/* video/rmnimbus.c Research machines Nimbus. 2009-11-14, P.Harvey-Smith. This is my best guess implementation of the operation of the Nimbus video system. On the real machine, the Video chip has a block of 64K of memory which is completely seperate from the main 80186 memory. The main CPU write to the video chip via a series of registers in the 0x0000 to 0x002F reigon, the video chip then manages all video memory from there. As I cannot find a datasheet for the vide chip marked MB61H201 Fujitsu RML 12835 GCV, I have had to determine most of its operation by disassembling the Nimbus bios and by writing experemental code on the real machine. */ #include "emu.h" #include "debug/debugcpu.h" #include "debug/debugcon.h" #include "includes/rmnimbus.h" #define WIDTH_MASK 0x07 #define XOR_MASK 0x08 #define MASK_4080 0x10 // Offsets of nimbus video registers within register array #define reg000 0x00 #define reg002 0x01 #define reg004 0x02 #define reg006 0x03 #define reg008 0x04 #define reg00A 0x05 #define reg00C 0x06 #define reg00E 0x07 #define reg010 0x08 #define reg012 0x09 #define reg014 0x0A #define reg016 0x0B #define reg018 0x0C #define reg01A 0x0D #define reg01C 0x0E #define reg01E 0x0F #define reg020 0x10 #define reg022 0x11 #define reg024 0x12 #define reg026 0x13 #define reg028 0x14 #define reg02A 0x15 #define reg02C 0x16 #define reg02E 0x17 #define FG_COLOUR (state->m_vidregs[reg024]&0x0F) #define BG_COLOUR ((state->m_vidregs[reg024]&0xF0)>>4) #define IS_80COL (state->m_vidregs[reg026]&MASK_4080) #define IS_XOR (state->m_vidregs[reg022]&XOR_MASK) #define DEBUG_TEXT 0x01 #define DEBUG_DB 0x02 #define DEBUG_PIXEL 0x04 #define DEBUG_SET(flags) ((state->m_debug_video & (flags))==(flags)) static UINT8 get_pixel(rmnimbus_state *state, UINT16 x, UINT16 y); static UINT16 read_pixel_line(rmnimbus_state *state, UINT16 x, UINT16 y, UINT8 width); static UINT16 read_pixel_data(rmnimbus_state *state, UINT16 x, UINT16 y); static UINT16 read_reg_00A(rmnimbus_state *state); static void set_pixel(rmnimbus_state *state, UINT16 x, UINT16 y, UINT8 colour); static void write_pixel_line(rmnimbus_state *state, UINT16 x, UINT16 y, UINT16 data, UINT8 width); static void write_pixel_data(rmnimbus_state *state, UINT16 x, UINT16 y, UINT16 data); static void move_pixel_line(rmnimbus_state *state, UINT16 x, UINT16 y, UINT16 data, UINT8 width); static void write_reg_004(rmnimbus_state *state); static void write_reg_006(rmnimbus_state *state); static void write_reg_010(rmnimbus_state *state); static void write_reg_012(rmnimbus_state *state); static void write_reg_014(rmnimbus_state *state); static void write_reg_016(rmnimbus_state *state); static void write_reg_01A(rmnimbus_state *state); static void write_reg_01C(rmnimbus_state *state); static void write_reg_01E(rmnimbus_state *state); static void write_reg_026(rmnimbus_state *state); static void change_palette(running_machine &machine, UINT8 bank, UINT16 colours, UINT8 regno); static void video_debug(running_machine &machine, int ref, int params, const char *param[]); static void video_regdump(running_machine &machine, int ref, int params, const char *param[]); /* I'm not sure which of thes return values on a real machine, so for the time being I'm going to