/******************************************************************************* Samsung S3C44B0 (c) 2011 Tim Schuerewegen *******************************************************************************/ #include "emu.h" #include "cpu/arm7/arm7.h" #include "cpu/arm7/arm7core.h" #include "machine/s3c44b0.h" #include "sound/dac.h" #include "coreutil.h" #define VERBOSE_LEVEL ( 0 ) INLINE void ATTR_PRINTF(3,4) verboselog( running_machine &machine, int n_level, const char *s_fmt, ...) { if (VERBOSE_LEVEL >= n_level) { va_list v; char buf[32768]; va_start( v, s_fmt); vsprintf( buf, s_fmt, v); va_end( v); logerror( "%s: %s", machine.describe_context(), buf); } } /******************************************************************************* MACROS & CONSTANTS *******************************************************************************/ #define UART_PRINTF #define CLOCK_MULTIPLIER 1 #define BIT(x,n) (((x)>>(n))&1) #define BITS(x,m,n) (((x)>>(n))&(((UINT32)1<<((m)-(n)+1))-1)) #define CLR_BITS(x,m,n) ((x) & ~((((UINT32)1 << ((m) - (n) + 1)) - 1) << n)) /*************************************************************************** PROTOTYPES ***************************************************************************/ static UINT32 s3c44b0_get_mclk( device_t *device); static void s3c44b0_bdma_request_iis( device_t *device); //static void s3c44b0_dma_request_pwm( device_t *device); /*************************************************************************** INLINE FUNCTIONS ***************************************************************************/ INLINE s3c44b0_t *get_token( device_t *device) { assert(device != NULL); return (s3c44b0_t *)downcast(device)->token(); } /*************************************************************************** IMPLEMENTATION ***************************************************************************/ /* ... */ static void s3c44b0_reset( device_t *device) { fatalerror( "s3c44b0_reset\n"); } /* LCD Controller */ static rgb_t s3c44b0_get_color_stn_04( device_t *device, UINT8 data) { UINT8 r, g, b; r = g = b = BITS( data, 3, 0) << 4; return MAKE_RGB( r, g, b); } static UINT8 s3c44b0_get_color_stn_08_r( device_t *device, UINT8 data) { s3c44b0_lcd_t *lcd = &(get_token( device)->lcd); return ((lcd->regs.redlut >> (BITS( data, 7, 5) << 2)) & 0xF) << 4; } static UINT8 s3c44b0_get_color_stn_08_g( device_t *device, UINT8 data) { s3c44b0_lcd_t *lcd = &(get_token( device)->lcd); return ((lcd->regs.greenlut >> (BITS( data, 4, 2) << 2)) & 0xF) << 4; } static UINT8 s3c44b0_get_color_stn_08_b( device_t *device, UINT8 data) { s3c44b0_lcd_t *lcd = &(get_token( device)->lcd); return ((lcd->regs.bluelut >> (BITS( data, 1, 0) << 2)) & 0xF) << 4; } static void s3c44b0_lcd_dma_reload( device_t *device) { s3c44b0_lcd_t *lcd = &(get_token( device)->lcd); int lcdbank, lcdbaseu, lcdbasel; lcdbank = BITS( lcd->regs.lcdsaddr1, 26, 21); lcdbaseu = BITS( lcd->regs.lcdsaddr1, 20, 0); lcdbasel = BITS( lcd->regs.lcdsaddr2, 20, 0); lcd->vramaddr_cur = (lcdbank << 22) | (lcdbaseu << 1); lcd->vramaddr_max = (lcdbank << 22) | (lcdbasel << 1); if (lcdbasel == 0) lcd->vramaddr_max += 1 << 22; lcd->offsize = BITS( lcd->regs.lcdsaddr3, 19, 9); lcd->pagewidth_cur = 0; lcd->pagewidth_max = BITS( lcd->regs.lcdsaddr3, 8, 0); lcd->bswp = BIT( lcd->regs.lcdsaddr2, 29); // note: juicebox changes bswp when video playback starts // verboselog( device->machine(), 3, "LCD - vramaddr %08X %08X offsize %08X pagewidth %08X\n", lcd->vramaddr_cur, lcd->vramaddr_max, lcd->offsize, lcd->pagewidth_max); } static void s3c44b0_lcd_dma_init( device_t *device) { s3c44b0_lcd_t *lcd = &(get_token( device)->lcd); lcd->modesel = BITS( lcd->regs.lcdsaddr1, 28, 27); // verboselog( device->machine(), 3, "LCD - modesel %d bswp %d\n", lcd->modesel, lcd->bswp); s3c44b0_lcd_dma_reload( device); } static void s3c44b0_lcd_dma_read( device_t *device, int count, UINT8 *data) { s3c44b0_t *s3c44b0 = get_token( device); s3c44b0_lcd_t *lcd = &s3c44b0->lcd; UINT8 *vram; vram = (UINT8 *)s3c44b0->space->get_read_ptr( lcd->vramaddr_cur); for (int i = 0; i < count / 2; i++) { if (lcd->bswp == 0) { if ((lcd->vramaddr_cur & 2) == 0) { data[0] = *(vram + 3); data[1] = *(vram + 2); } else { data[0] = *(vram - 1); data[1] = *(vram - 2); } } else { data[0] = *(vram + 0); data[1] = *(vram + 1); } lcd->vramaddr_cur += 2; lcd->pagewidth_cur++; if (lcd->pagewidth_cur >= lcd->pagewidth_max) { lcd->vramaddr_cur += lcd->offsize << 1; if (lcd->vramaddr_cur >= lcd->vramaddr_max) { s3c44b0_lcd_dma_reload( device); } lcd->pagewidth_cur = 0; vram = (UINT8 *)s3c44b0->space->get_read_ptr( lcd->vramaddr_cur); } else { vram += 2; } data += 2; } } static void s3c44b0_lcd_render_stn_04( device_t *device) { s3c44b0_lcd_t *lcd = &(get_token( device)->lcd); UINT8 *bitmap = lcd->bitmap + ((lcd->vpos - lcd->vpos_min) * (lcd->hpos_max - lcd->hpos_min + 1)) + (lcd->hpos - lcd->hpos_min); UINT8 data[16]; s3c44b0_lcd_dma_read( device, 16, data); for (int i = 0; i < 16; i++) { for (int j = 0; j < 2; j++) { *bitmap++ = s3c44b0_get_color_stn_04( device, (data[i] >> 4) & 0x0F); data[i] = data[i] << 4; lcd->hpos++; if (lcd->hpos >= lcd->hpos_min + (lcd->pagewidth_max << 2)) { lcd->vpos++; if (lcd->vpos > lcd->vpos_max) { lcd->vpos = lcd->vpos_min; bitmap = lcd->bitmap; } lcd->hpos = lcd->hpos_min; } } } } static void s3c44b0_lcd_render_stn_08( device_t *device) { s3c44b0_lcd_t *lcd = &(get_token( device)->lcd); UINT8 *bitmap = lcd->bitmap + ((lcd->vpos - lcd->vpos_min) * (lcd->hpos_max - lcd->hpos_min + 1)) + (lcd->hpos - lcd->hpos_min); UINT8 data[16]; s3c44b0_lcd_dma_read( device, 16, data); for (int i = 0; i < 16; i++) { UINT8 xxx[3]; xxx[0] = s3c44b0_get_color_stn_08_r( device, data[i]); xxx[1] = s3c44b0_get_color_stn_08_g( device, data[i]); xxx[2] = s3c44b0_get_color_stn_08_b( device, data[i]); for (int j = 0; j < 3; j++) { *bitmap++ = xxx[j]; lcd->hpos++; if (lcd->hpos >= lcd->hpos_min + (lcd->pagewidth_max * 6)) { lcd->vpos++; if (lcd->vpos > lcd->vpos_max) { lcd->vpos = lcd->vpos_min; bitmap = lcd->bitmap; } lcd->hpos = lcd->hpos_min; } } } } static attotime s3c44b0_time_until_pos( device_t *device, int vpos, int hpos) { running_machine &machine = device->machine(); s3c44b0_lcd_t *lcd = (s3c44b0_lcd_t *)&(get_token( device)->lcd); attoseconds_t time1, time2; attotime retval; verboselog( device->machine(), 3, "s3c44b0_time_until_pos - vpos %d hpos %d\n", vpos, hpos); time1 = (attoseconds_t)vpos * lcd->scantime + (attoseconds_t)hpos * lcd->pixeltime; time2 = (machine.time() - lcd->frame_time).as_attoseconds(); verboselog( device->machine(), 3, "machine %f frametime %f time1 %f time2 %f\n", machine.time().as_double(), lcd->frame_time.as_double(), attotime( 0, time1).as_double(), attotime( 0, time2).as_double()); while (time1 <= time2) time1 += lcd->frame_period; retval = attotime( 0, time1 - time2); verboselog( device->machine(), 3, "result %f\n", retval.as_double()); return retval; } static int s3c44b0_lcd_get_vpos( device_t *device) { running_machine &machine = device->machine(); s3c44b0_lcd_t *lcd = (s3c44b0_lcd_t *)&(get_token( device)->lcd); attoseconds_t delta; int vpos; delta = (machine.time() - lcd->frame_time).as_attoseconds(); delta = delta + (lcd->pixeltime / 2); vpos = delta / lcd->scantime; return (lcd->vpos_min + vpos) % lcd->vpos_end; } static int s3c44b0_lcd_get_hpos( device_t *device) { running_machine &machine = device->machine(); s3c44b0_lcd_t *lcd = (s3c44b0_lcd_t *)&(get_token( device)->lcd); attoseconds_t delta; int vpos; delta = (machine.time() - lcd->frame_time).as_attoseconds(); delta = delta + (lcd->pixeltime / 2); vpos = delta / lcd->scantime; delta = delta - (vpos * lcd->scantime); return delta / lcd->pixeltime; } static TIMER_CALLBACK( s3c44b0_lcd_timer_exp ) { device_t *device = (device_t *)ptr; s3c44b0_lcd_t *lcd = &(get_token( device)->lcd); int vpos = lcd->vpos; verboselog( machine, 2, "LCD timer callback (%f)\n", machine.time().as_double()); verboselog( machine, 3, "LCD - (1) vramaddr %08X vpos %d hpos %d\n", lcd->vramaddr_cur, lcd->vpos, lcd->hpos); switch (lcd->modesel) { case S3C44B0_MODESEL_04 : s3c44b0_lcd_render_stn_04( device); break; case S3C44B0_MODESEL_08 : s3c44b0_lcd_render_stn_08( device); break; default : verboselog( machine, 0, "s3c44b0_lcd_timer_exp: modesel %d not supported\n", lcd->modesel); break; } verboselog( machine, 3, "LCD - (2) vramaddr %08X vpos %d hpos %d\n", lcd->vramaddr_cur, lcd->vpos, lcd->hpos); if (lcd->vpos < vpos) { // verboselog( machine, 3, "LCD - (1) frame_time %f\n", attotime_to_double( lcd->frame_time)); lcd->frame_time = machine.time() + s3c44b0_time_until_pos( device, lcd->vpos_min, lcd->hpos_min); // verboselog( machine, 3, "LCD - (2) frame_time %f\n", attotime_to_double( lcd->frame_time)); } lcd->timer->adjust( s3c44b0_time_until_pos( device, lcd->vpos, lcd->hpos), 0); } static void s3c44b0_video_start( device_t *device, running_machine &machine) { // do nothing } static UINT32 s3c44b0_video_update( device_t *device, screen_device &screen, bitmap_rgb32 &bitmap, const rectangle &cliprect) { s3c44b0_lcd_t *lcd = &(get_token( device)->lcd); if (lcd->regs.lcdcon1 & (1 << 0)) { if (lcd->bitmap) { for (int y = 0; y < screen.height(); y++) { UINT32 *scanline = &bitmap.pix32(y); UINT8 *vram = lcd->bitmap + y * (lcd->hpos_max - lcd->hpos_min + 1); for (int x = 0; x < screen.width(); x++) { *scanline++ = MAKE_RGB( vram[0], vram[1], vram[2]); vram += 3; } } } } else { for (int y = 0; y < screen.height(); y++) { UINT32 *scanline = &bitmap.pix32(y); memset( scanline, 0, screen.width() * 4); } } return 0; } static READ32_DEVICE_HANDLER( s3c44b0_lcd_r ) { s3c44b0_lcd_t *lcd = &(get_token( device)->lcd); UINT32 data = ((UINT32*)&lcd->regs)[offset]; switch (offset) { case S3C44B0_LCDCON1 : { int vpos = 0; // make sure line counter is going if (lcd->regs.lcdcon1 & (1 << 0)) { vpos = s3c44b0_lcd_get_vpos( device); int hpos = s3c44b0_lcd_get_hpos( device); if (hpos < lcd->hpos_min) vpos = vpos - 1; if ((vpos < lcd->vpos_min) || (vpos > lcd->vpos_max)) vpos = lcd->vpos_max; vpos = lcd->vpos_max - vpos; } data = (data & ~0xFFC00000) | (vpos << 22); } break; } // verboselog( space.machine(), 9, "(LCD) %08X -> %08X\n", S3C44B0_BASE_LCD + (offset << 2), data); return data; } static void s3c44b0_lcd_configure( device_t *device) { s3c44b0_lcd_t *lcd = &(get_token( device)->lcd); screen_device *screen = device->machine().primary_screen; int dismode, clkval, lineval, wdly, hozval, lineblank, wlh, mclk; double vclk, framerate; int width, height; verboselog( device->machine(), 5, "s3c44b0_lcd_configure\n"); dismode = BITS( lcd->regs.lcdcon1, 6, 5); clkval = BITS( lcd->regs.lcdcon1, 21, 12); lineval = BITS( lcd->regs.lcdcon2, 9, 0); wdly = BITS( lcd->regs.lcdcon1, 9, 8); hozval = BITS( lcd->regs.lcdcon2, 20, 10); lineblank = BITS( lcd->regs.lcdcon2, 31, 21); wlh = BITS( lcd->regs.lcdcon1, 11, 10); mclk = s3c44b0_get_mclk( device); verboselog( device->machine(), 3, "LCD - dismode %d clkval %d lineval %d wdly %d hozval %d lineblank %d wlh %d mclk %d\n", dismode, clkval, lineval, wdly, hozval, lineblank, wlh, mclk); vclk = (double)(mclk / (clkval * 2)); verboselog( device->machine(), 3, "LCD - vclk %f\n", vclk); framerate = 1 / (((1 / vclk) * (hozval + 1) + (1 / mclk) * (wlh + wdly + lineblank)) * (lineval + 1)); framerate = framerate / 3; // ??? verboselog( device->machine(), 3, "LCD - framerate %f\n", framerate); switch (dismode) { case S3C44B0_PNRMODE_STN_04_SS : width = ((hozval + 1) * 4); break; case S3C44B0_PNRMODE_STN_04_DS : width = ((hozval + 1) * 4); break; case S3C44B0_PNRMODE_STN_08_SS : width = ((hozval + 1) * 8); break; default : fatalerror( "invalid display mode (%d)\n", dismode); break; } height = lineval + 1; lcd->framerate = framerate; verboselog( device->machine(), 3, "video_screen_configure %d %d %f\n", width, height, lcd->framerate); screen->configure( screen->width(), screen->height(), screen->visible_area(), HZ_TO_ATTOSECONDS( lcd->framerate)); lcd->hpos_min = 25; lcd->hpos_max = 25 + width - 1; lcd->hpos_end = 25 + width - 1 + 25; lcd->vpos_min = 25; lcd->vpos_max = 25 + height - 1; lcd->vpos_end = 25 + height - 1 + 25; verboselog( device->machine(), 3, "LCD - min_x %d min_y %d max_x %d max_y %d\n", lcd->hpos_min, lcd->vpos_min, lcd->hpos_max, lcd->vpos_max); if (lcd->bitmap) { auto_free( device->machine(), lcd->bitmap); } lcd->bitmap = auto_alloc_array( device->machine(), UINT8, (lcd->hpos_max - lcd->hpos_min + 1) * (lcd->vpos_max - lcd->vpos_min + 1) * 3); lcd->frame_period = HZ_TO_ATTOSECONDS( lcd->framerate); lcd->scantime = lcd->frame_period / lcd->vpos_end; lcd->pixeltime = lcd->frame_period / (lcd->vpos_end * lcd->hpos_end); // printf( "frame_period %f\n", attotime( 0, lcd->frame_period).as_double()); // printf( "scantime %f\n", attotime( 0, lcd->scantime).as_double()); // printf( "pixeltime %f\n", attotime( 0, lcd->pixeltime).as_double()); } static void s3c44b0_lcd_start( device_t *device) { running_machine &machine = device->machine(); s3c44b0_lcd_t *lcd = &(get_token( device)->lcd); screen_device *screen = device->machine().primary_screen; verboselog( device->machine(), 1, "LCD start\n"); s3c44b0_lcd_configure( device); s3c44b0_lcd_dma_init( device); lcd->vpos = lcd->vpos_min; lcd->hpos = lcd->hpos_min; lcd->frame_time = screen->time_until_pos( 0, 0); lcd->timer->adjust( lcd->frame_time, 0); lcd->frame_time = machine.time() + lcd->frame_time; } static void s3c44b0_lcd_stop( device_t *device) { s3c44b0_lcd_t *lcd = &(get_token( device)->lcd); verboselog( device->machine(), 1, "LCD stop\n"); lcd->timer->adjust( attotime::never, 0); } static void s3c44b0_lcd_recalc( device_t *device) { s3c44b0_lcd_t *lcd = &(get_token( device)->lcd); if (lcd->regs.lcdcon1 & (1 << 0)) { s3c44b0_lcd_start( device); } else { s3c44b0_lcd_stop( device); } } static WRITE32_DEVICE_HANDLER( s3c44b0_lcd_w ) { s3c44b0_lcd_t *lcd = &(get_token( device)->lcd); UINT32 old_value = ((UINT32*)&lcd->regs)[offset]; // verboselog( space.machine(), 9, "(LCD) %08X <- %08X\n", S3C44B0_BASE_LCD + (offset << 2), data); COMBINE_DATA(&((UINT32*)&lcd->regs)[offset]); switch (offset) { case S3C44B0_LCDCON1 : { if ((old_value & (1 << 0)) != (data & (1 << 0))) { s3c44b0_lcd_recalc( device); } } break; } } /* Clock & Power Management */ static UINT32 s3c44b0_get_mclk( device_t *device) { s3c44b0_t *s3c44b0 = get_token( device); UINT32 data, mdiv, pdiv, sdiv; data = s3c44b0->clkpow.regs.pllcon; mdiv = BITS( data, 19, 12); pdiv = BITS( data, 9, 4); sdiv = BITS( data, 1, 0); return (UINT32)((double)((mdiv + 8) * device->clock()) / (double)((pdiv + 2) * (1 << sdiv))); } static READ32_DEVICE_HANDLER( s3c44b0_clkpow_r ) { s3c44b0_t *s3c44b0 = get_token( device); UINT32 data = ((UINT32*)&s3c44b0->clkpow.regs)[offset]; verboselog( space.machine(), 9, "(CLKPOW) %08X -> %08X\n", S3C44B0_BASE_CLKPOW + (offset << 2), data); return data; } static WRITE32_DEVICE_HANDLER( s3c44b0_clkpow_w ) { s3c44b0_t *s3c44b0 = get_token( device); verboselog( space.machine(), 9, "(CLKPOW) %08X <- %08X\n", S3C44B0_BASE_CLKPOW + (offset << 2), data); COMBINE_DATA(&((UINT32*)&s3c44b0->clkpow.regs)[offset]); switch (offset) { case S3C44B0_PLLCON : { verboselog( space.machine(), 5, "CLKPOW - mclk %d\n", s3c44b0_get_mclk( device)); s3c44b0->cpu->set_unscaled_clock( s3c44b0_get_mclk( device) * CLOCK_MULTIPLIER); } break; case S3C44B0_CLKCON : { if (data & (1 << 2)) { s3c44b0->cpu->spin_until_interrupt(); } } break; } } /* Interrupt Controller */ static void s3c44b0_check_pending_irq( device_t *device) { s3c44b0_t *s3c44b0 = get_token( device); UINT32 temp; // normal irq temp = (s3c44b0->irq.regs.intpnd & ~s3c44b0->irq.regs.intmsk) & ~s3c44b0->irq.regs.intmod; if (temp != 0) { UINT32 int_type = 0; while ((temp & 1) == 0) { int_type++; temp = temp >> 1; } s3c44b0->irq.regs.i_ispr |= (1 << int_type); if (s3c44b0->irq.line_irq != ASSERT_LINE) { s3c44b0->cpu->set_input_line( ARM7_IRQ_LINE, ASSERT_LINE); s3c44b0->irq.line_irq = ASSERT_LINE; } } else { if (s3c44b0->irq.line_irq != CLEAR_LINE) { s3c44b0->cpu->set_input_line( ARM7_IRQ_LINE, CLEAR_LINE); s3c44b0->irq.line_irq = CLEAR_LINE; } } // fast irq temp = (s3c44b0->irq.regs.intpnd & ~s3c44b0->irq.regs.intmsk) & s3c44b0->irq.regs.intmod; if (temp != 0) { UINT32 int_type = 0; while ((temp & 1) == 0) { int_type++; temp = temp >> 1; } if (s3c44b0->irq.line_fiq != ASSERT_LINE) { s3c44b0->cpu->set_input_line( ARM7_FIRQ_LINE, ASSERT_LINE); s3c44b0->irq.line_fiq = ASSERT_LINE; } } else { if (s3c44b0->irq.line_fiq != CLEAR_LINE) { s3c44b0->cpu->set_input_line( ARM7_FIRQ_LINE, CLEAR_LINE); s3c44b0->irq.line_fiq = CLEAR_LINE; } } } static void s3c44b0_request_irq( device_t *device, UINT32 int_type) { s3c44b0_t *s3c44b0 = get_token( device); verboselog( device->machine(), 5, "request irq %d\n", int_type); s3c44b0->irq.regs.intpnd |= (1 << int_type); s3c44b0_check_pending_irq( device); } static void s3c44b0_check_pending_eint( device_t *device) { s3c44b0_t *s3c44b0 = get_token( device); UINT32 temp = s3c44b0->gpio.regs.extintpnd; if (temp != 0) { UINT32 int_type = 0; while ((temp & 1) == 0) { int_type++; temp = temp >> 1; } s3c44b0_request_irq( device, S3C44B0_INT_EINT4_7); } } void s3c44b0_request_eint( device_t *device, UINT32 number) { s3c44b0_t *s3c44b0 = get_token( device); verboselog( device->machine(), 5, "request external interrupt %d\n", number); if (number < 4) { s3c44b0_request_irq( device, S3C44B0_INT_EINT0 + number); } else { s3c44b0->gpio.regs.extintpnd |= (1 << (number - 4)); s3c44b0_check_pending_eint( device); } } static READ32_DEVICE_HANDLER( s3c44b0_irq_r ) { s3c44b0_t *s3c44b0 = get_token( device); UINT32 data = ((UINT32*)&s3c44b0->irq.regs)[offset]; verboselog( space.machine(), 9, "(IRQ) %08X -> %08X\n", S3C44B0_BASE_INT + (offset << 2), data); return data; } static WRITE32_DEVICE_HANDLER( s3c44b0_irq_w ) { s3c44b0_t *s3c44b0 = get_token( device); verboselog( space.machine(), 9, "(IRQ) %08X <- %08X\n", S3C44B0_BASE_INT + (offset << 2), data); COMBINE_DATA(&((UINT32*)&s3c44b0->irq.regs)[offset]); switch (offset) { case S3C44B0_INTMSK : { s3c44b0_check_pending_irq( device); } break; case S3C44B0_I_ISPC : { s3c44b0->irq.regs.intpnd = (s3c44b0->irq.regs.intpnd & ~data); // The bit of INTPND bit is cleared to zero by writing '1' on I_ISPC/F_ISPC s3c44b0->irq.regs.i_ispr = (s3c44b0->irq.regs.i_ispr & ~data); // The pending bit in I_ISPR register should be cleared by writing I_ISPC register. s3c44b0_check_pending_irq( device); } break; case S3C44B0_F_ISPC : { s3c44b0->irq.regs.intpnd = (s3c44b0->irq.regs.intpnd & ~data); // The bit of INTPND bit is cleared to zero by writing '1' on I_ISPC/F_ISPC s3c44b0_check_pending_irq( device); } break; } } /* PWM Timer */ static UINT16 s3c44b0_pwm_calc_observation( device_t *device, int ch) { s3c44b0_t *s3c44b0 = get_token( device); double timeleft, x1, x2; UINT32 cnto; timeleft = (s3c44b0->pwm.timer[ch]->remaining()).as_double(); // printf( "timeleft %f freq %d cntb %d cmpb %d\n", timeleft, s3c44b0->pwm.freq[ch], s3c44b0->pwm.cnt[ch], s3c44b0->pwm.cmp[ch]); x1 = 1 / ((double)s3c44b0->pwm.freq[ch] / (s3c44b0->pwm.cnt[ch]- s3c44b0->pwm.cmp[ch] + 1)); x2 = x1 / timeleft; // printf( "x1 %f\n", x1); cnto = s3c44b0->pwm.cmp[ch] + ((s3c44b0->pwm.cnt[ch]- s3c44b0->pwm.cmp[ch]) / x2); // printf( "cnto %d\n", cnto); return cnto; } static READ32_DEVICE_HANDLER( s3c44b0_pwm_r ) { s3c44b0_t *s3c44b0 = get_token( device); UINT32 data = ((UINT32*)&s3c44b0->pwm.regs)[offset]; switch (offset) { case S3C44B0_TCNTO0 : { data = (data & ~0x0000FFFF) | s3c44b0_pwm_calc_observation( device, 0); } break; case S3C44B0_TCNTO1 : { data = (data & ~0x0000FFFF) | s3c44b0_pwm_calc_observation( device, 1); } break; case S3C44B0_TCNTO2 : { data = (data & ~0x0000FFFF) | s3c44b0_pwm_calc_observation( device, 2); } break; case S3C44B0_TCNTO3 : { data = (data & ~0x0000FFFF) | s3c44b0_pwm_calc_observation( device, 3); } break; case S3C44B0_TCNTO4 : { data = (data & ~0x0000FFFF) | s3c44b0_pwm_calc_observation( device, 4); } break; case S3C44B0_TCNTO5 : { data = (data & ~0x0000FFFF) | s3c44b0_pwm_calc_observation( device, 5); } break; } verboselog( space.machine(), 9, "(PWM) %08X -> %08X\n", S3C44B0_BASE_PWM + (offset << 2), data); return data; } static void s3c44b0_pwm_start( device_t *device, int timer) { s3c44b0_t *s3c44b0 = get_token( device); const int mux_table[] = { 2, 4, 8, 16}; const int prescaler_shift[] = { 0, 0, 8, 8, 16, 16}; const int mux_shift[] = { 0, 4, 8, 12, 16, 20}; UINT32 mclk, prescaler, mux, cnt, cmp, auto_reload; double freq, hz; verboselog( device->machine(), 1, "PWM %d start\n", timer); mclk = s3c44b0_get_mclk( device); prescaler = (s3c44b0->pwm.regs.tcfg0 >> prescaler_shift[timer]) & 0xFF; mux = (s3c44b0->pwm.regs.tcfg1 >> mux_shift[timer]) & 0x0F; if (mux < 4) { freq = (double)mclk / (prescaler + 1) / mux_table[mux]; } else { // todo freq = (double)mclk / (prescaler + 1) / 1; } switch (timer) { case 0 : { cnt = BITS( s3c44b0->pwm.regs.tcntb0, 15, 0); cmp = BITS( s3c44b0->pwm.regs.tcmpb0, 15, 0); auto_reload = BIT( s3c44b0->pwm.regs.tcon, 3); } break; case 1 : { cnt = BITS( s3c44b0->pwm.regs.tcntb1, 15, 0); cmp = BITS( s3c44b0->pwm.regs.tcmpb1, 15, 0); auto_reload = BIT( s3c44b0->pwm.regs.tcon, 11); } break; case 2 : { cnt = BITS( s3c44b0->pwm.regs.tcntb2, 15, 0); cmp = BITS( s3c44b0->pwm.regs.tcmpb2, 15, 0); auto_reload = BIT( s3c44b0->pwm.regs.tcon, 15); } break; case 3 : { cnt = BITS( s3c44b0->pwm.regs.tcntb3, 15, 0); cmp = BITS( s3c44b0->pwm.regs.tcmpb3, 15, 0); auto_reload = BIT( s3c44b0->pwm.regs.tcon, 19); } break; case 4 : { cnt = BITS( s3c44b0->pwm.regs.tcntb4, 15, 0); cmp = BITS( s3c44b0->pwm.regs.tcmpb4, 15, 0); auto_reload = BIT( s3c44b0->pwm.regs.tcon, 23); } break; case 5 : { cnt = BITS( s3c44b0->pwm.regs.tcntb5, 15, 0); cmp = 0; auto_reload = BIT( s3c44b0->pwm.regs.tcon, 26); } break; default : { cnt = cmp = auto_reload = 0; } break; } // hz = freq / (cnt - cmp + 1); if (cnt < 2) { hz = freq; } else { hz = freq / cnt; } verboselog( device->machine(), 5, "PWM %d - mclk=%d prescaler=%d