// license:BSD-3-Clause // copyright-holders:Aaron Giles //============================================================ // // winmain.c - Win32 main program // //============================================================ // standard windows headers #define WIN32_LEAN_AND_MEAN #include #include #include #include #include // standard C headers #include #include #include #include // MAME headers #include "emu.h" #include "clifront.h" #include "emuopts.h" // MAMEOS headers #include "winmain.h" #include "window.h" #include "video.h" #include "winutf8.h" #include "winutil.h" #include "debugger.h" #include "winfile.h" #define DEBUG_SLOW_LOCKS 0 //************************************************************************** // MACROS //************************************************************************** #ifdef UNICODE #define UNICODE_POSTFIX "W" #else #define UNICODE_POSTFIX "A" #endif //************************************************************************** // TYPE DEFINITIONS //************************************************************************** template class dynamic_bind { public: // constructor which looks up the function dynamic_bind(const TCHAR *dll, const char *symbol) : m_function(nullptr) { HMODULE module = LoadLibrary(dll); if (module != nullptr) m_function = reinterpret_cast<_FunctionPtr>(GetProcAddress(module, symbol)); } // bool to test if the function is nullptr or not operator bool() const { return (m_function != nullptr); } // dereference to get the underlying pointer _FunctionPtr operator *() const { return m_function; } private: _FunctionPtr m_function; }; class stack_walker { public: stack_walker(); FPTR ip() const { return m_stackframe.AddrPC.Offset; } FPTR sp() const { return m_stackframe.AddrStack.Offset; } FPTR frame() const { return m_stackframe.AddrFrame.Offset; } bool reset(); void reset(CONTEXT &context, HANDLE thread); bool unwind(); private: HANDLE m_process; HANDLE m_thread; STACKFRAME64 m_stackframe; CONTEXT m_context; bool m_first; dynamic_bind m_stack_walk_64; dynamic_bind m_sym_initialize; dynamic_bind m_sym_function_table_access_64; dynamic_bind m_sym_get_module_base_64; dynamic_bind m_rtl_capture_context; static bool s_initialized; }; class symbol_manager { public: // construction/destruction symbol_manager(const char *argv0); ~symbol_manager(); // getters FPTR last_base() const { return m_last_base; } // core symbol lookup const char *symbol_for_address(FPTR address); const char *symbol_for_address(PVOID address) { return symbol_for_address(reinterpret_cast(address)); } // force symbols to be cached void cache_symbols() { scan_file_for_address(0, true); } void reset_cache() { m_cache.reset(); } private: // internal helpers bool query_system_for_address(FPTR address); void scan_file_for_address(FPTR address, bool create_cache); bool parse_sym_line(const char *line, FPTR &address, std::string &symbol); bool parse_map_line(const char *line, FPTR &address, std::string &symbol); void scan_cache_for_address(FPTR address); void format_symbol(const char *name, UINT32 displacement, const char *filename = nullptr, int linenumber = 0); static FPTR get_text_section_base(); struct cache_entry { cache_entry(FPTR address, const char *symbol) : m_next(nullptr), m_address(address), m_name(symbol) { } cache_entry *next() const { return m_next; } cache_entry * m_next; FPTR m_address; std::string m_name; }; simple_list m_cache; std::string m_mapfile; std::string m_symfile; std::string m_buffer; HANDLE m_process; FPTR m_last_base; FPTR m_text_base; dynamic_bind m_sym_from_addr; dynamic_bind m_sym_get_line_from_addr_64; }; class sampling_profiler { public: sampling_profiler(UINT32 max_seconds, UINT8 stack_depth); ~sampling_profiler(); void start(); void stop(); // void reset(); void print_results(symbol_manager &symbols); private: static DWORD WINAPI thread_entry(LPVOID lpParameter); void thread_run(); static int CLIB_DECL compare_address(const void *item1, const void *item2); static int CLIB_DECL compare_frequency(const void *item1, const void *item2); HANDLE m_target_thread; HANDLE m_thread; DWORD m_thread_id; volatile bool m_thread_exit; UINT8 m_stack_depth; UINT8 m_entry_stride; std::vector m_buffer; FPTR * m_buffer_ptr; FPTR * m_buffer_end; }; //============================================================ // winui_output_error //============================================================ class winui_output_error : public osd_output { public: virtual void output_callback(osd_output_channel channel, const char *msg, va_list args) override { if (channel == OSD_OUTPUT_CHANNEL_ERROR) { char buffer[1024]; // if we are in fullscreen mode, go to windowed mode if ((video_config.windowed == 0) && (win_window_list != nullptr)) winwindow_toggle_full_screen(); vsnprintf(buffer, ARRAY_LENGTH(buffer), msg, args); win_message_box_utf8(win_window_list ? win_window_list->m_hwnd : nullptr, buffer, emulator_info::get_appname(), MB_OK); } else chain_output(channel, msg, args); } }; //************************************************************************** // GLOBAL VARIABLES //************************************************************************** // this line prevents globbing on the command line int _CRT_glob = 0; //************************************************************************** // LOCAL VARIABLES //************************************************************************** static LPTOP_LEVEL_EXCEPTION_FILTER pass_thru_filter; static HANDLE watchdog_reset_event; static HANDLE watchdog_exit_event; static HANDLE watchdog_thread; static running_machine *g_current_machine; static int timeresult = !TIMERR_NOERROR; static TIMECAPS timecaps; static sampling_profiler *profiler = nullptr; static symbol_manager *symbols = nullptr; bool stack_walker::s_initialized = false; //************************************************************************** // FUNCTION PROTOTYPES //************************************************************************** static BOOL WINAPI control_handler(DWORD type); static int is_double_click_start(int argc); static DWORD WINAPI watchdog_thread_entry(LPVOID lpParameter); static LONG WINAPI exception_filter(struct _EXCEPTION_POINTERS *info); //************************************************************************** // OPTIONS //************************************************************************** // struct definitions const options_entry windows_options::s_option_entries[] = { // performance options { nullptr, nullptr, OPTION_HEADER, "WINDOWS PERFORMANCE OPTIONS" }, { WINOPTION_PRIORITY "(-15-1)", "0", OPTION_INTEGER, "thread priority for the main game thread; range from -15 to 1" }, { WINOPTION_PROFILE, "0", OPTION_INTEGER, "enables profiling, specifying the stack depth to track" }, // video options { nullptr, nullptr, OPTION_HEADER, "WINDOWS VIDEO OPTIONS" }, { WINOPTION_MENU, "0", OPTION_BOOLEAN, "enables menu bar if available by UI implementation" }, // DirectDraw-specific options { nullptr, nullptr, OPTION_HEADER, "DIRECTDRAW-SPECIFIC OPTIONS" }, { WINOPTION_HWSTRETCH ";hws", "1", OPTION_BOOLEAN, "enables hardware stretching" }, // post-processing options { nullptr, nullptr, OPTION_HEADER, "DIRECT3D POST-PROCESSING OPTIONS" }, { WINOPTION_HLSL_ENABLE";hlsl", "0", OPTION_BOOLEAN, "enables HLSL post-processing (PS3.0 required)" }, { WINOPTION_HLSLPATH, "hlsl", OPTION_STRING, "path to hlsl files" }, { WINOPTION_HLSL_WRITE, nullptr, OPTION_STRING, "enables HLSL AVI writing (huge disk bandwidth suggested)" }, { WINOPTION_HLSL_SNAP_WIDTH, "2048", OPTION_STRING, "HLSL upscaled-snapshot width" }, { WINOPTION_HLSL_SNAP_HEIGHT, "1536", OPTION_STRING, "HLSL upscaled-snapshot height" }, { WINOPTION_SHADOW_MASK_TILE_MODE, "0", OPTION_INTEGER, "shadow mask tile mode (0 for screen based, 1 for source based)" }, { WINOPTION_SHADOW_MASK_ALPHA";fs_shadwa(0.0-1.0)", "0.0", OPTION_FLOAT, "shadow mask alpha-blend value (1.0 is fully blended, 0.0 is no mask)" }, { WINOPTION_SHADOW_MASK_TEXTURE";fs_shadwt(0.0-1.0)", "shadow-mask.png", OPTION_STRING, "shadow mask texture name" }, { WINOPTION_SHADOW_MASK_COUNT_X";fs_shadww", "6", OPTION_INTEGER, "shadow mask tile width, in screen dimensions" }, { WINOPTION_SHADOW_MASK_COUNT_Y";fs_shadwh", "4", OPTION_INTEGER, "shadow mask tile height, in screen dimensions" }, { WINOPTION_SHADOW_MASK_USIZE";fs_shadwu(0.0-1.0)", "0.1875", OPTION_FLOAT, "shadow mask texture width, in U/V dimensions" }, { WINOPTION_SHADOW_MASK_VSIZE";fs_shadwv(0.0-1.0)", "0.25", OPTION_FLOAT, "shadow mask texture height, in U/V dimensions" }, { WINOPTION_SHADOW_MASK_UOFFSET";fs_shadwou(-1.0-1.0)", "0.0", OPTION_FLOAT, "shadow mask texture offset, in U direction" }, { WINOPTION_SHADOW_MASK_VOFFSET";fs_shadwov(-1.0-1.0)", "0.0", OPTION_FLOAT, "shadow mask texture offset, in V direction" }, { WINOPTION_CURVATURE";fs_curv(0.0-1.0)", "0.0", OPTION_FLOAT, "screen curvature amount" }, { WINOPTION_ROUND_CORNER";fs_rndc(0.0-1.0)", "0.0", OPTION_FLOAT, "screen round corner amount" }, { WINOPTION_SMOOTH_BORDER";fs_smob(0.0-1.0)", "0.0", OPTION_FLOAT, "screen smooth border amount" }, { WINOPTION_REFLECTION";fs_ref(0.0-1.0)", "0.0", OPTION_FLOAT, "screen reflection amount" }, { WINOPTION_VIGNETTING";fs_vig(0.0-1.0)", "0.0", OPTION_FLOAT, "image vignetting amount" }, /* Beam-related values below this line*/ { WINOPTION_SCANLINE_AMOUNT";fs_scanam(0.0-4.0)", "0.0", OPTION_FLOAT, "overall alpha scaling value for scanlines" }, { WINOPTION_SCANLINE_SCALE";fs_scansc(0.0-4.0)", "1.0", OPTION_FLOAT, "overall height scaling value for scanlines" }, { WINOPTION_SCANLINE_HEIGHT";fs_scanh(0.0-4.0)", "1.0", OPTION_FLOAT, "individual height scaling value for scanlines" }, { WINOPTION_SCANLINE_VARIATION";fs_scanv(0.0-4.0)", "1.0", OPTION_FLOAT, "individual height varying value for scanlines" }, { WINOPTION_SCANLINE_BRIGHT_SCALE";fs_scanbs(0.0-2.0)", "1.0", OPTION_FLOAT, "overall brightness scaling value for scanlines (multiplicative)" }, { WINOPTION_SCANLINE_BRIGHT_OFFSET";fs_scanbo(0.0-1.0)", "0.0", OPTION_FLOAT, "overall brightness offset value for scanlines (additive)" }, { WINOPTION_SCANLINE_JITTER";fs_scanjt(0.0-4.0)", "0.0", OPTION_FLOAT, "overall interlace jitter scaling value for scanlines" }, { WINOPTION_HUM_BAR_ALPHA";fs_humba(0.0-1.0)", "0.0", OPTION_FLOAT, "overall alpha scaling value for hum bar" }, { WINOPTION_DEFOCUS";fs_focus", "0.0,0.0", OPTION_STRING, "overall defocus value in screen-relative coords" }, { WINOPTION_CONVERGE_X";fs_convx", "0.0,0.0,0.0", OPTION_STRING, "convergence in screen-relative X direction" }, { WINOPTION_CONVERGE_Y";fs_convy", "0.0,0.0,0.0", OPTION_STRING, "convergence in screen-relative Y direction" }, { WINOPTION_RADIAL_CONVERGE_X";fs_rconvx", "0.0,0.0,0.0", OPTION_STRING, "radial convergence in screen-relative X direction" }, { WINOPTION_RADIAL_CONVERGE_Y";fs_rconvy", "0.0,0.0,0.0", OPTION_STRING, "radial convergence in screen-relative Y direction" }, /* RGB colorspace convolution below this line */ { WINOPTION_RED_RATIO";fs_redratio", "1.0,0.0,0.0", OPTION_STRING, "red output signal generated by input signal" }, { WINOPTION_GRN_RATIO";fs_grnratio", "0.0,1.0,0.0", OPTION_STRING, "green output signal generated by input signal" }, { WINOPTION_BLU_RATIO";fs_bluratio", "0.0,0.0,1.0", OPTION_STRING, "blue output signal generated by input signal" }, { WINOPTION_SATURATION";fs_sat(0.0-4.0)", "1.0", OPTION_FLOAT, "saturation scaling value" }, { WINOPTION_OFFSET";fs_offset", "0.0,0.0,0.0", OPTION_STRING, "signal offset value (additive)" }, { WINOPTION_SCALE";fs_scale", "1.0,1.0,1.0", OPTION_STRING, "signal scaling value (multiplicative)" }, { WINOPTION_POWER";fs_power", "1.0,1.0,1.0", OPTION_STRING, "signal power value (exponential)" }, { WINOPTION_FLOOR";fs_floor", "0.0,0.0,0.0", OPTION_STRING, "signal floor level" }, { WINOPTION_PHOSPHOR";fs_phosphor", "0.0,0.0,0.0", OPTION_STRING, "phosphorescence decay rate (0.0 is instant, 1.0 is forever)" }, /* NTSC simulation below this line */ { nullptr, nullptr, OPTION_HEADER, "NTSC POST-PROCESSING OPTIONS" }, { WINOPTION_YIQ_ENABLE";yiq", "0", OPTION_BOOLEAN, "enables YIQ-space HLSL post-processing" }, { WINOPTION_YIQ_JITTER";yiqj", "0.0", OPTION_FLOAT, "Jitter for the NTSC signal processing" }, { WINOPTION_YIQ_CCVALUE";yiqcc", "3.57954545", OPTION_FLOAT, "Color Carrier frequency for NTSC signal processing" }, { WINOPTION_YIQ_AVALUE";yiqa", "0.5", OPTION_FLOAT, "A value for NTSC signal processing" }, { WINOPTION_YIQ_BVALUE";yiqb", "0.5", OPTION_FLOAT, "B