GBUFFER_RT_COLOR 1
#define GBUFFER_RT_DEPTH 2
// Shadow map has multiple render targets
#define SHADOW_RT_RSM 0 // In this algorithm, shadows write lighting info as well.
#define SHADOW_RT_DEPTH 1 // Shadow maps always write a depth
// Random meshes we draw
#define MODEL_COUNT 222 // In this demo, a model is a mesh plus a transform and a color
#define SHADOW_MAP_DIM 512
#define LIGHT_DIST 10.0f
static const char * s_meshPaths[] =
{
"meshes/cube.bin",
"meshes/orb.bin",
"meshes/column.bin",
"meshes/bunny.bin",
"meshes/tree.bin",
"meshes/hollowcube.bin"
};
static const float s_meshScale[] =
{
0.25f,
0.5f,
0.05f,
0.5f,
0.05f,
0.05f
};
// Vertex decl for our screen space quad (used in deferred rendering)
struct PosTexCoord0Vertex
{
float m_x;
float m_y;
float m_z;
float m_u;
float m_v;
static void init()
{
ms_decl
.begin()
.add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float)
.add(bgfx::Attrib::TexCoord0, 2, bgfx::AttribType::Float)
.end();
}
static bgfx::VertexDecl ms_decl;
};
bgfx::VertexDecl PosTexCoord0Vertex::ms_decl;
// Utility function to draw a screen space quad for deferred rendering
void screenSpaceQuad(float _textureWidth, float _textureHeight, float _texelHalf, bool _originBottomLeft, float _width = 1.0f, float _height = 1.0f)
{
if (bgfx::checkAvailTransientVertexBuffer(3, PosTexCoord0Vertex::ms_decl) )
{
bgfx::TransientVertexBuffer vb;
bgfx::allocTransientVertexBuffer(&vb, 3, PosTexCoord0Vertex::ms_decl);
PosTexCoord0Vertex* vertex = (PosTexCoord0Vertex*)vb.data;
const float minx = -_width;
const float maxx = _width;
const float miny = 0.0f;
const float maxy = _height*2.0f;
const float texelHalfW = _texelHalf/_textureWidth;
const float texelHalfH = _texelHalf/_textureHeight;
const float minu = -1.0f + texelHalfW;
const float maxu = 1.0f + texelHalfH;
const float zz = 0.0f;
float minv = texelHalfH;
float maxv = 2.0f + texelHalfH;
if (_originBottomLeft)
{
float temp = minv;
minv = maxv;
maxv = temp;
minv -= 1.0f;
maxv -= 1.0f;
}
vertex[0].m_x = minx;
vertex[0].m_y = miny;
vertex[0].m_z = zz;
vertex[0].m_u = minu;
vertex[0].m_v = minv;
vertex[1].m_x = maxx;
vertex[1].m_y = miny;
vertex[1].m_z = zz;
vertex[1].m_u = maxu;
vertex[1].m_v = minv;
vertex[2].m_x = maxx;
vertex[2].m_y = maxy;
vertex[2].m_z = zz;
vertex[2].m_u = maxu;
vertex[2].m_v = maxv;
bgfx::setVertexBuffer(&vb);
}
}
class ExampleRSM : public entry::AppI
{
public:
ExampleRSM()
: m_reading(0)
, m_currFrame(UINT32_MAX)
, m_cameraSpin(false)
, m_lightElevation(35.0f)
, m_lightAzimuth(215.0f)
, m_rsmAmount(0.25f)
, m_vplRadius(3.0f)
, m_texelHalf(0.0f)
{
}
void init(int _argc, char** _argv) BX_OVERRIDE
{
Args args(_argc, _argv);
m_width = 1280;
m_height = 720;
m_debug = BGFX_DEBUG_TEXT;
m_reset = BGFX_RESET_VSYNC;
bgfx::init(args.m_type, args.m_pciId);
bgfx::reset(m_width, m_height, m_reset);
// Enable debug text.