return the values for all of them, it doesn't seem to hurt ! */ READ16_MEMBER(rmnimbus_state::nimbus_video_io_r) { rmnimbus_state *state = machine().driver_data(); int pc=space.device().safe_pc(); UINT16 result; switch (offset) { case reg000 : result=m_vidregs[reg000]; break; case reg002 : result=m_vidregs[reg002]; break; case reg004 : result=m_vidregs[reg004]; break; case reg006 : result=m_vidregs[reg006]; break; case reg008 : result=m_vidregs[reg008]; break; case reg00A : result=read_reg_00A(state); break; case reg00C : result=m_vidregs[reg00C]; break; case reg00E : result=m_vidregs[reg00E]; break; case reg010 : result=m_vidregs[reg010]; break; case reg012 : result=m_vidregs[reg012]; break; case reg014 : result=m_vidregs[reg014]; break; case reg016 : result=m_vidregs[reg016]; break; case reg018 : result=m_vidregs[reg018]; break; case reg01A : result=m_vidregs[reg01A]; break; case reg01C : result=m_vidregs[reg01C]; break; case reg01E : result=m_vidregs[reg01E]; break; case reg020 : result=m_vidregs[reg020]; break; case reg022 : result=m_vidregs[reg022]; break; case reg024 : result=m_vidregs[reg024]; break; case reg026 : result=m_vidregs[reg026]; break; case reg028 : result=m_hs_count; break; //result=m_vidregs[reg028]; break; case reg02A : result=m_vidregs[reg02A]; break; case reg02C : result=m_vidregs[reg02C]; break; case reg02E : result=m_vidregs[reg02E]; break; default : result=0; break; } if(DEBUG_SET(DEBUG_TEXT)) logerror("Nimbus video IOR at %05X from %04X mask=%04X, data=%04X\n",pc,(offset*2),mem_mask,result); return result; } static UINT8 get_pixel(rmnimbus_state *state, UINT16 x, UINT16 y) { UINT8 result = 0; if((xm_video_mem[x][y]; else result=state->m_video_mem[x*2][y]; } return result; } static UINT16 read_pixel_line(rmnimbus_state *state, UINT16 x, UINT16 y, UINT8 width) { UINT16 result = 0; UINT16 mask; UINT16 pixel_x; UINT16 colour; UINT8 shifts; if(DEBUG_SET(DEBUG_TEXT | DEBUG_PIXEL)) logerror("read_pixel_line(x=%04X, y=%04X, width=%02X, bpp=%02X, pixel_mask=%02X)\n",x,y,width,state->m_bpp,state->m_pixel_mask); shifts=width-state->m_bpp; for(mask=state->m_pixel_mask, pixel_x=(x*(width/state->m_bpp)); mask>0; mask=(mask>>state->m_bpp), pixel_x++) { colour=get_pixel(state,pixel_x,y); if(state->m_bpp==1) colour=((colour==FG_COLOUR) ? 1 : 0) << shifts; else colour=colour << shifts; result=(result & ~mask) | colour; shifts-=state->m_bpp; } return result; } static UINT16 read_pixel_data(rmnimbus_state *state, UINT16 x, UINT16 y) { UINT16 result=0; if(DEBUG_SET(DEBUG_TEXT | DEBUG_PIXEL)) logerror("read_pixel_data(x=%04X, y=%04X), reg022=%04X\n",x,y,state->m_vidregs[reg022]); if(IS_80COL) { switch (state->m_vidregs[reg022] & WIDTH_MASK) { case 0x00 : break; case 0x01 : break; case 0x02 : break; case 0x03 : break; case 0x04 : break; case 0x05 : break; case 0x06 : state->m_bpp=2; state->m_pixel_mask=0xC000; result=read_pixel_line(state,x,y,16); break; case 0x07 : break; } } else /* 40 Col */ { switch (state->m_vidregs[reg022] & WIDTH_MASK) { case 0x00 : break; case 0x01 : break; case 0x02 : break; case 0x03 : break; case 0x04 : break; case 0x05 : break; case 0x06 : state->m_bpp=4; state->m_pixel_mask=0xF000; result=read_pixel_line(state,x,y,16); break; case 0x07 : break; } } return