value for NTSC signal processing" }, { WINOPTION_YIQ_OVALUE";yiqo", "0.0", OPTION_FLOAT, "Outgoing Color Carrier phase offset for NTSC signal processing" }, { WINOPTION_YIQ_PVALUE";yiqp", "1.0", OPTION_FLOAT, "Incoming Pixel Clock scaling value for NTSC signal processing" }, { WINOPTION_YIQ_NVALUE";yiqn", "1.0", OPTION_FLOAT, "Y filter notch width for NTSC signal processing" }, { WINOPTION_YIQ_YVALUE";yiqy", "6.0", OPTION_FLOAT, "Y filter cutoff frequency for NTSC signal processing" }, { WINOPTION_YIQ_IVALUE";yiqi", "1.2", OPTION_FLOAT, "I filter cutoff frequency for NTSC signal processing" }, { WINOPTION_YIQ_QVALUE";yiqq", "0.6", OPTION_FLOAT, "Q filter cutoff frequency for NTSC signal processing" }, { WINOPTION_YIQ_SCAN_TIME";yiqsc", "52.6", OPTION_FLOAT, "Horizontal scanline duration for NTSC signal processing (in usec)" }, { WINOPTION_YIQ_PHASE_COUNT";yiqp", "2", OPTION_INTEGER, "Phase Count value for NTSC signal processing" }, /* Vector simulation below this line */ { nullptr, nullptr, OPTION_HEADER, "VECTOR POST-PROCESSING OPTIONS" }, { WINOPTION_VECTOR_LENGTH_SCALE";veclength", "0.5", OPTION_FLOAT, "How much length affects vector fade" }, { WINOPTION_VECTOR_LENGTH_RATIO";vecsize", "500.0", OPTION_FLOAT, "Vector fade length (4.0 - vectors fade the most at and above 4 pixels, etc.)" }, /* Bloom below this line */ { nullptr, nullptr, OPTION_HEADER, "BLOOM POST-PROCESSING OPTIONS" }, { WINOPTION_BLOOM_BLEND_MODE, "0", OPTION_INTEGER, "bloom blend mode (0 for brighten, 1 for darken)" }, { WINOPTION_BLOOM_SCALE, "0.0", OPTION_FLOAT, "Intensity factor for bloom" }, { WINOPTION_BLOOM_OVERDRIVE, "1.0,1.0,1.0", OPTION_STRING, "Overdrive factor for bloom" }, { WINOPTION_BLOOM_LEVEL0_WEIGHT, "1.0", OPTION_FLOAT, "Bloom level 0 (full-size target) weight" }, { WINOPTION_BLOOM_LEVEL1_WEIGHT, "0.64", OPTION_FLOAT, "Bloom level 1 (1/2-size target) weight" }, { WINOPTION_BLOOM_LEVEL2_WEIGHT, "0.32", OPTION_FLOAT, "Bloom level 2 (1/4-size target) weight" }, { WINOPTION_BLOOM_LEVEL3_WEIGHT, "0.16", OPTION_FLOAT, "Bloom level 3 (1/8-size target) weight" }, { WINOPTION_BLOOM_LEVEL4_WEIGHT, "0.08", OPTION_FLOAT, "Bloom level 4 (1/16-size target) weight" }, { WINOPTION_BLOOM_LEVEL5_WEIGHT, "0.04", OPTION_FLOAT, "Bloom level 5 (1/32-size target) weight" }, { WINOPTION_BLOOM_LEVEL6_WEIGHT, "0.04", OPTION_FLOAT, "Bloom level 6 (1/64-size target) weight" }, { WINOPTION_BLOOM_LEVEL7_WEIGHT, "0.02", OPTION_FLOAT, "Bloom level 7 (1/128-size target) weight" }, { WINOPTION_BLOOM_LEVEL8_WEIGHT, "0.02", OPTION_FLOAT, "Bloom level 8 (1/256-size target) weight" }, { WINOPTION_BLOOM_LEVEL9_WEIGHT, "0.01", OPTION_FLOAT, "Bloom level 9 (1/512-size target) weight" }, { WINOPTION_BLOOM_LEVEL10_WEIGHT, "0.01", OPTION_FLOAT, "Bloom level 10 (1/1024-size target) weight" }, // full screen options { nullptr, nullptr, OPTION_HEADER, "FULL SCREEN OPTIONS" }, { WINOPTION_TRIPLEBUFFER ";tb", "0", OPTION_BOOLEAN, "enables triple buffering" }, { WINOPTION_FULLSCREENBRIGHTNESS ";fsb(0.1-2.0)", "1.0", OPTION_FLOAT, "brightness value in full screen mode" }, { WINOPTION_FULLSCREENCONTRAST ";fsc(0.1-2.0)", "1.0", OPTION_FLOAT, "contrast value in full screen mode" }, { WINOPTION_FULLSCREENGAMMA ";fsg(0.1-3.0)", "1.0", OPTION_FLOAT, "gamma value in full screen mode" }, // input options { nullptr, nullptr, OPTION_HEADER, "INPUT DEVICE OPTIONS" }, { WINOPTION_GLOBAL_INPUTS ";global_inputs", "0", OPTION_BOOLEAN, "enables global inputs" }, { WINOPTION_DUAL_LIGHTGUN ";dual", "0", OPTION_BOOLEAN, "enables dual lightgun input" }, { nullptr } }; //************************************************************************** // MAIN ENTRY POINT //************************************************************************** //============================================================ // utf8_main //============================================================ int main(int argc, char *argv[]) { // use small output buffers on non-TTYs (i.e. pipes) if (!isatty(fileno(stdout))) setvbuf(stdout, (char *) nullptr, _IOFBF, 64); if (!isatty(fileno(stderr))) setvbuf(stderr, (char *) nullptr, _IOFBF, 64); // initialize common controls InitCommonControls(); // set a handler to catch ctrl-c SetConsoleCtrlHandler(control_handler, TRUE); // allocate symbols symbol_manager local_symbols(argv[0]); symbols = &local_symbols; // set up exception handling pass_thru_filter = SetUnhandledExceptionFilter(exception_filter); SetErrorMode(SEM_FAILCRITICALERRORS | SEM_NOGPFAULTERRORBOX); // enable stack crawls for asserts extern void (*s_debugger_stack_crawler)(); s_debugger_stack_crawler = winmain_dump_stack; // parse config and cmdline options DWORD result; { windows_options options; windows_osd_interface osd(options); // if we're a GUI app, out errors to message boxes // Initialize this after the osd interface so that we are first in the // output order winui_output_error winerror; if (win_is_gui_application() || is_double_click_start(argc)) { // if we are a GUI app, output errors to message boxes osd_output::push(&winerror); // make sure any console window that opened on our behalf is nuked FreeConsole(); } osd.register_options(); cli_frontend frontend(options, osd); result = frontend.execute(argc, argv); osd_output::pop(&winerror); } // free symbols symbols = nullptr; return result; } //============================================================ // windows_options //============================================================ windows_options::windows_options() : osd_options() { add_entries(s_option_entries); } //============================================================ // control_handler //============================================================ static BOOL WINAPI control_handler(DWORD type) { // indicate to the user that we detected something switch (type) { case CTRL_C_EVENT: fprintf(stderr, "Caught Ctrl+C"); break; case CTRL_BREAK_EVENT: fprintf(stderr, "Caught Ctrl+break"); break; case CTRL_CLOSE_EVENT: fprintf(stderr, "Caught console close"); break; case CTRL_LOGOFF_EVENT: fprintf(stderr, "Caught logoff"); break; case CTRL_SHUTDOWN_EVENT: fprintf(stderr, "Caught shutdown"); break; default: fprintf(stderr, "Caught unexpected console event"); break; } // if we don't have a machine yet, or if we are