bgfx::setDebug(m_debug);
// Labeling for renderdoc captures, etc
bgfx::setViewName(RENDER_PASS_GBUFFER, "gbuffer" );
bgfx::setViewName(RENDER_PASS_SHADOW_MAP, "shadow map" );
bgfx::setViewName(RENDER_PASS_LIGHT_BUFFER, "light buffer");
bgfx::setViewName(RENDER_PASS_COMBINE, "post combine");
// Set up screen clears
bgfx::setViewClear(RENDER_PASS_GBUFFER
, BGFX_CLEAR_COLOR|BGFX_CLEAR_DEPTH
, 0
, 1.0f
, 0
);
bgfx::setViewClear(RENDER_PASS_LIGHT_BUFFER
, BGFX_CLEAR_COLOR|BGFX_CLEAR_DEPTH
, 0
, 1.0f
, 0
);
bgfx::setViewClear(RENDER_PASS_SHADOW_MAP
, BGFX_CLEAR_COLOR|BGFX_CLEAR_DEPTH
, 0
, 1.0f
, 0
);
// Create uniforms
u_tint = bgfx::createUniform("u_tint", bgfx::UniformType::Vec4); // Tint for when you click on items
u_lightDir = bgfx::createUniform("u_lightDir", bgfx::UniformType::Vec4); // Single directional light for entire scene
u_sphereInfo = bgfx::createUniform("u_sphereInfo", bgfx::UniformType::Vec4); // Info for RSM
u_invMvp = bgfx::createUniform("u_invMvp", bgfx::UniformType::Mat4); // Matrix needed in light buffer
u_invMvpShadow = bgfx::createUniform("u_invMvpShadow", bgfx::UniformType::Mat4); // Matrix needed in light buffer
u_lightMtx = bgfx::createUniform("u_lightMtx", bgfx::UniformType::Mat4); // Matrix needed to use shadow map (world to shadow space)
u_shadowDimsInv = bgfx::createUniform("u_shadowDimsInv", bgfx::UniformType::Vec4); // Used in PCF
u_rsmAmount = bgfx::createUniform("u_rsmAmount", bgfx::UniformType::Vec4); // How much RSM to use vs directional light
// Create texture sampler uniforms (used when we bind textures)
s_normal = bgfx::createUniform("s_normal", bgfx::UniformType::Int1); // Normal gbuffer
s_depth = bgfx::createUniform("s_depth", bgfx::UniformType::Int1); // Normal gbuffer
s_color = bgfx::createUniform("s_color", bgfx::UniformType::Int1); // Color (albedo) gbuffer
s_light = bgfx::createUniform("s_light", bgfx::UniformType::Int1); // Light buffer
s_shadowMap = bgfx::createUniform("s_shadowMap", bgfx::UniformType::Int1); // Shadow map
s_rsm = bgfx::createUniform("s_rsm", bgfx::UniformType::Int1); // Reflective shadow map
// Create program from shaders.
m_gbufferProgram = loadProgram("vs_rsm_gbuffer", "fs_rsm_gbuffer"); // Gbuffer
m_shadowProgram = loadProgram("vs_rsm_shadow", "fs_rsm_shadow" ); // Drawing shadow map
m_lightProgram = loadProgram("vs_rsm_lbuffer", "fs_rsm_lbuffer"); // Light buffer
m_combineProgram = loadProgram("vs_rsm_combine", "fs_rsm_combine"); // Combiner
// Load some meshes
for (uint32_t ii = 0; ii < BX_COUNTOF(s_meshPaths); ++ii)
{
m_meshes[ii] = meshLoad(s_meshPaths[ii]);
}
// Randomly create some models
bx::RngMwc mwc; // Random number generator
for (uint32_t ii = 0; ii < BX_COUNTOF(m_models); ++ii)
{
Model& model = m_models[ii];
uint32_t rr = mwc.gen() % 256;
uint32_t gg = mwc.gen() % 256;
uint32_t bb = mwc.gen() % 256;
model.mesh = 1+mwc.gen()%(BX_COUNTOF(s_meshPaths)-1);
model.color[0] = rr/255.0f;
model.color[1] = gg/255.0f;
model.color[2] = bb/255.0f;
model.color[3] = 1.0f;
model.position[0] = (((mwc.gen() % 256)) - 128.0f)/20.0f;
model.position[1] = 0;
model.position[2] = (((mwc.gen() % 256)) - 128.0f)/20.0f;
}
// Load ground. We'll just use the cube since I don't have a ground model right now
m_ground = meshLoad("meshes/cube.bin");
// Light sphere
m_lightSphere = meshLoad("meshes/unit_sphere.bin");
const uint32_t samplerFlags = 0
| BGFX_TEXTURE_RT
| BGFX_TEXTURE_MIN_POINT
| BGFX_TEXTURE_MAG_POINT
| BGFX_TEXTURE_MIP_POINT
| BGFX_TEXTURE_U_CLAMP