result; } static UINT16 read_reg_00A(rmnimbus_state *state) { return read_pixel_data(state, ++state->m_vidregs[reg002],state->m_vidregs[reg00C]); } /* Write to the video registers, the default action is to write to the array of registers. If a register also needs some special action call the action function for that register. Incase anyone wonders about the DEBUG_DB statement, this allows me to log which registers are being written to and then play them back at the real machine, this has helped greatly in figuring out what the video registers do. */ WRITE16_MEMBER(rmnimbus_state::nimbus_video_io_w) { rmnimbus_state *state = machine().driver_data(); int pc=space.device().safe_pc(); if(offsetm_video_mem[x][y]^=colour; else state->m_video_mem[x][y]=colour; } } static void set_pixel40(rmnimbus_state *state, UINT16 x, UINT16 y, UINT8 colour) { set_pixel(state, (x*2),y,colour); set_pixel(state, (x*2)+1,y,colour); } static void write_pixel_line(rmnimbus_state *state, UINT16 x, UINT16 y, UINT16 data, UINT8 width) { UINT16 mask; UINT16 pixel_x; UINT16 colour; UINT8 shifts; if(DEBUG_SET(DEBUG_TEXT | DEBUG_PIXEL)) logerror("write_pixel_line(x=%04X, y=%04X, data=%04X, width=%02X, bpp=%02X, pixel_mask=%02X)\n",x,y,data,width,state->m_bpp,state->m_pixel_mask); shifts=width-state->m_bpp; for(mask=state->m_pixel_mask, pixel_x=(x*(width/state->m_bpp)); mask>0; mask=(mask>>state->m_bpp), pixel_x++) { if(state->m_bpp==1) colour=(data & mask) ? FG_COLOUR : BG_COLOUR; else colour=(data & mask) >> shifts; //logerror("write_pixel_line: data=%04X, mask=%04X, shifts=%02X, bpp=%02X colour=%02X\n",data,mask,shifts,state->m_bpp,colour); if(IS_80COL) set_pixel(state,pixel_x,y,colour); else set_pixel40(state,pixel_x,y,colour); shifts-=state->m_bpp; } } static void move_pixel_line(rmnimbus_state *state, UINT16 x, UINT16 y, UINT16 data, UINT8 width) { UINT16 pixelno; UINT16 pixelx; if(DEBUG_SET(DEBUG_TEXT | DEBUG_PIXEL)) logerror("move_pixel_line(x=%04X, y=%04X, data=%04X, width=%02X)\n",x,y,data,width); for(pixelno=0;pixelnom_video_mem[pixelx][state->m_vidregs[reg020]]=state->m_video_mem[pixelx][y]; } } /* The values in the bottom 3 bits of reg022 seem to determine the number of bits per pixel for following operations. The values that I have decoded so far are : 000 1bpp, foreground and background colours taken from reg024 001 2bpp, using the first 4 colours of the pallette 010 011 100 4bpp, must be a 16 bit word, of which the upper byte is a mask anded with the lower byte containing the pixel data for two pixels. 101 Move pixel data at x,reg020 to x,y, used for scrolling. 110 if 40 col 4bpp, 16 bit word containing the pixel data for 4 pixels. else 2bpp, 16 bit word containing the pixel data for 8 pixels. 111 Bit 3 of reg022 is as follows : 0 pixels are written from supplied colour data 1 pixels are xor'ed onto the screen */ static void write_pixel_data(rmnimbus_state *state, UINT16 x, UINT16 y, UINT16 data) { if(DEBUG_SET(DEBUG_TEXT | DEBUG_PIXEL)) logerror("write_pixel_data(x=%04X, y=%04X, data=%04X), reg022=%04X\n",x,y,data,state->m_vidregs[reg022]); if(IS_80COL) { switch (state->m_vidregs[reg022] & WIDTH_MASK) { case 0x00 : state->m_bpp=1; state->m_pixel_mask=0x8000; write_pixel_line(state,x,y,data,16); break; case 