handling ctrl+c/ctrl+break, // just terminate hard, without throwing or handling any atexit stuff if (g_current_machine == nullptr || type == CTRL_C_EVENT || type == CTRL_BREAK_EVENT) { fprintf(stderr, ", exiting\n"); TerminateProcess(GetCurrentProcess(), MAMERR_FATALERROR); } // all other situations attempt to do a clean exit else { fprintf(stderr, ", exit requested\n"); g_current_machine->schedule_exit(); } // in all cases we handled it return TRUE; } //============================================================ // output_oslog //============================================================ static void output_oslog(const running_machine &machine, const char *buffer) { if (IsDebuggerPresent()) win_output_debug_string_utf8(buffer); } //============================================================ // constructor //============================================================ windows_osd_interface::windows_osd_interface(windows_options &options) : osd_common_t(options) , m_options(options) , m_sliders(nullptr) { } //============================================================ // destructor //============================================================ windows_osd_interface::~windows_osd_interface() { } //============================================================ // video_register //============================================================ void windows_osd_interface::video_register() { video_options_add("gdi", nullptr); video_options_add("d3d", nullptr); video_options_add("bgfx", nullptr); //video_options_add("auto", nullptr); // making d3d video default one } //============================================================ // init //============================================================ void windows_osd_interface::init(running_machine &machine) { // call our parent osd_common_t::init(machine); const char *stemp; windows_options &options = downcast(machine.options()); // determine if we are benchmarking, and adjust options appropriately int bench = options.bench(); std::string error_string; if (bench > 0) { options.set_value(OPTION_THROTTLE, false, OPTION_PRIORITY_MAXIMUM, error_string); options.set_value(OSDOPTION_SOUND, "none", OPTION_PRIORITY_MAXIMUM, error_string); options.set_value(OSDOPTION_VIDEO, "none", OPTION_PRIORITY_MAXIMUM, error_string); options.set_value(OPTION_SECONDS_TO_RUN, bench, OPTION_PRIORITY_MAXIMUM, error_string); assert(error_string.empty()); } // determine if we are profiling, and adjust options appropriately int profile = options.profile(); if (profile > 0) { options.set_value(OPTION_THROTTLE, false, OPTION_PRIORITY_MAXIMUM, error_string); options.set_value(OSDOPTION_MULTITHREADING, false, OPTION_PRIORITY_MAXIMUM, error_string); options.set_value(OSDOPTION_NUMPROCESSORS, 1, OPTION_PRIORITY_MAXIMUM, error_string); assert(error_string.empty()); } // thread priority if (!(machine.debug_flags & DEBUG_FLAG_OSD_ENABLED)) SetThreadPriority(GetCurrentThread(), options.priority()); // get number of processors stemp = options.numprocessors(); osd_num_processors = 0; if (strcmp(stemp, "auto") != 0) { osd_num_processors = atoi(stemp); if (osd_num_processors < 1) { osd_printf_warning("Warning: numprocessors < 1 doesn't make much sense. Assuming auto ...\n"); osd_num_processors = 0; } } // initialize the subsystems osd_common_t::init_subsystems(); // notify listeners of screen configuration for (win_window_info *info = win_window_list; info != nullptr; info = info->m_next) { machine.output().set_value(string_format("Orientation(%s)", info->m_monitor->devicename()).c_str(), info->m_targetorient); } // hook up the debugger log if (options.oslog()) machine.add_logerror_callback(output_oslog); // crank up the multimedia timer resolution to its max // this gives the system much finer timeslices timeresult = timeGetDevCaps(&timecaps, sizeof(timecaps)); if (timeresult == TIMERR_NOERROR) timeBeginPeriod(timecaps.wPeriodMin); // if a watchdog thread is requested, create one int watchdog = options.watchdog(); if (watchdog != 0) { watchdog_reset_event = CreateEvent(nullptr, FALSE, FALSE, nullptr); assert_always(watchdog_reset_event != nullptr, "Failed to create watchdog reset event"); watchdog_exit_event = CreateEvent(nullptr, TRUE, FALSE, nullptr); assert_always(watchdog_exit_event != nullptr, "Failed to create watchdog exit event"); watchdog_thread = CreateThread(nullptr, 0, watchdog_thread_entry, (LPVOID)(FPTR)watchdog, 0, nullptr); assert_always(watchdog_thread != nullptr, "Failed to create watchdog thread"); } // create and start the profiler if (profile > 0) { profiler = global_alloc(sampling_profiler(1000, profile - 1)); profiler->start(); } // initialize sockets win_init_sockets(); // note the existence of a machine g_current_machine = &machine; } //============================================================ // osd_exit //============================================================ void windows_osd_interface::osd_exit() { // no longer have a machine g_current_machine = nullptr; // cleanup sockets win_cleanup_sockets(); osd_common_t::osd_exit(); // take down the watchdog thread if it exists if (watchdog_thread != nullptr) { SetEvent(watchdog_exit_event); WaitForSingleObject(watchdog_thread, INFINITE); CloseHandle(watchdog_reset_event); CloseHandle(watchdog_exit_event); CloseHandle(watchdog_thread); watchdog_reset_event = nullptr; watchdog_exit_event = nullptr; watchdog_thread = nullptr; } // stop the profiler if (profiler != nullptr) { profiler->stop(); profiler->print_results(*symbols); global_free(profiler); } // restore the timer resolution if (timeresult == TIMERR_NOERROR) timeEndPeriod(timecaps.wPeriodMin); // one last pass at events winwindow_process_events(machine(), 0, 0); } //============================================================ // winmain_dump_stack //============================================================ void winmain_dump_stack() { // set up the stack walker stack_walker walker; if (!walker.reset()) return; // walk the stack while (walker.unwind()) fprintf(stderr, " %p: %p%s\n", (void *)walker.frame(), (void *)walker.ip(), (symbols == nullptr) ? "" : symbols->symbol_for_address(walker.ip())); } //============================================================ // check_for_double_click_start //============================================================ static int is_double_click_start(int argc) { STARTUPINFO startup_info = { sizeof(STARTUPINFO) }; // determine our startup information GetStartupInfo(&startup_info); // try to determine if MAME was simply double-clicked return (argc <= 1 && startup_info.dwFlags && !