| BGFX_TEXTURE_V_CLAMP
;
// Make gbuffer and related textures
m_gbufferTex[GBUFFER_RT_NORMAL] = bgfx::createTexture2D(bgfx::BackbufferRatio::Equal, false, 1, bgfx::TextureFormat::BGRA8, samplerFlags);
m_gbufferTex[GBUFFER_RT_COLOR] = bgfx::createTexture2D(bgfx::BackbufferRatio::Equal, false, 1, bgfx::TextureFormat::BGRA8, samplerFlags);
m_gbufferTex[GBUFFER_RT_DEPTH] = bgfx::createTexture2D(bgfx::BackbufferRatio::Equal, false, 1, bgfx::TextureFormat::D24, samplerFlags);
m_gbuffer = bgfx::createFrameBuffer(BX_COUNTOF(m_gbufferTex), m_gbufferTex, true);
// Make light buffer
m_lightBufferTex = bgfx::createTexture2D(bgfx::BackbufferRatio::Equal, false, 1, bgfx::TextureFormat::BGRA8, samplerFlags);
bgfx::TextureHandle lightBufferRTs[] = {
m_lightBufferTex
};
m_lightBuffer = bgfx::createFrameBuffer(BX_COUNTOF(lightBufferRTs), lightBufferRTs, true);
// Make shadow buffer
const uint32_t rsmFlags = 0
| BGFX_TEXTURE_RT
| BGFX_TEXTURE_MIN_POINT
| BGFX_TEXTURE_MAG_POINT
| BGFX_TEXTURE_MIP_POINT
| BGFX_TEXTURE_U_CLAMP
| BGFX_TEXTURE_V_CLAMP
;
// Reflective shadow map
m_shadowBufferTex[SHADOW_RT_RSM] = bgfx::createTexture2D(
SHADOW_MAP_DIM
, SHADOW_MAP_DIM
, false
, 1
, bgfx::TextureFormat::BGRA8,
rsmFlags
);
// Typical shadow map
m_shadowBufferTex[SHADOW_RT_DEPTH] = bgfx::createTexture2D(
SHADOW_MAP_DIM
, SHADOW_MAP_DIM
, false
, 1
, bgfx::TextureFormat::D16,
BGFX_TEXTURE_RT/* | BGFX_TEXTURE_COMPARE_LEQUAL*/
); // Note I'm not setting BGFX_TEXTURE_COMPARE_LEQUAL. Why?
// Normally a PCF shadow map such as this requires a compare. However, this sample also
// reads from this texture in the lighting pass, and only uses the PCF capabilites in the
// combine pass, so the flag is disabled by default.
m_shadowBuffer = bgfx::createFrameBuffer(BX_COUNTOF(m_shadowBufferTex), m_shadowBufferTex, true);
// Vertex decl
PosTexCoord0Vertex::init();
// Init camera
cameraCreate();
float camPos[] = {0.0f, 1.5f, 0.0f};
cameraSetPosition(camPos);
cameraSetVerticalAngle(-0.3f);
// Init directional light
updateLightDir();
// Get renderer capabilities info.
m_caps = bgfx::getCaps();
const bgfx::RendererType::Enum renderer = bgfx::getRendererType();
m_texelHalf = bgfx::RendererType::Direct3D9 == renderer ? 0.5f : 0.0f;
imguiCreate();
}
int shutdown() BX_OVERRIDE
{
for (uint32_t ii = 0; ii < BX_COUNTOF(s_meshPaths); ++ii)
{
meshUnload(m_meshes[ii]);
}
meshUnload(m_ground);
meshUnload(m_lightSphere);
// Cleanup.
bgfx::destroyProgram(m_gbufferProgram);
bgfx::destroyProgram(m_lightProgram);
bgfx::destroyProgram(m_combineProgram);
bgfx::destroyProgram(m_shadowProgram);
bgfx::destroyUniform(u_tint);
bgfx::destroyUniform(u_lightDir);
bgfx::destroyUniform(u_sphereInfo);
bgfx::destroyUniform(u_invMvp);
bgfx::destroyUniform(u_invMvpShadow);
bgfx::destroyUniform(u_lightMtx);
bgfx::destroyUniform(u_shadowDimsInv);
bgfx::destroyUniform(u_rsmAmount);
bgfx::destroyUniform(s_normal);
bgfx::destroyUniform(s_depth);
bgfx::destroyUniform(s_light);
bgfx::destroyUniform(s_color);
bgfx::destroyUniform(s_shadowMap);
bgfx::destroyUniform(s_rsm);
bgfx::destroyFrameBuffer(m_gbuffer);
bgfx::destroyFrameBuffer(m_lightBuffer);
bgfx::destroyFrameBuffer(m_shadowBuffer);
for (uint32_t ii = 0; ii < BX_COUNTOF(m_gbufferTex); ++ii)
{
bgfx::destroyTexture(m_gbufferTex[ii]);
}
bgfx::destroyTexture(m_lightBufferTex);
for (uint32_t ii = 0; ii < BX_COUNTOF(m_shadowBufferTex); ++ii)
{
bgfx::destroyTexture(m_shadowBufferTex[ii]);
}
cameraDestroy();
imguiDestroy();
// Shutdown bgfx.