0x01 : state->m_bpp=1; state->m_pixel_mask=0x80; write_pixel_line(state,x,y,data,8); break; case 0x02 : state->m_bpp=1; state->m_pixel_mask=0x0080; write_pixel_line(state,x,y,data,8); break; case 0x03 : state->m_bpp=1; set_pixel(state,x,y,FG_COLOUR); break; case 0x04 : state->m_bpp=2; state->m_pixel_mask=0xC0; write_pixel_line(state,x,y,((data & 0xFF) & ((data & 0xFF00)>>8)),8); break; case 0x05 : move_pixel_line(state,x,y,data,16); break; case 0x06 : state->m_bpp=2; state->m_pixel_mask=0xC000; write_pixel_line(state,x,y,data,16); break; case 0x07 : state->m_bpp=1; set_pixel(state,x,y,FG_COLOUR); break; } } else /* 40 Col */ { switch (state->m_vidregs[reg022] & WIDTH_MASK) { case 0x00 : state->m_bpp=1; state->m_pixel_mask=0x0080; write_pixel_line(state,x,y,data,8); break; case 0x01 : state->m_bpp=2; state->m_pixel_mask=0xC0; write_pixel_line(state,x,y,data,8); break; case 0x02 : state->m_bpp=1; state->m_pixel_mask=0x0080; set_pixel40(state,x,y,FG_COLOUR); break; case 0x03 : state->m_bpp=1; set_pixel(state,x,y,FG_COLOUR); break; case 0x04 : state->m_bpp=4; state->m_pixel_mask=0xF0; write_pixel_line(state,x,y,((data & 0xFF) & ((data & 0xFF00)>>8)),8); break; case 0x05 : move_pixel_line(state,x,y,data,16); break; case 0x06 : state->m_bpp=4; state->m_pixel_mask=0xF000; write_pixel_line(state,x,y,data,16); break; case 0x07 : state->m_bpp=1; set_pixel(state,x,y,FG_COLOUR); break; } } } static void write_reg_004(rmnimbus_state *state) { state->m_vidregs[reg002]=0; state->m_vidregs[reg00C]++; } static void write_reg_006(rmnimbus_state *state) { state->m_vidregs[reg00C]++; state->m_vidregs[reg002]=state->m_vidregs[reg006]; } static void write_reg_010(rmnimbus_state *state) { write_pixel_data(state, state->m_vidregs[reg002],state->m_vidregs[reg00C],state->m_vidregs[reg010]); } static void write_reg_012(rmnimbus_state *state) { // I dunno if this is actually what is happening as the regs seem to be write only.... // doing this however does seem to make some programs (worms from the welcom disk) // work correctly. state->m_vidregs[reg002]=state->m_vidregs[reg012]; write_pixel_data(state, state->m_vidregs[reg012],state->m_vidregs[reg00C],FG_COLOUR); } static void write_reg_014(rmnimbus_state *state) { write_pixel_data(state, state->m_vidregs[reg002],state->m_vidregs[reg00C]++,state->m_vidregs[reg014]); } static void write_reg_016(rmnimbus_state *state) { state->m_vidregs[reg002]=state->m_vidregs[reg016]; write_pixel_data(state, state->m_vidregs[reg002],state->m_vidregs[reg00C]++,FG_COLOUR); } static void write_reg_01A(rmnimbus_state *state) { write_pixel_data(state, ++state->m_vidregs[reg002],state->m_vidregs[reg00C],state->m_vidregs[reg01A]); } static void write_reg_01C(rmnimbus_state *state) { // I dunno if this is actually what is happening as the regs seem to be write only.... // doing this however does seem to make some programs (welcome from the welcom disk, // and others using the standard RM box menus) work correctly. state->m_vidregs[reg00C]=state->m_vidregs[reg01C]; write_pixel_data(state, state->m_vidregs[reg002],state->m_vidregs[reg01C],FG_COLOUR); } static void write_reg_01E(rmnimbus_state *state) { state->m_vidregs[reg00C]=state->m_vidregs[reg01E]; write_pixel_data(state, ++state->m_vidregs[reg002],state->m_vidregs[reg00C],FG_COLOUR); } /* bits 