(startup_info.dwFlags & STARTF_USESTDHANDLES)); } //============================================================ // watchdog_thread_entry //============================================================ static DWORD WINAPI watchdog_thread_entry(LPVOID lpParameter) { DWORD timeout = (int)(FPTR)lpParameter * 1000; while (TRUE) { HANDLE handle_list[2]; DWORD wait_result; // wait for either a reset or an exit, or a timeout handle_list[0] = watchdog_reset_event; handle_list[1] = watchdog_exit_event; wait_result = WaitForMultipleObjects(2, handle_list, FALSE, timeout); // on a reset, just loop around and re-wait if (wait_result == WAIT_OBJECT_0 + 0) continue; // on an exit, break out if (wait_result == WAIT_OBJECT_0 + 1) break; // on a timeout, kill the process if (wait_result == WAIT_TIMEOUT) { fprintf(stderr, "Terminating due to watchdog timeout\n"); fflush(stderr); TerminateProcess(GetCurrentProcess(), -1); } } return EXCEPTION_CONTINUE_SEARCH; } //============================================================ // winmain_watchdog_ping //============================================================ void winmain_watchdog_ping(void) { // if we have a watchdog, reset it if (watchdog_reset_event != nullptr) SetEvent(watchdog_reset_event); } //============================================================ // exception_filter //============================================================ static LONG WINAPI exception_filter(struct _EXCEPTION_POINTERS *info) { static const struct { DWORD code; const char *string; } exception_table[] = { { EXCEPTION_ACCESS_VIOLATION, "ACCESS VIOLATION" }, { EXCEPTION_DATATYPE_MISALIGNMENT, "DATATYPE MISALIGNMENT" }, { EXCEPTION_BREAKPOINT, "BREAKPOINT" }, { EXCEPTION_SINGLE_STEP, "SINGLE STEP" }, { EXCEPTION_ARRAY_BOUNDS_EXCEEDED, "ARRAY BOUNDS EXCEEDED" }, { EXCEPTION_FLT_DENORMAL_OPERAND, "FLOAT DENORMAL OPERAND" }, { EXCEPTION_FLT_DIVIDE_BY_ZERO, "FLOAT DIVIDE BY ZERO" }, { EXCEPTION_FLT_INEXACT_RESULT, "FLOAT INEXACT RESULT" }, { EXCEPTION_FLT_INVALID_OPERATION, "FLOAT INVALID OPERATION" }, { EXCEPTION_FLT_OVERFLOW, "FLOAT OVERFLOW" }, { EXCEPTION_FLT_STACK_CHECK, "FLOAT STACK CHECK" }, { EXCEPTION_FLT_UNDERFLOW, "FLOAT UNDERFLOW" }, { EXCEPTION_INT_DIVIDE_BY_ZERO, "INTEGER DIVIDE BY ZERO" }, { EXCEPTION_INT_OVERFLOW, "INTEGER OVERFLOW" }, { EXCEPTION_PRIV_INSTRUCTION, "PRIVILEGED INSTRUCTION" }, { EXCEPTION_IN_PAGE_ERROR, "IN PAGE ERROR" }, { EXCEPTION_ILLEGAL_INSTRUCTION, "ILLEGAL INSTRUCTION" }, { EXCEPTION_NONCONTINUABLE_EXCEPTION,"NONCONTINUABLE EXCEPTION" }, { EXCEPTION_STACK_OVERFLOW, "STACK OVERFLOW" }, { EXCEPTION_INVALID_DISPOSITION, "INVALID DISPOSITION" }, { EXCEPTION_GUARD_PAGE, "GUARD PAGE VIOLATION" }, { EXCEPTION_INVALID_HANDLE, "INVALID HANDLE" }, { 0, "UNKNOWN EXCEPTION" } }; static int already_hit = 0; int i; // if we're hitting this recursively, just exit if (already_hit) return EXCEPTION_CONTINUE_SEARCH; already_hit = 1; // flush any debugging traces that were live debugger_flush_all_traces_on_abnormal_exit(); // find our man for (i = 0; exception_table[i].code != 0; i++) if (info->ExceptionRecord->ExceptionCode == exception_table[i].code) break; // print the exception type and address fprintf(stderr, "\n-----------------------------------------------------\n"); fprintf(stderr, "Exception at EIP=%p%s: %s\n", info->ExceptionRecord->ExceptionAddress, symbols->symbol_for_address((FPTR)info->ExceptionRecord->ExceptionAddress), exception_table[i].string); // for access violations, print more info if (info->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION) fprintf(stderr, "While attempting to %s memory at %p\n", info->ExceptionRecord->ExceptionInformation[0] ? "write" : "read", (void *)info->ExceptionRecord->ExceptionInformation[1]); // print the state of the CPU fprintf(stderr, "-----------------------------------------------------\n"); #ifdef PTR64 fprintf(stderr, "RAX=%p RBX=%p RCX=%p RDX=%p\n", (void *)info->ContextRecord->Rax, (void *)info->ContextRecord->Rbx, (void *)info->ContextRecord->Rcx, (void *)info->ContextRecord->Rdx); fprintf(stderr, "RSI=%p RDI=%p RBP=%p RSP=%p\n", (void *)info->ContextRecord->Rsi, (void *)info->ContextRecord->Rdi, (void *)info->ContextRecord->Rbp, (void *)info->ContextRecord->Rsp); fprintf(stderr, " R8=%p R9=%p R10=%p R11=%p\n", (void *)info->ContextRecord->R8, (void *)info->ContextRecord->R9, (void *)info->ContextRecord->R10, (void *)info->ContextRecord->R11); fprintf(stderr, "R12=%p R13=%p R14=%p R15=%p\n", (void *)info->ContextRecord->R12, (void *)info->ContextRecord->R13, (void *)info->ContextRecord->R14, (void *)info->ContextRecord->R15); #else fprintf(stderr, "EAX=%p EBX=%p ECX=%p EDX=%p\n", (void *)info->ContextRecord->Eax, (void *)info->ContextRecord->Ebx, (void *)info->ContextRecord->Ecx, (void *)info->ContextRecord->Edx); fprintf(stderr, "ESI=%p EDI=%p EBP=%p ESP=%p\n", (void *)info->ContextRecord->Esi, (void *)info->ContextRecord->Edi, (void *)info->ContextRecord->Ebp, (void *)info->ContextRecord->Esp); #endif stack_walker walker; walker.reset(*info->ContextRecord, GetCurrentThread()); // reprint the actual exception address fprintf(stderr, "-----------------------------------------------------\n"); fprintf(stderr, "Stack crawl:\n"); // walk the stack while (walker.unwind()) fprintf(stderr, " %p: %p%s\n", (void *)walker.frame(), (void *)walker.ip(), (symbols == nullptr) ? "" : symbols->symbol_for_address(walker.ip())); // flush stderr, so the data is actually written when output is being redirected fflush(stderr); // exit return EXCEPTION_CONTINUE_SEARCH; } //************************************************************************** // STACK WALKER //************************************************************************** //------------------------------------------------- // stack_walker - constructor //------------------------------------------------- stack_walker::stack_walker() : m_process(GetCurrentProcess()), m_thread(GetCurrentThread()), m_first(true), m_stack_walk_64(TEXT("dbghelp.dll"), "StackWalk64"), m_sym_initialize(TEXT("dbghelp.dll"), "SymInitialize"), m_sym_function_table_access_64(TEXT("dbghelp.dll"), "SymFunctionTableAccess64"), m_sym_get_module_base_64(TEXT("dbghelp.dll"), "SymGetModuleBase64"), m_rtl_capture_context(TEXT("kernel32.dll"), "RtlCaptureContext") { // zap the structs memset(&m_stackframe, 0, sizeof(m_stackframe)); memset(&m_context, 0, sizeof(m_context)); // initialize the symbols if (!s_initialized && m_sym_initialize && m_stack_walk_64 && m_sym_function_table_access_64 && m_sym_get_module_base_64) { (*m_sym_initialize)(m_process, nullptr, TRUE); s_initialized = true; } } //------------------------------------------------- // reset - set up a new context //------------------------------------------------- bool stack_walker::reset() { // set up the initial state if (!m_rtl_capture_context) return false; (*m_rtl_capture_context)(&m_context); m_thread = GetCurrentThread(); m_first = true; // initialize the stackframe memset(&m_stackframe, 0, sizeof(m_stackframe)); m_stackframe.AddrPC.Mode = AddrModeFlat; m_stackframe.AddrFrame.Mode = AddrModeFlat; m_stackframe.AddrStack.Mode = AddrModeFlat; // pull architecture-specific fields from the context #ifdef PTR64 m_stackframe.AddrPC.Offset = m_context.Rip; m_stackframe.AddrFrame.Offset = m_context.Rsp; m_stackframe.AddrStack.Offset = m_context.Rsp; #else m_stackframe.AddrPC.Offset = m_context.Eip; m_stackframe.AddrFrame.Offset = m_context.Ebp; m_stackframe.AddrStack.Offset = m_context.Esp; #endif return true; } void stack_walker::reset(CONTEXT &initial, HANDLE thread) { // set up the initial state m_context = initial; m_thread = thread; m_first = true; // initialize the stackframe memset(&m_stackframe, 0, sizeof(m_stackframe)); m_stackframe.AddrPC.Mode = AddrModeFlat; m_stackframe.AddrFrame.Mode = AddrModeFlat; m_stackframe.AddrStack.Mode = AddrModeFlat; // pull architecture-specific fields from the context #ifdef PTR64 m_stackframe.AddrPC.Offset = m_context.Rip; m_stackframe.AddrFrame.Offset = m_context.Rsp; m_stackframe.AddrStack.Offset = m_context.Rsp; #else m_stackframe.AddrPC.Offset = m_context.Eip; m_stackframe.AddrFrame.Offset = m_context.Ebp; m_stackframe.AddrStack.Offset = m_context.Esp; #endif } //------------------------------------------------- // unwind - unwind a single level //------------------------------------------------- bool stack_walker::unwind() { // if we were able to initialize, then we have everything we need if (s_initialized) { #ifdef PTR64 return (*m_stack_walk_64)(IMAGE_FILE_MACHINE_AMD64, m_process, m_thread, &m_stackframe, &m_context, nullptr, *m_sym_function_table_access_64, *m_sym_get_module_base_64, nullptr); #else return (*m_stack_walk_64)(IMAGE_FILE_MACHINE_I386, m_process, m_thread, &m_stackframe, &m_context, nullptr, *m_sym_function_table_access_64, *m_sym_get_module_base_64, nullptr); #endif } // otherwise, fake the first unwind, which will just return info from the context else { bool result = m_first; m_first = false; return result; } } //************************************************************************** // SYMBOL MANAGER //************************************************************************** //------------------------------------------------- // symbol_manager - constructor //------------------------------------------------- symbol_manager::symbol_manager(const char *argv0) : m_mapfile(argv0), m_symfile(argv0), m_process(GetCurrentProcess()), m_last_base(0), m_text_base(0), m_sym_from_addr(TEXT("dbghelp.dll"), "SymFromAddr"), m_sym_get_line_from_addr_64(TEXT("dbghelp.dll"), "SymGetLineFromAddr64") { #ifdef __GNUC__ // compute the name of the mapfile int extoffs = m_mapfile.find_last_of('.'); if (extoffs != -1) m_mapfile.substr(0, extoffs); m_mapfile.append(".map"); // and the name of the symfile extoffs = m_symfile.find_last_of('.'); if (extoffs != -1) m_symfile = m_symfile.substr(0, extoffs); m_symfile.append(".sym"); // figure out the base of the .text section m_text_base = get_text_section_base(); #endif // expand the buffer to be decently large up front m_buffer = string_format("%500s", ""); } //------------------------------------------------- // ~symbol_manager - destructor //------------------------------------------------- symbol_manager::~symbol_manager() { } //------------------------------------------------- // symbol_for_address - return a symbol by looking // it up either in the cache or by scanning the // file //------------------------------------------------- const char *symbol_manager::symbol_for_address(FPTR address) { // default the buffer m_buffer.assign(" (not found)"); m_last_base = 0; // first try to do it using system APIs if (!query_system_for_address(address)) { // if that fails, scan the cache if we have one if (m_cache.first() != nullptr) scan_cache_for_address(address); // or else try to open a sym/map file and find it there else scan_file_for_address(address, false); } return m_buffer.c_str(); } //------------------------------------------------- // query_system_for_address - ask the system to // look up our address //------------------------------------------------- bool symbol_manager::query_system_for_address(FPTR address) { // need at least the sym_from_addr API if (!m_sym_from_addr) return false; BYTE info_buffer[sizeof(SYMBOL_INFO) + 256] = { 0 }; SYMBOL_INFO &info = *reinterpret_cast(&info_buffer[0]); DWORD64 displacement; // even through the struct says TCHAR, we actually get back an ANSI string here info.SizeOfStruct = sizeof(info); info.MaxNameLen = sizeof(info_buffer) - sizeof(info); if ((*m_sym_from_addr)(m_process, address, &displacement, &info)) { // try to get source info as well; again we are returned an ANSI string IMAGEHLP_LINE64 lineinfo = { sizeof(lineinfo) }; DWORD linedisp; if (m_sym_get_line_from_addr_64 && (*m_sym_get_line_from_addr_64)(m_process, address, &linedisp, &lineinfo)) format_symbol(info.Name, displacement, lineinfo.FileName, lineinfo.LineNumber); else format_symbol(info.Name, displacement); // set the last base m_last_base = address - displacement; return true; } return false; } //------------------------------------------------- // scan_file_for_address - walk either the map // or symbol files and find the best match for // the given address, optionally creating a cache // along the way //------------------------------------------------- void symbol_manager::scan_file_for_address(FPTR address, bool create_cache) { bool is_symfile = false; FILE *srcfile = nullptr; #ifdef __GNUC__ // see if we have a symbol file (gcc only) srcfile = fopen(m_symfile.c_str(), "r"); is_symfile = (srcfile != nullptr); #endif // if not, see if we have a map file if (srcfile == nullptr) srcfile = fopen(m_mapfile.c_str(), "r"); // if not, fail if (srcfile == nullptr) return; // reset the best info std::string best_symbol; FPTR best_addr = 0; // parse the file, looking for valid entries std::string symbol; char line[1024]; while (fgets(line, sizeof(line) - 1, srcfile)) { // parse the line looking for an interesting symbol FPTR addr = 0; bool valid = is_symfile ? parse_sym_line(line, addr, symbol) : parse_map_line(line, addr, symbol); // if we got one, see if this is the best if (valid) { // if this is the best one so far, remember it if (addr <= address && addr > best_addr) { best_addr = addr; best_symbol = symbol; } // also create a cache entry if we can if (create_cache) m_cache.append(*global_alloc(cache_entry(addr, symbol.c_str()))); } } // close the file fclose(srcfile); // format the symbol and remember the last base format_symbol(best_symbol.c_str(), address - best_addr); m_last_base = best_addr; } //------------------------------------------------- // scan_cache_for_address - walk the cache to // find the best match for the given address //------------------------------------------------- void symbol_manager::scan_cache_for_address(FPTR address) { // reset the best info std::string best_symbol; FPTR best_addr = 0; // walk the cache, looking for valid entries for (cache_entry *entry = m_cache.first(); entry != nullptr; entry = entry->next()) // if this is the best one so far, remember it if (entry->m_address <= address && entry->m_address > best_addr) { best_addr = entry->m_address; best_symbol = entry->m_name; } // format the symbol and remember the last base format_symbol(best_symbol.c_str(), address - best_addr); m_last_base = best_addr; } //------------------------------------------------- // parse_sym_line - parse a line from a sym file // which is just the output of objdump //------------------------------------------------- bool symbol_manager::parse_sym_line(const char *line, FPTR &address, std::string &symbol) { #ifdef __GNUC__ /* 32-bit gcc symbol line: [271778](sec 1)(fl 0x00)(ty 20)(scl 3) (nx 0) 0x007df675 line_to_symbol(char const*, unsigned int&, bool) 64-bit gcc symbol line: [271775](sec 1)(fl 0x00)(ty 20)(scl 3) (nx 0) 0x00000000008dd1e9 line_to_symbol(char const*, unsigned long long&, bool) */ // first look for a (ty) entry const char *type = strstr(line, "(ty 20)"); if (type == nullptr) return false; // scan forward in the line to find the address bool in_parens = false; for (const char *chptr = type; *chptr != 0; chptr++) { // track open/close parentheses if (*chptr == '(') in_parens = true; else if (*chptr == ')') in_parens = false; // otherwise, look for an 0x address else if (!in_parens && *chptr == '0' && chptr[1] == 'x') { // make sure we can get an address void *temp; if (sscanf(chptr, "0x%p", &temp) != 1) return false; address = m_text_base + reinterpret_cast(temp); // skip forward until we're past the space while (*chptr != 0 && !isspace(*chptr)) chptr++; // extract the symbol name strtrimspace(symbol.assign(chptr)); return (symbol.length() > 0); } } #endif return false; } //------------------------------------------------- // parse_map_line - parse a line from a linker- // generated map file //------------------------------------------------- bool symbol_manager::parse_map_line(const char *line, FPTR &address, std::string &symbol) { #ifdef __GNUC__ /* 32-bit gcc map line: 0x0089cb00 nbmj9195_palette_r(_address_space const*, unsigned int) 64-bit gcc map line: 0x0000000000961afc nbmj9195_palette_r(_address_space const*, unsigned int) */ // find a matching start if (strncmp(line, " 0x", 18) == 0) { // make sure we can get an address void *temp; if (sscanf(&line[16], "0x%p", &temp) != 1) return false; address = reinterpret_cast(temp); // skip forward until we're past the space const char *chptr = &line[16]; while (*chptr != 0 && !isspace(*chptr)) chptr++; // extract the symbol name strtrimspace(symbol.assign(chptr)); return (symbol.length() > 0); } #endif return false; } //------------------------------------------------- // format_symbol - common symbol formatting //------------------------------------------------- void symbol_manager::format_symbol(const char *name, UINT32 displacement, const char *filename, int linenumber) { // start with the address and offset m_buffer = string_format(" (%s", name); if (displacement != 0) m_buffer.append(string_format("+0x%04x", (UINT32)displacement)); // append file/line if present if (filename != nullptr) m_buffer.append(string_format(", %s:%d", filename, linenumber)); // close up the string m_buffer.append(")"); } //------------------------------------------------- // get_text_section_base - figure out the base // of the .text section //------------------------------------------------- FPTR symbol_manager::get_text_section_base() { dynamic_bind image_rva_to_section(TEXT("dbghelp.dll"), "ImageRvaToSection"); dynamic_bind image_nt_header(TEXT("dbghelp.dll"), "ImageNtHeader"); // start with the image base PVOID base = reinterpret_cast(GetModuleHandleUni()); assert(base != nullptr); // make sure we have the functions we need if (image_nt_header && image_rva_to_section) { // get the NT header PIMAGE_NT_HEADERS headers = (*image_nt_header)(base); assert(headers != nullptr); // look ourself up (assuming we are in the .text section) PIMAGE_SECTION_HEADER section = (*image_rva_to_section)(headers, base, reinterpret_cast(get_text_section_base) - reinterpret_cast(base)); if (section != nullptr) return reinterpret_cast(base) + section->VirtualAddress; } // fallback to returning the image base (wrong) return reinterpret_cast(base); } //************************************************************************** // SAMPLING PROFILER //************************************************************************** //------------------------------------------------- // sampling_profiler - constructor //------------------------------------------------- sampling_profiler::sampling_profiler(UINT32 max_seconds, UINT8 stack_depth = 0) : m_target_thread(nullptr), m_thread(nullptr), m_thread_id(0), m_thread_exit(false), m_stack_depth(stack_depth), m_entry_stride(stack_depth + 2), m_buffer(max_seconds * 1000 * m_entry_stride), m_buffer_ptr(&m_buffer[0]), m_buffer_end(&m_buffer[0] + max_seconds * 1000 * m_entry_stride) { } //------------------------------------------------- // sampling_profiler - destructor //------------------------------------------------- sampling_profiler::~sampling_profiler() { } //------------------------------------------------- // start - begin gathering profiling information //------------------------------------------------- void sampling_profiler::start() { // do the dance to get a handle to ourself BOOL result = DuplicateHandle(GetCurrentProcess(), GetCurrentThread(), GetCurrentProcess(), &m_target_thread, THREAD_GET_CONTEXT | THREAD_SUSPEND_RESUME | THREAD_QUERY_INFORMATION, FALSE, 0); assert_always(result, "Failed to get thread handle for main thread"); // reset the exit flag m_thread_exit = false; // start the thread m_thread = CreateThread(nullptr, 0, thread_entry, (LPVOID)this, 0, &m_thread_id); assert_always(m_thread != nullptr, "Failed to create profiler thread\n"); // max out the priority SetThreadPriority(m_thread, THREAD_PRIORITY_TIME_CRITICAL); } //------------------------------------------------- // stop - stop gathering profiling information //------------------------------------------------- void sampling_profiler::stop() { // set the flag and wait a couple of seconds (max) m_thread_exit = true; WaitForSingleObject(m_thread, 2000); // regardless, close the handle CloseHandle(m_thread); } //------------------------------------------------- // compare_address - compare two entries by their // bucket address //------------------------------------------------- int CLIB_DECL sampling_profiler::compare_address(const void *item1, const void *item2) { const FPTR *entry1 = reinterpret_cast(item1); const FPTR *entry2 = reinterpret_cast(item2); int mincount = MIN(entry1[0], entry2[0]); // sort in order of: bucket, caller, caller's caller, etc. for (int index = 1; index <= mincount; index++) if (entry1[index] != entry2[index]) return entry1[index] - entry2[index]; // if we match to the end, sort by the depth of the stack return entry1[0] - entry2[0]; } //------------------------------------------------- // compare_frequency - compare two entries by // their frequency of occurrence //------------------------------------------------- int CLIB_DECL sampling_profiler::compare_frequency(const void *item1, const void *item2) { const FPTR *entry1 = reinterpret_cast(item1); const FPTR *entry2 = reinterpret_cast(item2); // sort by frequency, then by address if (entry1[0] != entry2[0]) return entry2[0] - entry1[0]; return entry1[1] - entry2[1]; } //------------------------------------------------- // print_results - output the results //------------------------------------------------- void sampling_profiler::print_results(symbol_manager &symbols) { // cache the symbols symbols.cache_symbols(); // step 1: find the base of each entry for (FPTR *current = &m_buffer[0]; current < m_buffer_ptr; current += m_entry_stride) { assert(current[0] >= 1 && current[0] < m_entry_stride); // convert the sampled PC to its function base as a bucket symbols.symbol_for_address(current[1]); current[1] = symbols.last_base(); } // step 2: sort the results qsort(&m_buffer[0], (m_buffer_ptr - &m_buffer[0]) / m_entry_stride, m_entry_stride * sizeof(FPTR), compare_address); // step 3: count and collapse unique entries UINT32 total_count = 0; for (FPTR *current = &m_buffer[0]; current < m_buffer_ptr; ) { int count = 1; FPTR *scan; for (scan = current + m_entry_stride; scan < m_buffer_ptr; scan += m_entry_stride) { if (compare_address(current, scan) != 0) break; scan[0] = 0; count++; } current[0] = count; total_count += count; current = scan; } // step 4: sort the results again, this time by frequency qsort(&m_buffer[0], (m_buffer_ptr - &m_buffer[0]) / m_entry_stride, m_entry_stride * sizeof(FPTR), compare_frequency); // step 5: print the results UINT32 num_printed = 0; for (FPTR *current = &m_buffer[0]; current < m_buffer_ptr && num_printed < 30; current += m_entry_stride) { // once we hit 0 frequency, we're done if (current[0] == 0) break; // output the result printf("%4.1f%% - %6d : %p%s\n", (double)current[0] * 100.0 / (double)total_count, (UINT32)current[0], reinterpret_cast(current[1]), symbols.symbol_for_address(current[1])); for (int index = 2; index < m_entry_stride; index++) { if (current[index] == 0) break; printf(" %p%s\n", reinterpret_cast(current[index]), symbols.symbol_for_address(current[index])); } printf("\n"); num_printed++; } symbols.reset_cache(); } //------------------------------------------------- // thread_entry - thread entry stub //------------------------------------------------- DWORD WINAPI sampling_profiler::thread_entry(LPVOID lpParameter) { reinterpret_cast(lpParameter)->thread_run(); return 0; } //------------------------------------------------- // thread_run - sampling thread //------------------------------------------------- void sampling_profiler::thread_run() { CONTEXT context; memset(&context, 0, sizeof(context)); // loop until done stack_walker walker; while (!m_thread_exit && m_buffer_ptr < m_buffer_end) { // pause the main thread and get its context SuspendThread(m_target_thread); context.ContextFlags = CONTEXT_FULL; GetThreadContext(m_target_thread, &context); // first entry is a count FPTR *count = m_buffer_ptr++; *count = 0; // iterate over the frames until we run out or hit an error walker.reset(context, m_target_thread); int frame; for (frame = 0; frame <= m_stack_depth && walker.unwind(); frame++) { *m_buffer_ptr++ = walker.ip(); *count += 1; } // fill in any missing parts with nulls for (; frame <= m_stack_depth; frame++) *m_buffer_ptr++ = 0; // resume the thread ResumeThread(m_target_thread); // sleep for 1ms Sleep(1); } }