div=%d freq=%f cnt=%d cmp=%d auto_reload=%d hz=%f\n", timer, mclk, prescaler, mux_table[mux], freq, cnt, cmp, auto_reload, hz); s3c44b0->pwm.cnt[timer] = cnt; s3c44b0->pwm.cmp[timer] = cmp; s3c44b0->pwm.freq[timer] = freq; if (cnt == 0) { s3c44b0->pwm.timer[timer]->adjust( attotime::never, 0); } else { if (auto_reload) { s3c44b0->pwm.timer[timer]->adjust( attotime::from_hz( hz), timer, attotime::from_hz( hz)); } else { s3c44b0->pwm.timer[timer]->adjust( attotime::from_hz( hz), timer); } } } static void s3c44b0_pwm_stop( device_t *device, int timer) { s3c44b0_t *s3c44b0 = get_token( device); verboselog( device->machine(), 1, "PWM %d stop\n", timer); s3c44b0->pwm.timer[timer]->adjust( attotime::never, 0); } static void s3c44b0_pwm_recalc( device_t *device, int timer) { s3c44b0_t *s3c44b0 = get_token( device); const int tcon_shift[] = { 0, 8, 12, 16, 20, 24}; if (s3c44b0->pwm.regs.tcon & (1 << tcon_shift[timer])) { s3c44b0_pwm_start( device, timer); } else { s3c44b0_pwm_stop( device, timer); } } static WRITE32_DEVICE_HANDLER( s3c44b0_pwm_w ) { s3c44b0_t *s3c44b0 = get_token( device); UINT32 old_value = ((UINT32*)&s3c44b0->pwm.regs)[offset]; verboselog( space.machine(), 9, "(PWM) %08X <- %08X\n", S3C44B0_BASE_PWM + (offset << 2), data); COMBINE_DATA(&((UINT32*)&s3c44b0->pwm.regs)[offset]); switch (offset) { case S3C44B0_TCON : { if ((data & (1 << 0)) != (old_value & (1 << 0))) { s3c44b0_pwm_recalc( device, 0); } if ((data & (1 << 8)) != (old_value & (1 << 8))) { s3c44b0_pwm_recalc( device, 1); } if ((data & (1 << 12)) != (old_value & (1 << 12))) { s3c44b0_pwm_recalc( device, 2); } if ((data & (1 << 16)) != (old_value & (1 << 16))) { s3c44b0_pwm_recalc( device, 3); } if ((data & (1 << 20)) != (old_value & (1 << 20))) { s3c44b0_pwm_recalc( device, 4); } if ((data & (1 << 24)) != (old_value & (1 << 24))) { s3c44b0_pwm_recalc( device, 5); } } break; } } static TIMER_CALLBACK( s3c44b0_pwm_timer_exp ) { device_t *device = (device_t *)ptr; s3c44b0_t *s3c44b0 = get_token( device); int ch = param; const int ch_int[] = { S3C44B0_INT_TIMER0, S3C44B0_INT_TIMER1, S3C44B0_INT_TIMER2, S3C44B0_INT_TIMER3, S3C44B0_INT_TIMER4, S3C44B0_INT_TIMER5 }; verboselog( machine, 2, "PWM %d timer callback\n", ch); if (BITS( s3c44b0->pwm.regs.tcfg1, 27, 24) == (ch + 1)) { fatalerror( "s3c44b0_dma_request_pwm( device)\n"); } else { s3c44b0_request_irq( device, ch_int[ch]); } } /* IIC */ INLINE void iface_i2c_scl_w( device_t *device, int state) { s3c44b0_t *s3c44b0 = get_token( device); if (s3c44b0->iface->i2c.scl_w) { (s3c44b0->iface->i2c.scl_w)( device, state); } } INLINE void iface_i2c_sda_w( device_t *device, int state) { s3c44b0_t *s3c44b0 = get_token( device); if (s3c44b0->iface->i2c.sda_w) { (s3c44b0->iface->i2c.sda_w)( device, state); } } INLINE int iface_i2c_sda_r( device_t *device) { s3c44b0_t *s3c44b0 = get_token( device); if (s3c44b0->iface->i2c.sda_r) { return (s3c44b0->iface->i2c.sda_r)( device); } else { return 0; } } static void i2c_send_start( device_t *device) { verboselog( device->machine(), 5, "i2c_send_start\n"); iface_i2c_sda_w( device, 1); iface_i2c_scl_w( device, 1); iface_i2c_sda_w( device, 0); iface_i2c_scl_w( device, 0); } static void i2c_send_stop( device_t *device) { verboselog( device->machine(), 5, "i2c_send_stop\n"); iface_i2c_sda_w( device, 0); iface_i2c_scl_w( device, 1); iface_i2c_sda_w( device, 1); iface_i2c_scl_w( device, 0); } static UINT8 i2c_receive_byte( device_t *device, int ack) { UINT8 data = 0; verboselog( device->machine(), 5, "i2c_receive_byte ...\n"); iface_i2c_sda_w( device, 1); for (int i = 0; i < 8; i++) { iface_i2c_scl_w( device, 1); data = (data << 1) + (iface_i2c_sda_r( device) ? 1 : 0); iface_i2c_scl_w( device, 0); } verboselog( device->machine(), 5, "recv data %02X\n", data); verboselog( device->machine(), 5, "send ack %d\n", ack); iface_i2c_sda_w( device, ack ? 0 : 1); iface_i2c_scl_w( device, 1); iface_i2c_scl_w( device, 0); return data; } static int i2c_send_byte( device_t *device, UINT8 data) { int ack; verboselog( device->machine(), 5, "i2c_send_byte ...\n"); verboselog( device->machine(), 5, "send data %02X\n", data); for (int i = 0; i < 8; i++) { iface_i2c_sda_w( device, (data & 0x80) ? 1 : 0); data = data << 1; iface_i2c_scl_w( device, 1); iface_i2c_scl_w( device, 0); } iface_i2c_sda_w( device, 1); // ack bit iface_i2c_scl_w( device, 1); ack = iface_i2c_sda_r( device); verboselog( device->machine(), 5, "recv ack %d\n", ack); iface_i2c_scl_w( device, 0); return ack; } static void iic_start( device_t *device) { s3c44b0_t *s3c44b0 = get_token( device); int mode_selection; verboselog( device->machine(), 1, "IIC start\n"); i2c_send_start( device); mode_selection = BITS( s3c44b0->iic.regs.iicstat, 7, 6); switch (mode_selection) { case 2 : i2c_send_byte( device, s3c44b0->iic.regs.iicds | 0x01); break; case 3 : i2c_send_byte( device, s3c44b0->iic.regs.iicds & 0xFE); break; } s3c44b0->iic.timer->adjust( attotime::from_usec( 1), 0); } static void iic_stop( device_t *device) { s3c44b0_t *s3c44b0 = get_token( device); verboselog( device->machine(), 1, "IIC stop\n"); i2c_send_stop( device); s3c44b0->iic.timer->adjust( attotime::never, 0); } static void iic_resume( device_t *device) { s3c44b0_t *s3c44b0 = get_token( device); int mode_selection; verboselog( device->machine(), 1, "IIC resume\n"); mode_selection = BITS( s3c44b0->iic.regs.iicstat, 7, 6); switch (mode_selection) { case 2 : s3c44b0->iic.regs.iicds = i2c_receive_byte( device, BIT( s3c44b0->iic.regs.iiccon, 7)); break; case 3 : i2c_send_byte( device, s3c44b0->iic.regs.iicds & 0xFF); break; } s3c44b0->iic.timer->adjust( attotime::from_usec( 1), 0); } static READ32_DEVICE_HANDLER( s3c44b0_iic_r ) { s3c44b0_t *s3c44b0 = get_token( device); UINT32 data = ((UINT32*)&s3c44b0->iic.regs)[offset]; switch (offset) { case S3C44B0_IICSTAT : { data = data & ~0x0000000F; } break; } verboselog( space.machine(), 9, "(IIC) %08X -> %08X\n", S3C44B0_BASE_IIC + (offset << 2), data); return data; } static WRITE32_DEVICE_HANDLER( s3c44b0_iic_w ) { s3c44b0_t *s3c44b0 = get_token( device); UINT32 old_value = ((UINT32*)&s3c44b0->iic.regs)[offset]; verboselog( space.machine(), 9, "(IIC) %08X <- %08X\n", S3C44B0_BASE_IIC + (offset << 2), data); COMBINE_DATA(&((UINT32*)&s3c44b0->iic.regs)[offset]); switch (offset) { case S3C44B0_IICCON : { int interrupt_pending_flag; #if 0 const int div_table[] = { 16, 512}; int enable_interrupt, transmit_clock_value, tx_clock_source_selection double clock; transmit_clock_value = (data >> 0) & 0xF; tx_clock_source_selection = (data >> 6) & 1; enable_interrupt = (data >> 5) & 1; clock = (double)s3c24xx_get_pclk( device) / div_table[tx_clock_source_selection] / (transmit_clock_value + 1); #endif interrupt_pending_flag = BIT( old_value, 4); if (interrupt_pending_flag != 0) { interrupt_pending_flag = BIT( data, 4); if (interrupt_pending_flag == 0) { int start_stop_condition; start_stop_condition = BIT( s3c44b0->iic.regs.iicstat, 5); if (start_stop_condition != 0) { if (s3c44b0->iic.count == 0) { iic_start( device); } else { iic_resume( device); } } else { iic_stop( device); } } } } break; case S3C44B0_IICSTAT : { int interrupt_pending_flag; s3c44b0->iic.count = 0; interrupt_pending_flag = BIT( s3c44b0->iic.regs.iiccon, 4); if (interrupt_pending_flag == 0) { int start_stop_condition; start_stop_condition = BIT( data, 