bgfx::shutdown();
return 0;
}
bool update() BX_OVERRIDE
{
if (!entry::processEvents(m_width, m_height, m_debug, m_reset, &m_mouseState) )
{
// Update frame timer
int64_t now = bx::getHPCounter();
static int64_t last = now;
const int64_t frameTime = now - last;
last = now;
const double freq = double(bx::getHPFrequency());
const double toMs = 1000.0 / freq;
const float deltaTime = float(frameTime/freq);
// Use debug font to print information about this example.
bgfx::dbgTextClear();
bgfx::dbgTextPrintf(0, 1, 0x4f, "bgfx/examples/31-rsm");
bgfx::dbgTextPrintf(0, 2, 0x6f, "Description: Global Illumination with Reflective Shadow Map.");
bgfx::dbgTextPrintf(0, 3, 0x0f, "Frame: % 7.3f[ms]", double(frameTime)*toMs);
// Update camera
cameraUpdate(deltaTime*0.15f, m_mouseState);
// Set up matrices for gbuffer
float view[16];
cameraGetViewMtx(view);
float proj[16];
bx::mtxProj(proj, 60.0f, float(m_width)/float(m_height), 0.1f, 100.0f);
bgfx::setViewRect(RENDER_PASS_GBUFFER, 0, 0, uint16_t(m_width), uint16_t(m_height));
bgfx::setViewTransform(RENDER_PASS_GBUFFER, view, proj);
// Make sure when we draw it goes into gbuffer and not backbuffer
bgfx::setViewFrameBuffer(RENDER_PASS_GBUFFER, m_gbuffer);
// Draw everything into g-buffer
drawAllModels(RENDER_PASS_GBUFFER, m_gbufferProgram);
// Draw shadow map
// Set up transforms for shadow map
float smView[16], smProj[16], lightEye[3], lightAt[3];
lightEye[0] = m_lightDir[0]*LIGHT_DIST;
lightEye[1] = m_lightDir[1]*LIGHT_DIST;
lightEye[2] = m_lightDir[2]*LIGHT_DIST;
lightAt[0] = 0.0f;
lightAt[1] = 0.0f;
lightAt[2] = 0.0f;
bx::mtxLookAt(smView, lightEye, lightAt);
const float area = 10.0f;
bgfx::RendererType::Enum renderer = bgfx::getRendererType();
bool flipV = false
|| renderer == bgfx::RendererType::OpenGL
|| renderer == bgfx::RendererType::OpenGLES
;
bx::mtxOrtho(smProj, -area, area, -area, area, -100.0f, 100.0f, 0.0f, flipV);
bgfx::setViewTransform(RENDER_PASS_SHADOW_MAP, smView, smProj);
bgfx::setViewFrameBuffer(RENDER_PASS_SHADOW_MAP, m_shadowBuffer);
bgfx::setViewRect(RENDER_PASS_SHADOW_MAP, 0, 0, SHADOW_MAP_DIM, SHADOW_MAP_DIM);
drawAllModels(RENDER_PASS_SHADOW_MAP, m_shadowProgram);
// Next draw light buffer
// Set up matrices for light buffer
bgfx::setViewRect(RENDER_PASS_LIGHT_BUFFER, 0, 0, uint16_t(m_width), uint16_t(m_height));
bgfx::setViewTransform(RENDER_PASS_LIGHT_BUFFER, view, proj); // Notice, same view and proj as gbuffer
// Set drawing into light buffer
bgfx::setViewFrameBuffer(RENDER_PASS_LIGHT_BUFFER, m_lightBuffer);
// Inverse view projection is needed in shader so set that up
float vp[16], invMvp[16];
bx::mtxMul(vp, view, proj);
bx::mtxInverse(invMvp, vp);
// Light matrix used in combine pass and inverse used in light pass
float lightMtx[16]; // World space to light space (shadow map space)
bx::mtxMul(lightMtx, smView, smProj);
float invMvpShadow[16];
bx::mtxInverse(invMvpShadow, lightMtx);
// Draw some lights (these should really be instanced but for this example they aren't...)