0..3 of reg026 contain the border colour. bit 5 contains the 40/80 column (320/640 pixel) flag. */ static void write_reg_026(rmnimbus_state *state) { if(DEBUG_SET(DEBUG_TEXT)) logerror("reg 026 write, border_colour=%02X\n",state->m_vidregs[reg026] & 0x0F); } static void change_palette(running_machine &machine, UINT8 bank, UINT16 colours, UINT8 regno) { rmnimbus_state *state = machine.driver_data(); UINT8 colourno; UINT16 mask; UINT8 shifts; UINT8 paletteidx; UINT8 colourmax; UINT8 first; // for the register's data has changed update it, and then update the pallette, else do nothing. if(state->m_vidregs[regno]!=colours) state->m_vidregs[regno]=colours; else return; // Setup parameters for pallette change colourmax=IS_80COL ? 1 : 4; first=IS_80COL ? bank : bank*4; shifts=0; mask=0x000F; // loop over changing colours for(colourno=first; colourno<(first+colourmax); colourno++) { paletteidx=(colours & mask) >> shifts; palette_set_color_rgb(machine, colourno, nimbus_palette[paletteidx][RED], nimbus_palette[paletteidx][GREEN], nimbus_palette[paletteidx][BLUE]); if(DEBUG_SET(DEBUG_TEXT)) logerror("set colourno[%02X](r,g,b)=(%02X,%02X,%02X), paletteidx=%02X\n",colourno, nimbus_palette[paletteidx][RED], nimbus_palette[paletteidx][GREEN], nimbus_palette[paletteidx][BLUE],paletteidx); mask=mask<<4; shifts+=4; } } static void video_debug(running_machine &machine, int ref, int params, const char *param[]) { rmnimbus_state *state = machine.driver_data(); if(params>0) { sscanf(param[0],"%d",&state->m_debug_video); } else { debug_console_printf(machine,"Error usage : nimbus_vid_debug \n"); debug_console_printf(machine,"Current debuglevel=%02X\n",state->m_debug_video); } } static void video_regdump(running_machine &machine, int ref, int params, const char *param[]) { rmnimbus_state *state = machine.driver_data(); int regno; for(regno=0;regno<0x08;regno++) { debug_console_printf(machine,"reg%03X=%04X reg%03X=%04X reg%03X=%04X\n", regno*2,state->m_vidregs[regno], (regno+0x08)*2,state->m_vidregs[regno+0x08], (regno+0x10)*2,state->m_vidregs[regno+0x10]); logerror("reg%03X=%04X reg%03X=%04X reg%03X=%04X\n", regno*2,state->m_vidregs[regno], (regno+0x08)*2,state->m_vidregs[regno+0x08], (regno+0x10)*2,state->m_vidregs[regno+0x10]); } } void rmnimbus_state::video_start() { m_debug_video=0; logerror("VIDEO_START\n"); if (machine().debug_flags & DEBUG_FLAG_ENABLED) { debug_console_register_command(machine(), "nimbus_vid_debug", CMDFLAG_NONE, 0, 0, 1, video_debug); debug_console_register_command(machine(), "nimbus_vid_regdump", CMDFLAG_NONE, 0, 0, 1, video_regdump); } } void rmnimbus_state::video_reset() { // When we reset clear the video registers and video memory. memset(&m_vidregs,0x00,sizeof(m_vidregs)); memset(&m_video_mem,0,sizeof(m_video_mem)); m_bpp=4; // bits per pixel logerror("Video reset\n"); } void rmnimbus_state::screen_eof_nimbus(screen_device &screen, bool state) { // logerror("SCREEN_VBLANK( nimbus )\n"); } UINT32 rmnimbus_state::screen_update_nimbus(screen_device &screen, bitmap_ind16 &bitmap, const rectangle &cliprect) { int XCoord; int YCoord = screen.vpos(); for(XCoord=0;XCoord0x0A) m_hs_count&=0xFFF0; return 0; }