5); if (start_stop_condition != 0) { if (s3c44b0->iic.count == 0) { iic_start( device); } else { iic_resume( device); } } else { iic_stop( device); } } } break; } } static TIMER_CALLBACK( s3c44b0_iic_timer_exp ) { device_t *device = (device_t *)ptr; s3c44b0_t *s3c44b0 = get_token( device); int enable_interrupt; verboselog( machine, 2, "IIC timer callback\n"); s3c44b0->iic.count++; enable_interrupt = BIT( s3c44b0->iic.regs.iiccon, 5); s3c44b0->iic.regs.iicds = 0xFF; // TEST if (enable_interrupt) { s3c44b0->iic.regs.iiccon |= (1 << 4); // [bit 4] interrupt is pending s3c44b0_request_irq( device, S3C44B0_INT_IIC); } } /* I/O Port */ INLINE UINT32 iface_gpio_port_r( device_t *device, int port) { s3c44b0_t *s3c44b0 = get_token( device); if (s3c44b0->iface->gpio.port_r) { return (s3c44b0->iface->gpio.port_r)( device, port); } else { return 0; } } INLINE void iface_gpio_port_w( device_t *device, int port, UINT32 data) { s3c44b0_t *s3c44b0 = get_token( device); if (s3c44b0->iface->gpio.port_w) { (s3c44b0->iface->gpio.port_w)( device, port, data); } } static READ32_DEVICE_HANDLER( s3c44b0_gpio_r ) { s3c44b0_t *s3c44b0 = get_token( device); UINT32 data = ((UINT32*)&s3c44b0->gpio.regs)[offset]; switch (offset) { case S3C44B0_GPADAT : { data = iface_gpio_port_r( device, S3C44B0_GPIO_PORT_A) & S3C44B0_GPADAT_MASK; } break; case S3C44B0_GPBDAT : { data = iface_gpio_port_r( device, S3C44B0_GPIO_PORT_B) & S3C44B0_GPBDAT_MASK; } break; case S3C44B0_GPCDAT : { data = iface_gpio_port_r( device, S3C44B0_GPIO_PORT_C) & S3C44B0_GPCDAT_MASK; } break; case S3C44B0_GPDDAT : { data = iface_gpio_port_r( device, S3C44B0_GPIO_PORT_D) & S3C44B0_GPDDAT_MASK; } break; case S3C44B0_GPEDAT : { data = iface_gpio_port_r( device, S3C44B0_GPIO_PORT_E) & S3C44B0_GPEDAT_MASK; } break; case S3C44B0_GPFDAT : { data = iface_gpio_port_r( device, S3C44B0_GPIO_PORT_F) & S3C44B0_GPFDAT_MASK; } break; case S3C44B0_GPGDAT : { data = iface_gpio_port_r( device, S3C44B0_GPIO_PORT_G) & S3C44B0_GPGDAT_MASK; } break; } verboselog( space.machine(), 9, "(GPIO) %08X -> %08X\n", S3C44B0_BASE_GPIO + (offset << 2), data); return data; } static WRITE32_DEVICE_HANDLER( s3c44b0_gpio_w ) { s3c44b0_t *s3c44b0 = get_token( device); UINT32 old_value = ((UINT32*)&s3c44b0->gpio.regs)[offset]; verboselog( space.machine(), 9, "(GPIO) %08X <- %08X\n", S3C44B0_BASE_GPIO + (offset << 2), data); COMBINE_DATA(&((UINT32*)&s3c44b0->gpio.regs)[offset]); switch (offset) { case S3C44B0_GPADAT : { iface_gpio_port_w( device, S3C44B0_GPIO_PORT_A, data & S3C44B0_GPADAT_MASK); } break; case S3C44B0_GPBDAT : { iface_gpio_port_w( device, S3C44B0_GPIO_PORT_B, data & S3C44B0_GPBDAT_MASK); } break; case S3C44B0_GPCDAT : { iface_gpio_port_w( device, S3C44B0_GPIO_PORT_C, data & S3C44B0_GPCDAT_MASK); } break; case S3C44B0_GPDDAT : { iface_gpio_port_w( device, S3C44B0_GPIO_PORT_D, data & S3C44B0_GPDDAT_MASK); } break; case S3C44B0_GPEDAT : { iface_gpio_port_w( device, S3C44B0_GPIO_PORT_E, data & S3C44B0_GPEDAT_MASK); } break; case S3C44B0_GPFDAT : { iface_gpio_port_w( device, S3C44B0_GPIO_PORT_F, data & S3C44B0_GPFDAT_MASK); } break; case S3C44B0_GPGDAT : { iface_gpio_port_w( device, S3C44B0_GPIO_PORT_G, data & S3C44B0_GPGDAT_MASK); } break; case S3C44B0_EXTINTPND : { s3c44b0->gpio.regs.extintpnd = (old_value & ~data); s3c44b0_check_pending_eint( device); } break; } } /* UART */ static UINT32 s3c44b0_uart_r( device_t *device, int ch, UINT32 offset) { s3c44b0_t *s3c44b0 = get_token( device); UINT32 data = ((UINT32*)&s3c44b0->uart[ch].regs)[offset]; switch (offset) { case S3C44B0_UTRSTAT : { data = (data & ~0x00000006) | 0x00000004 | 0x00000002; // [bit 2] Transmitter empty / [bit 1] Transmit buffer empty } break; case S3C44B0_URXH : { UINT8 rxdata = data & 0xFF; verboselog( device->machine(), 5, "UART %d read %02X (%c)\n", ch, rxdata, ((rxdata >= 32) && (rxdata < 128)) ? (char)rxdata : '?'); s3c44b0->uart[ch].regs.utrstat &= ~1; // [bit 0] Receive buffer data ready } break; } return data; } static void s3c44b0_uart_w( device_t *device, int ch, UINT32 offset, UINT32 data, UINT32 mem_mask) { s3c44b0_t *s3c44b0 = get_token( device); COMBINE_DATA(&((UINT32*)&s3c44b0->uart[ch].regs)[offset]); s3c44b0_uart_t *uart = &s3c44b0->uart[ch]; switch (offset) { case S3C44B0_UTXH : { UINT8 txdata = data & 0xFF; verboselog( device->machine(), 5, "UART %d write %02X (%c)\n", ch, txdata, ((txdata >= 32) && (txdata < 128)) ? (char)txdata : '?'); #ifdef UART_PRINTF printf( "%c", ((txdata >= 32) && (txdata < 128)) ? (char)txdata : '?'); #endif } break; case S3C44B0_UBRDIV : { UINT32 mclk, hz; mclk = s3c44b0_get_mclk( device); hz = (mclk / (uart->regs.ubrdiv + 1)) / 16; verboselog( device->machine(), 5, "UART %d - mclk %08X hz %08X\n", ch, mclk, hz); uart->timer->adjust( attotime::from_hz( hz), ch, attotime::from_hz( hz)); } break; } } static READ32_DEVICE_HANDLER( s3c44b0_uart_0_r ) { UINT32 data = s3c44b0_uart_r( device, 0, offset); // verboselog( space.machine(), 9, "(UART 0) %08X -> %08X\n", S3C44B0_BASE_UART_0 + (offset << 2), data); return data; } static READ32_DEVICE_HANDLER( s3c44b0_uart_1_r ) { UINT32 data = s3c44b0_uart_r( device, 1, offset); // verboselog( space.machine(), 9, "(UART 1) %08X -> %08X\n", S3C44B0_BASE_UART_1 + (offset << 2), data); return data; } static WRITE32_DEVICE_HANDLER( s3c44b0_uart_0_w ) { verboselog( space.machine(), 9, "(UART 0) %08X <- %08X (%08X)\n", S3C44B0_BASE_UART_0 + (offset << 2), data, mem_mask); s3c44b0_uart_w( device, 0, offset, data, mem_mask); } static WRITE32_DEVICE_HANDLER( s3c44b0_uart_1_w ) { verboselog( space.machine(), 9, "(UART 1) %08X <- %08X (%08X)\n", S3C44B0_BASE_UART_1 + (offset << 2), data, mem_mask); s3c44b0_uart_w( device, 1, offset, data, mem_mask); } void s3c44b0_uart_fifo_w( device_t *device, int uart, UINT8 data) { // printf( "s3c44b0_uart_fifo_w (%c)\n", data); s3c44b0_t *s3c44b0 = get_token( device); s3c44b0->uart[uart].regs.urxh = data; s3c44b0->uart[uart].regs.utrstat |= 1; // [bit 0] Receive buffer data ready } static TIMER_CALLBACK( s3c44b0_uart_timer_exp ) { device_t *device = (device_t *)ptr; s3c44b0_t *s3c44b0 = get_token( device); int ch = param; s3c44b0_uart_t *uart = &s3c44b0->uart[ch]; verboselog( machine, 2, "UART %d timer callback\n", ch); if ((uart->regs.ucon & (1 << 9)) != 0) { const int ch_int[] = { S3C44B0_INT_UTXD0, S3C44B0_INT_UTXD1 }; s3c44b0_request_irq( device, ch_int[ch]); } } /* Watchdog Timer */ static UINT16 s3c44b0_wdt_calc_current_count( device_t *device) { return 0; } static READ32_DEVICE_HANDLER( s3c44b0_wdt_r ) { s3c44b0_t *s3c44b0 = get_token( device); UINT32 data = ((UINT32*)&s3c44b0->wdt.regs)[offset]; switch (offset) { case S3C44B0_WTCNT : { // is wdt active? if ((s3c44b0->wdt.regs.wtcon & (1 << 5)) != 0) { data = s3c44b0_wdt_calc_current_count( device); } } break; } verboselog( space.machine(), 9, "(WDT) %08X -> %08X\n", S3C44B0_BASE_WDT + (offset << 2), data); return data; } static void s3c44b0_wdt_start( device_t *device) { s3c44b0_t *s3c44b0 = get_token( device); UINT32 mclk, prescaler, clock; double freq, hz; verboselog( device->machine(), 1, "WDT start\n"); mclk = s3c44b0_get_mclk( device); prescaler = BITS( s3c44b0->wdt.regs.wtcon, 15, 8); clock = 16 << BITS( s3c44b0->wdt.regs.wtcon, 4, 3); freq = (double)mclk / (prescaler + 1) / clock; hz = freq / s3c44b0->wdt.regs.wtcnt; verboselog( device->machine(), 