// license:BSD-3-Clause // copyright-holders:Aaron Giles /*************************************************************************** eminline.h Definitions for inline functions that can be overridden by OSD- specific code. ***************************************************************************/ #ifndef MAME_OSD_EMINLINE_H #define MAME_OSD_EMINLINE_H #pragma once #include "osdcomm.h" #include "osdcore.h" #if !defined(MAME_NOASM) #if defined(__GNUC__) #if defined(__i386__) || defined(__x86_64__) #include "eigccx86.h" #elif defined(__ppc__) || defined (__PPC__) || defined(__ppc64__) || defined(__PPC64__) #include "eigccppc.h" #else #error "no matching assembler implementations found - please compile with NOASM=1" #endif #elif defined(_MSC_VER) #if (defined(_M_IX86) || defined(_M_X64)) #include "eivcx86.h" #endif #include "eivc.h" #else #error "no matching assembler implementations found - please compile with NOASM=1" #endif #endif // !defined(MAME_NOASM) /*************************************************************************** INLINE MATH FUNCTIONS ***************************************************************************/ /*------------------------------------------------- mul_32x32 - perform a signed 32 bit x 32 bit multiply and return the full 64 bit result -------------------------------------------------*/ #ifndef mul_32x32 inline int64_t mul_32x32(int32_t a, int32_t b) { return int64_t(a) * int64_t(b); } #endif /*------------------------------------------------- mulu_32x32 - perform an unsigned 32 bit x 32 bit multiply and return the full 64 bit result -------------------------------------------------*/ #ifndef mulu_32x32 inline uint64_t mulu_32x32(uint32_t a, uint32_t b) { return uint64_t(a) * uint64_t(b); } #endif /*------------------------------------------------- mul_32x32_hi - perform a signed 32 bit x 32 bit multiply and return the upper 32 bits of the result -------------------------------------------------*/ #ifndef mul_32x32_hi inline int32_t mul_32x32_hi(int32_t a, int32_t b) { return uint32_t((int64_t(a) * int64_t(b)) >> 32); } #endif /*------------------------------------------------- mulu_32x32_hi - perform an unsigned 32 bit x 32 bit multiply and return the upper 32 bits of the result -------------------------------------------------*/ #ifndef mulu_32x32_hi inline uint32_t mulu_32x32_hi(uint32_t a, uint32_t b) { return uint32_t((uint64_t(a) * uint64_t(b)) >> 32); } #endif /*------------------------------------------------- mul_32x32_shift - perform a signed 32 bit x 32 bit multiply and shift the result by the given number of bits before truncating the result to 32 bits -------------------------------------------------*/ #ifndef mul_32x32_shift inline int32_t mul_32x32_shift(int32_t a, int32_t b, uint8_t shift) { return int32_t((int64_t(a) * int64_t(b)) >> shift); } #endif /*------------------------------------------------- mulu_32x32_shift - perform an unsigned 32 bit x 32 bit multiply and shift the result by the given number of bits before truncating the result to 32 bits -------------------------------------------------*/ #ifndef mulu_32x32_shift inline uint32_t mulu_32x32_shift(uint32_t a, uint32_t b, uint8_t shift) { return uint32_t((uint64_t(a) * uint64_t(b)) >> shift); } #endif /*------------------------------------------------- div_64x32 - perform a signed 64 bit x 32 bit divide and return the 32 bit quotient -------------------------------------------------*/ #ifndef div_64x32 inline int32_t div_64x32(int64_t a, int32_t b) { return a / int64_t(b); } #endif /*------------------------------------------------- divu_64x32 - perform an unsigned 64 bit x 32 bit divide and return the 32 bit quotient -------------------------------------------------*/ #ifndef divu_64x32 inline uint32_t divu_64x32(uint64_t a, uint32_t b) { return a / uint64_t(b); } #endif /*------------------------------------------------- div_64x32_rem - perform a signed 64 bit x 32 bit divide and return the 32 bit quotient and 32 bit remainder -------------------------------------------------*/ #ifndef div_64x32_rem inline int32_t div_64x32_rem(int64_t a, int32_t b, int32_t *remainder) { int32_t const res = div_64x32(a, b); *remainder = a - (int64_t(b) * res); return res; } #endif /*------------------------------------------------- divu_64x32_rem - perform an unsigned 64 bit x 32 bit divide and return the 32 bit quotient and 32 bit remainder -------------------------------------------------*/ #ifndef divu_64x32_rem inline uint32_t divu_64x32_rem(uint64_t a, uint32_t b, uint32_t *remainder) { uint32_t const res = divu_64x32(a, b); *remainder = a - (uint64_t(b) * res); return res; } #endif /*------------------------------------------------- div_32x32_shift - perform a signed divide of two 32 bit values, shifting the first before division, and returning the 32 bit quotient -------------------------------------------------*/ #ifndef div_32x32_shift inline int32_t div_32x32_shift(int32_t a, int32_t b, uint8_t shift) { return (int64_t(a) << shift) / int64_t(b); } #endif /*------------------------------------------------- divu_32x32_shift - perform an unsigned divide of two 32 bit values, shifting the first before division, and returning the 32 bit quotient -------------------------------------------------*/ #ifndef divu_32x32_shift inline uint32_t divu_32x32_shift(uint32_t a, uint32_t b, uint8_t shift) { return (uint64_t(a) << shift) / uint64_t(b); } #endif /*------------------------------------------------- mod_64x32 - perform a signed 64 bit x 32 bit divide and return the 32 bit remainder -------------------------------------------------*/ #ifndef mod_64x32 inline int32_t mod_64x32(int64_t a, int32_t b) { return a - (b * div_64x32(a, b)); } #endif /*------------------------------------------------- modu_64x32 - perform an unsigned 64 bit x 32 bit divide and return the 32 bit remainder -------------------------------------------------*/ #ifndef modu_64x32 inline uint32_t modu_64x32(uint64_t a, uint32_t b) { return a - (b * divu_64x32(a, b)); } #endif /*------------------------------------------------- recip_approx - compute an approximate floating point reciprocal -------------------------------------------------*/ #ifndef recip_approx inline float recip_approx(float value) { return 1.0f / value; } #endif /*************************************************************************** INLINE BIT MANIPULATION FUNCTIONS ***************************************************************************/ /*------------------------------------------------- count_leading_zeros - return the number of leading zero bits in a 32-bit value -------------------------------------------------*/ #ifndef count_leading_zeros inline uint8_t count_leading_zeros(uint32_t val) { uint8_t count; for (count = 0; int32_t(val) >= 0; count++) val <<= 1; return count; } #endif /*------------------------------------------------- count_leading_ones - return the number of leading one bits in a 32-bit value -------------------------------------------------*/ #ifndef count_leading_ones inline uint8_t count_leading_ones(uint32_t val) { uint8_t count; for (count = 0; (int32_t)val < 0; count++) val <<= 1; return count; } #endif /*************************************************************************** INLINE TIMING FUNCTIONS ***************************************************************************/ /*------------------------------------------------- get_profile_ticks - return a tick counter from the processor that can be used for profiling. It does not need to run at any particular rate. -------------------------------------------------*/ #ifndef get_profile_ticks inline int64_t get_profile_ticks() { return osd_ticks(); } #endif #endif // MAME_OSD_EMINLINE_H