const unsigned MAX_SPHERE = 32;
for (uint32_t i = 0; i < MAX_SPHERE; i++)
{
for (uint32_t j = 0; j < MAX_SPHERE; j++)
{
// These are used in the fragment shader
bgfx::setTexture(0, s_normal, m_gbuffer, GBUFFER_RT_NORMAL); // Normal for lighting calculations
bgfx::setTexture(1, s_depth, m_gbuffer, GBUFFER_RT_DEPTH); // Depth to reconstruct world position
// Thse are used in the vert shader
bgfx::setTexture(2, s_shadowMap, m_shadowBuffer, SHADOW_RT_DEPTH); // Used to place sphere
bgfx::setTexture(3, s_rsm, m_shadowBuffer, SHADOW_RT_RSM); // Used to scale/color sphere
bgfx::setUniform(u_invMvp, invMvp);
bgfx::setUniform(u_invMvpShadow, invMvpShadow);
float sphereInfo[4];
sphereInfo[0] = ((float)i/(MAX_SPHERE-1));
sphereInfo[1] = ((float)j/(MAX_SPHERE-1));
sphereInfo[2] = m_vplRadius;
sphereInfo[3] = 0.0; // Unused
bgfx::setUniform(u_sphereInfo, sphereInfo);
const uint64_t lightDrawState = 0
| BGFX_STATE_RGB_WRITE
| BGFX_STATE_BLEND_ADD // <=== Overlapping lights contribute more
| BGFX_STATE_ALPHA_WRITE
| BGFX_STATE_CULL_CW // <=== If we go into the lights, there will be problems, so we draw the far back face.
;
meshSubmit(
m_lightSphere,
RENDER_PASS_LIGHT_BUFFER,
m_lightProgram,
NULL,
lightDrawState
);
}
}
// Draw combine pass
// Texture inputs for combine pass
bgfx::setTexture(0, s_normal, m_gbuffer, GBUFFER_RT_NORMAL);
bgfx::setTexture(1, s_color, m_gbuffer, GBUFFER_RT_COLOR);
bgfx::setTexture(2, s_light, m_lightBuffer, 0);
bgfx::setTexture(3, s_depth, m_gbuffer, GBUFFER_RT_DEPTH);
bgfx::setTexture(4, s_shadowMap, m_shadowBuffer, SHADOW_RT_DEPTH, BGFX_TEXTURE_COMPARE_LEQUAL);
// Uniforms for combine pass
bgfx::setUniform(u_lightDir, m_lightDir);
bgfx::setUniform(u_invMvp, invMvp);
bgfx::setUniform(u_lightMtx, lightMtx);
const float invDim[4] = {1.0f/SHADOW_MAP_DIM, 0.0f, 0.0f, 0.0f};
bgfx::setUniform(u_shadowDimsInv, invDim);
float rsmAmount[4] = {m_rsmAmount,m_rsmAmount,m_rsmAmount,m_rsmAmount};
bgfx::setUniform(u_rsmAmount, rsmAmount);
// Set up state for combine pass
// point of this is to avoid doing depth test, which is in the default state
bgfx::setState(0
| BGFX_STATE_RGB_WRITE
| BGFX_STATE_ALPHA_WRITE
);
// Set up transform matrix for fullscreen quad
float orthoProj[16];
bx::mtxOrtho(orthoProj, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 100.0f);
bgfx::setViewTransform(RENDER_PASS_COMBINE, NULL, orthoProj);
bgfx::setViewRect(RENDER_PASS_COMBINE, 0, 0, m_width, m_height);
// Bind vertex buffer and draw quad
screenSpaceQuad( (float)m_width, (float)m_height, m_texelHalf, m_caps->originBottomLeft);
bgfx::submit(RENDER_PASS_COMBINE, m_combineProgram);
// Draw UI
imguiBeginFrame(m_mouseState.m_mx
, m_mouseState.m_my
, (m_mouseState.m_buttons[entry::MouseButton::Left] ? IMGUI_MBUT_LEFT : 0)
| (m_mouseState.m_buttons[entry::MouseButton::Right] ? IMGUI_MBUT_RIGHT : 0)
| (m_mouseState.m_buttons[entry::MouseButton::Middle] ? IMGUI_MBUT_MIDDLE : 0)
, m_mouseState.m_mz
, m_width
, m_height
);
imguiBeginArea("RSM:", 10, 100, 300, 400);
imguiSlider("rsm amount", m_rsmAmount, 0.0f, 0.7f, 0.01f);
imguiSlider("vpl radius", m_vplRadius, 0.25f, 20.0f, 0.1f);
imguiSlider("light azimuth", m_lightAzimuth, 0.0f, 360.0f, 0.01f);
imguiSlider("light elevation", m_lightElevation, 35.0f, 90.0f, 0.01f);
imguiEndArea();
imguiEndFrame();
updateLightDir();
// Advance to next frame. Rendering thread will be kicked to
// process submitted rendering primitives.