5, "WDT mclk %d prescaler %d clock %d freq %f hz %f\n", mclk, prescaler, clock, freq, hz); s3c44b0->wdt.timer->adjust( attotime::from_hz( hz), 0, attotime::from_hz( hz)); } static void s3c44b0_wdt_stop( device_t *device) { s3c44b0_t *s3c44b0 = get_token( device); verboselog( device->machine(), 1, "WDT stop\n"); s3c44b0->wdt.regs.wtcnt = s3c44b0_wdt_calc_current_count( device); s3c44b0->wdt.timer->adjust( attotime::never, 0); } static void s3c44b0_wdt_recalc( device_t *device) { s3c44b0_t *s3c44b0 = get_token( device); if ((s3c44b0->wdt.regs.wtcon & (1 << 5)) != 0) { s3c44b0_wdt_start( device); } else { s3c44b0_wdt_stop( device); } } static WRITE32_DEVICE_HANDLER( s3c44b0_wdt_w ) { s3c44b0_t *s3c44b0 = get_token( device); UINT32 old_value = ((UINT32*)&s3c44b0->wdt.regs)[offset]; verboselog( space.machine(), 9, "(WDT) %08X <- %08X\n", S3C44B0_BASE_WDT + (offset << 2), data); COMBINE_DATA(&((UINT32*)&s3c44b0->wdt.regs)[offset]); switch (offset) { case S3C44B0_WTCON : { if ((data & (1 << 5)) != (old_value & (1 << 5))) { s3c44b0_wdt_recalc( device); } } break; } } static TIMER_CALLBACK( s3c44b0_wdt_timer_exp ) { device_t *device = (device_t *)ptr; s3c44b0_t *s3c44b0 = get_token( device); verboselog( machine, 2, "WDT timer callback\n"); if ((s3c44b0->wdt.regs.wtcon & (1 << 2)) != 0) { s3c44b0_request_irq( device, S3C44B0_INT_WDT); } if ((s3c44b0->wdt.regs.wtcon & (1 << 0)) != 0) { s3c44b0_reset( device); } } /* CPU Wrapper */ static READ32_DEVICE_HANDLER( s3c44b0_cpuwrap_r ) { s3c44b0_t *s3c44b0 = get_token( device); UINT32 data = ((UINT32*)&s3c44b0->cpuwrap.regs)[offset]; verboselog( space.machine(), 9, "(CPUWRAP) %08X -> %08X\n", S3C44B0_BASE_CPU_WRAPPER + (offset << 2), data); return data; } static WRITE32_DEVICE_HANDLER( s3c44b0_cpuwrap_w ) { s3c44b0_t *s3c44b0 = get_token( device); verboselog( space.machine(), 9, "(CPUWRAP) %08X <- %08X\n", S3C44B0_BASE_CPU_WRAPPER + (offset << 2), data); COMBINE_DATA(&((UINT32*)&s3c44b0->cpuwrap.regs)[offset]); } /* A/D Converter */ static READ32_DEVICE_HANDLER( s3c44b0_adc_r ) { s3c44b0_t *s3c44b0 = get_token( device); UINT32 data = ((UINT32*)&s3c44b0->adc.regs)[offset]; verboselog( space.machine(), 9, "(ADC) %08X -> %08X\n", S3C44B0_BASE_ADC + (offset << 2), data); return data; } static void s3c44b0_adc_start( device_t *device) { s3c44b0_t *s3c44b0 = get_token( device); UINT32 mclk, prescaler; double freq, hz; verboselog( device->machine(), 1, "ADC start\n"); mclk = s3c44b0_get_mclk( device); prescaler = BITS( s3c44b0->adc.regs.adcpsr, 7, 0); freq = (double)mclk / (2 * (prescaler + 1)) / 16; hz = freq / 1; //s3c44b0->wdt.regs.wtcnt; verboselog( device->machine(), 5, "ADC mclk %d prescaler %d freq %f hz %f\n", mclk, prescaler, freq, hz); s3c44b0->adc.timer->adjust( attotime::from_hz( hz), 0); } static void s3c44b0_adc_stop( device_t *device) { s3c44b0_t *s3c44b0 = get_token( device); verboselog( device->machine(), 1, "ADC stop\n"); s3c44b0->adc.timer->adjust( attotime::never, 0); } static void s3c44b0_adc_recalc( device_t *device) { s3c44b0_t *s3c44b0 = get_token( device); if ((s3c44b0->adc.regs.adccon & (1 << 0)) != 0) { s3c44b0_adc_start( device); } else { s3c44b0_adc_stop( device); } } static WRITE32_DEVICE_HANDLER( s3c44b0_adc_w ) { s3c44b0_t *s3c44b0 = get_token( device); UINT32 old_value = ((UINT32*)&s3c44b0->wdt.regs)[offset]; verboselog( space.machine(), 9, "(ADC) %08X <- %08X\n", S3C44B0_BASE_ADC + (offset << 2), data); COMBINE_DATA(&((UINT32*)&s3c44b0->adc.regs)[offset]); switch (offset) { case S3C44B0_ADCCON : { if ((data & (1 << 0)) != (old_value & (1 << 0))) { s3c44b0_adc_recalc( device); } s3c44b0->adc.regs.adccon &= ~(1 << 0); // "this bit is cleared after the start-up" } break; } } static TIMER_CALLBACK( s3c44b0_adc_timer_exp ) { device_t *device = (device_t *)ptr; s3c44b0_t *s3c44b0 = get_token( device); verboselog( machine, 2, "ADC timer callback\n"); s3c44b0->adc.regs.adccon |= (1 << 6); s3c44b0_request_irq( device, S3C44B0_INT_ADC); } /* SIO */ static READ32_DEVICE_HANDLER( s3c44b0_sio_r ) { s3c44b0_t *s3c44b0 = get_token( device); UINT32 data = ((UINT32*)&s3c44b0->sio.regs)[offset]; verboselog( space.machine(), 9, "(SIO) %08X -> %08X\n", S3C44B0_BASE_SIO + (offset << 2), data); return data; } static void s3c44b0_sio_start( device_t *device) { s3c44b0_t *s3c44b0 = get_token( device); UINT32 mclk, prescaler; double freq, hz; verboselog( device->machine(), 1, "SIO start\n"); mclk = s3c44b0_get_mclk( device); prescaler = BITS( s3c44b0->sio.regs.sbrdr, 11, 0); freq = (double)mclk / 2 / (prescaler + 1); hz = freq / 1; //s3c44b0->wdt.regs.wtcnt; verboselog( device->machine(), 5, "SIO mclk %d prescaler %d freq %f hz %f\n", mclk, prescaler, freq, hz); s3c44b0->sio.timer->adjust( attotime::from_hz( hz), 0); // printf( "SIO transmit %02X (%c)\n", s3c44b0->sio.regs.siodat, ((s3c44b0->sio.regs.siodat >= 32) && (s3c44b0->sio.regs.siodat < 128)) ? (char)s3c44b0->sio.regs.siodat : '?'); } static void s3c44b0_sio_stop( device_t *device) { s3c44b0_t *s3c44b0 = get_token( device); verboselog( device->machine(), 1, "SIO stop\n"); // s3c44b0->wdt.regs.wtcnt = s3c44b0_wdt_calc_current_count( device); s3c44b0->sio.timer->adjust( attotime::never, 0); } static void s3c44b0_sio_recalc( device_t *device) { s3c44b0_t *s3c44b0 = get_token( device); if ((s3c44b0->sio.regs.siocon & (1 << 3)) != 0) { s3c44b0_sio_start( device); } else { s3c44b0_sio_stop( device); } } static WRITE32_DEVICE_HANDLER( s3c44b0_sio_w ) { s3c44b0_t *s3c44b0 = get_token( device); UINT32 old_value = ((UINT32*)&s3c44b0->sio.regs)[offset]; verboselog( space.machine(), 9, "(SIO) %08X <- %08X\n", S3C44B0_BASE_SIO + (offset << 2), data); COMBINE_DATA(&((UINT32*)&s3c44b0->sio.regs)[offset]); switch (offset) { case S3C44B0_SIOCON : { if ((old_value & (1 << 3)) != (data & (1 << 3))) { s3c44b0_sio_recalc( device); } s3c44b0->sio.regs.siocon &= ~(1 << 3); // "This bit is cleared just after writing this bit as 1." } break; } } static TIMER_CALLBACK( s3c44b0_sio_timer_exp ) { device_t *device = (device_t *)ptr; s3c44b0_t *s3c44b0 = get_token( device); verboselog( machine, 2, "SIO timer callback\n"); s3c44b0->sio.regs.siodat = 0x00; // TEST if ((s3c44b0->sio.regs.siocon & (1 << 0)) != 0) { s3c44b0_request_irq( device, S3C44B0_INT_SIO); } } /* IIS */ INLINE void iface_i2s_data_w( device_t *device, address_space &space, int ch, UINT16 data) { s3c44b0_t *s3c44b0 = get_token( device); if (s3c44b0->iface->i2s.data_w) { (s3c44b0->iface->i2s.data_w)( device, space, ch, data, 0); } } static void s3c44b0_iis_start( device_t *device) { s3c44b0_t *s3c44b0 = get_token( device); UINT32 mclk; int prescaler; double freq, hz; const int div[] = { 2, 4, 6, 8, 10, 12, 14, 16, 1, 0, 3, 0, 5, 0, 7, 0 }; verboselog( device->machine(), 1, "IIS start\n"); mclk = s3c44b0_get_mclk( device); prescaler = BITS( s3c44b0->iis.regs.iispsr, 3, 0); freq = (double)mclk / div[prescaler]; hz = freq / 256 * 2; verboselog( device->machine(), 5, "IIS mclk %d prescaler %d freq %f hz %f\n", mclk, prescaler, freq, hz); s3c44b0->iis.timer->adjust( attotime::from_hz( hz), 0, attotime::from_hz( hz)); } static void s3c44b0_iis_stop( device_t *device) { s3c44b0_t *s3c44b0 = get_token( device); verboselog( device->machine(), 1, "IIS stop\n"); s3c44b0->iis.timer->adjust( attotime::never, 0); } static READ32_DEVICE_HANDLER( s3c44b0_iis_r ) { s3c44b0_t *s3c44b0 = get_token( device); UINT32 data = ((UINT32*)&s3c44b0->iis.regs)[offset]; verboselog( space.machine(), 9, "(IIS) %08X -> %08X\n", S3C44B0_BASE_IIS + (offset << 2), data); return data; } static WRITE32_DEVICE_HANDLER( s3c44b0_iis_w ) { s3c44b0_t *s3c44b0 = get_token( device); UINT32 old_value = ((UINT32*)&s3c44b0->iis.regs)[offset]; verboselog( space.machine(), 9, "(IIS) %08X <- %08X\n", S3C44B0_BASE_IIS + (offset << 2), data); COMBINE_DATA(&((UINT32*)&s3c44b0->iis.regs)[offset]); switch (offset) { case S3C44B0_IISCON : { if ((old_value & (1 << 0)) != (data & (1 << 0))) { if ((data & (1 << 0)) != 0) { s3c44b0_iis_start( device); } else { s3c44b0_iis_stop( device); } } } break; case S3C44B0_IISFIFO : { if (ACCESSING_BITS_16_31) { s3c44b0->iis.fifo[s3c44b0->iis.fifo_index++] = BITS( data, 31, 16); } if (ACCESSING_BITS_0_15) { s3c44b0->iis.fifo[s3c44b0->iis.fifo_index++] = BITS( data, 15, 0); } if (s3c44b0->iis.fifo_index == 2) { s3c44b0->iis.fifo_index = 0; iface_i2s_data_w( device, space, 0, s3c44b0->iis.fifo[0]); iface_i2s_data_w( device, space, 1, s3c44b0->iis.fifo[1]); } } break; } } static TIMER_CALLBACK( s3c44b0_iis_timer_exp ) { device_t *device = (device_t *)ptr; s3c44b0_t *s3c44b0 = get_token( device); s3c44b0_iis_t *iis = &s3c44b0->iis; verboselog( machine, 2, "IIS timer callback\n"); if ((iis->regs.iiscon & (1 << 5)) != 0) { s3c44b0_bdma_request_iis( device); } } /* ZDMA */ static void s3c44b0_zdma_trigger( device_t *device, int ch) { s3c44b0_t *s3c44b0 = get_token( device); s3c44b0_dma_t *dma = &s3c44b0->zdma[ch]; UINT32 saddr, daddr; int dal, dst, opt, das, cnt; verboselog( device->machine(), 5, "s3c44b0_zdma_trigger %d\n", ch); dst = BITS( dma->regs.dcsrc, 31, 30); dal = BITS( dma->regs.dcsrc, 29, 28); saddr = BITS( dma->regs.dcsrc, 27, 0); verboselog( device->machine(), 5, "dst %d dal %d saddr %08X\n", dst, dal, saddr); opt = BITS( dma->regs.dcdst, 31, 30); das = BITS( dma->regs.dcdst, 29, 28); daddr = BITS( dma->regs.dcdst, 27, 0); verboselog( device->machine(), 5, "opt %d das %d daddr %08X\n", opt, das, daddr); cnt = BITS( dma->regs.dccnt, 19, 0); verboselog( device->machine(), 5, "icnt %08X\n", cnt); while (cnt > 0) { verboselog( device->machine(), 9, "[%08X] -> [%08X]\n", saddr, daddr); switch (dst) { case 0 : s3c44b0->space->write_byte( daddr, s3c44b0->space->read_byte( saddr)); break; case 1 : s3c44b0->space->write_word( daddr, s3c44b0->space->read_word( saddr)); break; case 2 : s3c44b0->space->write_dword( daddr, s3c44b0->space->read_dword( saddr)); break; } switch (dal) { case 1 : saddr += (1 << dst); break; case 2 : saddr -= (1 << dst); break; } switch (das) { case 1 : daddr += (1 << dst); break; case 2 : daddr -= (1 << dst); break; } cnt -= (1 << dst); } dma->regs.dcsrc = CLR_BITS( dma->regs.dcsrc, 27, 0) | saddr; dma->regs.dcdst = CLR_BITS( dma->regs.dcdst, 27, 0) | daddr; dma->regs.dccnt = CLR_BITS( dma->regs.dcdst, 19, 0) | cnt; if (cnt == 0) { if ((dma->regs.dccnt & (1 << 23)) != 0) { const int ch_int[] = { S3C44B0_INT_ZDMA0, S3C44B0_INT_ZDMA1 }; s3c44b0_request_irq( device, ch_int[ch]); } } } static void s3c44b0_zdma_start( device_t *device, int ch) { s3c44b0_t *s3c44b0 = get_token( device); s3c44b0_dma_t *dma = &s3c44b0->zdma[ch]; verboselog( device->machine(), 5, "ZDMA %d start\n", ch); dma->regs.dcsrc = dma->regs.disrc; dma->regs.dcdst = dma->regs.didst; dma->regs.dccnt = dma->regs.dicnt; s3c44b0_zdma_trigger( device, ch); } static UINT32 s3c44b0_zdma_r( device_t *device, int ch, UINT32 offset) { s3c44b0_t *s3c44b0 = get_token( device); UINT32 data = ((UINT32*)&s3c44b0->zdma[ch].regs)[offset]; return data; } static void s3c44b0_zdma_w( device_t *device, int ch, UINT32 offset, UINT32 data, UINT32 mem_mask) { s3c44b0_t *s3c44b0 = get_token( device); UINT32 old_value = ((UINT32*)&s3c44b0->zdma[ch].regs)[offset]; COMBINE_DATA(&((UINT32*)&s3c44b0->zdma[ch].regs)[offset]); switch (offset) { case S3C44B0_DCON : { if ((old_value & 3) != (data & 3)) { switch (data & 3) { case 1 : s3c44b0_zdma_start( device, ch); break; } } s3c44b0->zdma[ch].regs.dcon &= ~3; // "After writing 01,10,11, CMD bit is cleared automatically" } break; } } static READ32_DEVICE_HANDLER( s3c44b0_zdma_0_r ) { UINT32 data = s3c44b0_zdma_r( device, 0, offset); verboselog( space.machine(), 9, "(ZDMA 0) %08X -> %08X\n", S3C44B0_BASE_ZDMA_0 + (offset << 2), data); return data; } static READ32_DEVICE_HANDLER( s3c44b0_zdma_1_r ) { UINT32 data = s3c44b0_zdma_r( device, 1, offset); verboselog( space.machine(), 9, "(ZDMA 1) %08X -> %08X\n", S3C44B0_BASE_ZDMA_1 + (offset << 2), data); return data; } static WRITE32_DEVICE_HANDLER( s3c44b0_zdma_0_w ) { verboselog( space.machine(), 9, "(ZDMA 0) %08X <- %08X (%08X)\n", S3C44B0_BASE_ZDMA_0 + (offset << 2), data, mem_mask); s3c44b0_zdma_w( device, 0, offset, data, mem_mask); } static WRITE32_DEVICE_HANDLER( s3c44b0_zdma_1_w ) { verboselog( space.machine(), 9, "(ZDMA 1) %08X <- %08X (%08X)\n", S3C44B0_BASE_ZDMA_1 + (offset << 2), data, mem_mask); s3c44b0_zdma_w( device, 1, offset, data, mem_mask); } static TIMER_CALLBACK( s3c44b0_zdma_timer_exp ) { int ch = param; verboselog( machine, 2, "ZDMA %d timer callback\n", ch); } /* BDMA */ static void s3c44b0_bdma_trigger( device_t *device, int ch) { s3c44b0_t *s3c44b0 = get_token( device); s3c44b0_dma_t *dma = &s3c44b0->bdma[ch]; UINT32 saddr, daddr; int dal, dst, tdm, das, cnt; verboselog( device->machine(), 5, "s3c44b0_bdma_trigger %d\n", ch); dst = BITS( dma->regs.dcsrc, 31, 30); dal = BITS( dma->regs.dcsrc, 29, 28); saddr = BITS( dma->regs.dcsrc, 27, 0); verboselog( device->machine(), 5, "dst %d dal %d saddr %08X\n", dst, dal, saddr); tdm = BITS( dma->regs.dcdst, 31, 30); das = BITS( dma->regs.dcdst, 29, 28); daddr = BITS( dma->regs.dcdst, 27, 0); verboselog( device->machine(), 5, "tdm %d das %d daddr %08X\n", tdm, das, daddr); cnt = BITS( dma->regs.dccnt, 19, 0); verboselog( device->machine(), 5, "icnt %08X\n", cnt); verboselog( device->machine(), 9, "[%08X] -> [%08X]\n", saddr, daddr); switch (dst) { case 0 : s3c44b0->space->write_byte( daddr, s3c44b0->space->read_byte( saddr)); break; case 1 : s3c44b0->space->write_word( daddr, s3c44b0->space->read_word( saddr)); break; case 2 : s3c44b0->space->write_dword( daddr, s3c44b0->space->read_dword( saddr)); break; } switch (dal) { case 1 : saddr += (1 << dst); break; case 2 : saddr -= (1 << dst); break; } switch (das) { case 1 : daddr += (1 << dst); break; case 2 : daddr -= (1 << dst); break; } cnt -= (1 << dst); dma->regs.dcsrc = CLR_BITS( dma->regs.dcsrc, 27, 0) | saddr; dma->regs.dcdst = CLR_BITS( dma->regs.dcdst, 27, 0) | daddr; dma->regs.dccnt = CLR_BITS( dma->regs.dcdst, 19, 0) | cnt; if (cnt == 0) { if ((dma->regs.dccnt & (1 << 23)) != 0) { const int ch_int[] = { S3C44B0_INT_BDMA0, S3C44B0_INT_BDMA1 }; s3c44b0_request_irq( device, ch_int[ch]); } } } static void s3c44b0_bdma_request_iis( device_t *device) { // s3c44b0_t *s3c44b0 = get_token( device); // s3c44b0_dma_regs_t *regs = &s3c24xx->bdma[0].regs; verboselog( device->machine(), 5, "s3c44b0_bdma_request_iis\n"); s3c44b0_bdma_trigger( device, 0); } static UINT32 s3c44b0_bdma_r( device_t *device, int ch, UINT32 offset) { s3c44b0_t *s3c44b0 = get_token( device); UINT32 data = ((UINT32*)&s3c44b0->bdma[ch].regs)[offset]; return data; } static void s3c44b0_bdma_start( device_t *device, int ch) { s3c44b0_t *s3c44b0 = get_token( device); s3c44b0_dma_t *dma = &s3c44b0->bdma[ch]; int qsc; verboselog( device->machine(), 5, "BDMA %d start\n", ch); qsc = BITS( dma->regs.dicnt, 31, 30); if ((ch == 0) && (qsc == 1)) { // IIS } else { printf( "s3c44b0_bdma_start - todo\n"); } dma->regs.dcsrc = dma->regs.disrc; dma->regs.dcdst = dma->regs.didst; dma->regs.dccnt = dma->regs.dicnt; } static void s3c44b0_bdma_stop( device_t *device, int ch) { s3c44b0_t *s3c44b0 = get_token( device); verboselog( device->machine(), 5, "BDMA %d stop\n", ch); s3c44b0->bdma[ch].timer->adjust( attotime::never, ch); } static void s3c44b0_bdma_w( device_t *device, int ch, UINT32 offset, UINT32 data, UINT32 mem_mask) { s3c44b0_t *s3c44b0 = get_token( device); UINT32 old_value = ((UINT32*)&s3c44b0->bdma[ch].regs)[offset]; COMBINE_DATA(&((UINT32*)&s3c44b0->bdma[ch].regs)[offset]); switch (offset) { case S3C44B0_DICNT : { if ((old_value & (1 << 20)) != (data & (1 << 20))) { if ((data & (1 << 20)) != 0) { s3c44b0_bdma_start( device, ch); } else { s3c44b0_bdma_stop( device, ch); } } } break; } } static READ32_DEVICE_HANDLER( s3c44b0_bdma_0_r ) { UINT32 data = s3c44b0_bdma_r( device, 0, offset); verboselog( space.machine(), 9, "(BDMA 0) %08X -> %08X\n", S3C44B0_BASE_BDMA_0 + (offset << 2), data); return data; } static READ32_DEVICE_HANDLER( s3c44b0_bdma_1_r ) { UINT32 data = s3c44b0_bdma_r( device, 1, offset); verboselog( space.machine(), 9, "(BDMA 1) %08X -> %08X\n", S3C44B0_BASE_BDMA_1 + (offset << 2), data); return data; } static WRITE32_DEVICE_HANDLER( s3c44b0_bdma_0_w ) { verboselog( space.machine(), 9, "(BDMA 0) %08X <- %08X (%08X)\n", S3C44B0_BASE_BDMA_0 + (offset << 2), data, mem_mask); s3c44b0_bdma_w( device, 0, offset, data, mem_mask); } static WRITE32_DEVICE_HANDLER( s3c44b0_bdma_1_w ) { verboselog( space.machine(), 9, "(BDMA 1) %08X <- %08X (%08X)\n", S3C44B0_BASE_BDMA_1 + (offset << 2), data, mem_mask); s3c44b0_bdma_w( device, 1, offset, data, mem_mask); } static TIMER_CALLBACK( s3c44b0_bdma_timer_exp ) { // device_t *device = (device_t *)ptr; // s3c44b0_t *s3c44b0 = get_token( device); int ch = param; verboselog( machine, 2, "BDMA %d timer callback\n", ch); } // ... static DEVICE_RESET( s3c44b0 ) { s3c44b0_t *s3c44b0 = get_token( device); s3c44b0->iis.fifo_index = 0; // s3c44b0->iic.data_index = 0; #if defined(DEVICE_S3C2410) || defined(DEVICE_S3C2440) s3c44b0->gpio.regs.gstatus2 = 0x00000001; // Boot is caused by power on reset #endif s3c44b0->irq.line_irq = s3c44b0->irq.line_fiq = CLEAR_LINE; } VIDEO_START( s3c44b0 ) { device_t *device = machine.device( S3C44B0_TAG); s3c44b0_video_start( device, machine); } SCREEN_UPDATE_RGB32( s3c44b0 ) { device_t *device = screen.machine().device( S3C44B0_TAG); return s3c44b0_video_update( device, screen, bitmap, cliprect); } DEVICE_START( s3c44b0 ) { running_machine &machine = device->machine(); address_space &space = machine.device( "maincpu")->memory().space( AS_PROGRAM); s3c44b0_t *s3c44b0 = get_token( device); s3c44b0->iface = (const s3c44b0_interface *)device->static_config(); s3c44b0->space = &space; s3c44b0->cpu = downcast(device->machine().device( "maincpu")); for (int i = 0; i < 6; i++) s3c44b0->pwm.timer[i] = machine.scheduler().timer_alloc(FUNC(s3c44b0_pwm_timer_exp), (void*)device); for (int i = 0; i < 2; i++) s3c44b0->uart[i].timer = machine.scheduler().timer_alloc(FUNC(s3c44b0_uart_timer_exp), (void*)device); for (int i = 0; i < 2; i++) s3c44b0->zdma[i].timer = machine.scheduler().timer_alloc(FUNC(s3c44b0_zdma_timer_exp), (void*)device); for (int i = 0; i < 2; i++) s3c44b0->bdma[i].timer = machine.scheduler().timer_alloc(FUNC(s3c44b0_bdma_timer_exp), (void*)device); s3c44b0->lcd.timer = machine.scheduler().timer_alloc(FUNC(s3c44b0_lcd_timer_exp), (void*)device); s3c44b0->wdt.timer = machine.scheduler().timer_alloc(FUNC(s3c44b0_wdt_timer_exp), (void*)device); s3c44b0->sio.timer = machine.scheduler().timer_alloc(FUNC(s3c44b0_sio_timer_exp), (void*)device); s3c44b0->adc.timer = machine.scheduler().timer_alloc(FUNC(s3c44b0_adc_timer_exp), (void*)device); s3c44b0->iic.timer = machine.scheduler().timer_alloc(FUNC(s3c44b0_iic_timer_exp), (void*)device); s3c44b0->iis.timer = machine.scheduler().timer_alloc(FUNC(s3c44b0_iis_timer_exp), (void*)device); space.install_legacy_readwrite_handler( *device, 0x01c00000, 0x01c0000b, 0, 0, FUNC(s3c44b0_cpuwrap_r), FUNC(s3c44b0_cpuwrap_w)); space.install_legacy_readwrite_handler( *device, 0x01d00000, 0x01d0002b, 0, 0, FUNC(s3c44b0_uart_0_r), FUNC(s3c44b0_uart_0_w)); space.install_legacy_readwrite_handler( *device, 0x01d04000, 0x01d0402b, 0, 0, FUNC(s3c44b0_uart_1_r), FUNC(s3c44b0_uart_1_w)); space.install_legacy_readwrite_handler( *device, 0x01d14000, 0x01d14013, 0, 0, FUNC(s3c44b0_sio_r), FUNC(s3c44b0_sio_w)); space.install_legacy_readwrite_handler( *device, 0x01d18000, 0x01d18013, 0, 0, FUNC(s3c44b0_iis_r), FUNC(s3c44b0_iis_w)); space.install_legacy_readwrite_handler( *device, 0x01d20000, 0x01d20057, 0, 0, FUNC(s3c44b0_gpio_r), FUNC(s3c44b0_gpio_w)); space.install_legacy_readwrite_handler( *device, 0x01d30000, 0x01d3000b, 0, 0, FUNC(s3c44b0_wdt_r), FUNC(s3c44b0_wdt_w)); space.install_legacy_readwrite_handler( *device, 0x01d40000, 0x01d4000b, 0, 0, FUNC(s3c44b0_adc_r), FUNC(s3c44b0_adc_w)); space.install_legacy_readwrite_handler( *device, 0x01d50000, 0x01d5004f, 0, 0, FUNC(s3c44b0_pwm_r), FUNC(s3c44b0_pwm_w)); space.install_legacy_readwrite_handler( *device, 0x01d60000, 0x01d6000f, 0, 0, FUNC(s3c44b0_iic_r), FUNC(s3c44b0_iic_w)); space.install_legacy_readwrite_handler( *device, 0x01d80000, 0x01d8000f, 0, 0, FUNC(s3c44b0_clkpow_r), FUNC(s3c44b0_clkpow_w)); space.install_legacy_readwrite_handler( *device, 0x01e00000, 0x01e0003f, 0, 0, FUNC(s3c44b0_irq_r), FUNC(s3c44b0_irq_w)); space.install_legacy_readwrite_handler( *device, 0x01e80000, 0x01e8001b, 0, 0, FUNC(s3c44b0_zdma_0_r), FUNC(s3c44b0_zdma_0_w)); space.install_legacy_readwrite_handler( *device, 0x01e80020, 0x01e8003b, 0, 0, FUNC(s3c44b0_zdma_1_r), FUNC(s3c44b0_zdma_1_w)); space.install_legacy_readwrite_handler( *device, 0x01f00000, 0x01f00047, 0, 0, FUNC(s3c44b0_lcd_r), FUNC(s3c44b0_lcd_w)); space.install_legacy_readwrite_handler( *device, 0x01f80000, 0x01f8001b, 0, 0, FUNC(s3c44b0_bdma_0_r), FUNC(s3c44b0_bdma_0_w)); space.install_legacy_readwrite_handler( *device, 0x01f80020, 0x01f8003b, 0, 0, FUNC(s3c44b0_bdma_1_r), FUNC(s3c44b0_bdma_1_w)); } const device_type S3C44B0 = &device_creator; s3c44b0_device::s3c44b0_device(const machine_config &mconfig, const char *tag, device_t *owner, UINT32 clock) : device_t(mconfig, S3C44B0, "Samsung S3C44B0", tag, owner, clock) { m_token = global_alloc_clear(s3c44b0_t); } //------------------------------------------------- // device_config_complete - perform any // operations now that the configuration is // complete //------------------------------------------------- void s3c44b0_device::device_config_complete() { } //------------------------------------------------- // device_start - device-specific startup //------------------------------------------------- void s3c44b0_device::device_start() { DEVICE_START_NAME( s3c44b0 )(this); } //------------------------------------------------- // device_reset - device-specific reset //------------------------------------------------- void s3c44b0_device::device_reset() { DEVICE_RESET_NAME( s3c44b0 )(this); }