m_currFrame = bgfx::frame();
return true;
}
return false;
}
void drawAllModels(uint8_t _pass, bgfx::ProgramHandle _program)
{
for (uint32_t ii = 0; ii < BX_COUNTOF(m_models); ++ii)
{
const Model& model = m_models[ii];
// Set up transform matrix for each model
float scale = s_meshScale[model.mesh];
float mtx[16];
bx::mtxSRT(mtx
, scale
, scale
, scale
, 0.0f
, 0.0f
, 0.0f
, model.position[0]
, model.position[1]
, model.position[2]
);
// Submit mesh to gbuffer
bgfx::setUniform(u_tint, model.color);
meshSubmit(m_meshes[model.mesh], _pass, _program, mtx);
}
// Draw ground
const float white[4] = { 1.0f, 1.0f, 1.0f, 1.0f };
bgfx::setUniform(u_tint, white);
float mtxScale[16];
float scale = 10.0;
bx::mtxScale(mtxScale
, scale
, scale
, scale
);
float mtxTrans[16];
bx::mtxTranslate(mtxTrans
, 0.0f
, -10.0f
, 0.0f
);
float mtx[16];
bx::mtxMul(mtx, mtxScale, mtxTrans);
meshSubmit(m_ground, _pass, _program, mtx);
}
void updateLightDir()
{
float el = m_lightElevation * (bx::pi/180.0f);
float az = m_lightAzimuth * (bx::pi/180.0f);
m_lightDir[0] = cos(el)*cos(az);
m_lightDir[2] = cos(el)*sin(az);
m_lightDir[1] = sin(el);
m_lightDir[3] = 0.0f;
}
uint32_t m_width;
uint32_t m_height;
uint32_t m_debug;
uint32_t m_reset;
entry::MouseState m_mouseState;
Mesh* m_ground;
Mesh* m_lightSphere; // Unit sphere
// Resource handles
bgfx::ProgramHandle m_gbufferProgram;
bgfx::ProgramHandle m_shadowProgram;
bgfx::ProgramHandle m_lightProgram;
bgfx::ProgramHandle m_combineProgram;
bgfx::FrameBufferHandle m_gbuffer;
bgfx::FrameBufferHandle m_lightBuffer;
bgfx::FrameBufferHandle m_shadowBuffer;
// Shader uniforms
bgfx::UniformHandle u_tint;
bgfx::UniformHandle u_invMvp;
bgfx::UniformHandle u_invMvpShadow;
bgfx::UniformHandle u_lightMtx;
bgfx::UniformHandle u_lightDir;
bgfx::UniformHandle u_sphereInfo;
bgfx::UniformHandle u_shadowDimsInv;
bgfx::UniformHandle u_rsmAmount;
// Uniforms to identify texture samples
bgfx::UniformHandle s_normal;
bgfx::UniformHandle s_depth;
bgfx::UniformHandle s_color;
bgfx::UniformHandle s_light;
bgfx::UniformHandle s_shadowMap;
bgfx::UniformHandle s_rsm;
// Various render targets
bgfx::TextureHandle m_gbufferTex[3];
bgfx::TextureHandle m_lightBufferTex;
bgfx::TextureHandle m_shadowBufferTex[2];
const bgfx::Caps* m_caps;
struct Model
{
uint32_t mesh; // Index of mesh in m_meshes
float color[4];
float position[3];
};
Model m_models[MODEL_COUNT];
Mesh * m_meshes[BX_COUNTOF(s_meshPaths)];
uint32_t m_reading;
uint32_t m_currFrame;
// UI
bool m_cameraSpin;
// Light position;
float m_lightDir[4];
float m_lightElevation;
float m_lightAzimuth;
float m_rsmAmount; // Amount of rsm
float m_vplRadius; // Radius of virtual point light
float m_texelHalf;
};
ENTRY_IMPLEMENT_MAIN(ExampleRSM);
|