// license:MAME|LGPL-2.1+ // copyright-holders:Michael Zapf /**************************************************************************** The MESS TI-99/8 emulation driver The TI-99/8 was the envisaged successor to the TI-99/4A but never passed its prototype state. Only a few dozens of consoles were built. The ROMs were not even finalized, so the few available consoles have different operating system versions and capabilities. Characteristics --------------- Name: "Texas Instruments Computer TI-99/8" (no "Home") Inofficial nickname: "Armadillo" CPU: Single-CPU system using a TMS9995, but as a variant named MP9537. This variant does not offer on-chip RAM or decrementer. Video: TMS9118 Video Display Processor with 16 KiB RAM. The 9118 has the same capabilities as the 9918/28 in the TI-99/4A, except for the missing GROM clock (which must be provided separately) and the different DRAM type (2 chips TMS 4416 16K*4). Delivers a 60 Hz interrupt to the CPU via the PSI. Keyboard: 50-key keyboard, slightly different to the TI-99/4A, but also with modifiers Control, Function, Shift, Caps Lock. Connects to the TMS 9901 PSI like in the TI-99/4A, but the pin assignment and key matrix are different: - P0-P3: column select - INT6*-INT11*: row inputs (INT6* is only used for joystick fire) Cassette: Identical to TI-99/4A, except that the CS2 unit is not implemented Sound: SN94624 as used in the TI-99/4A Speech: TMS5200C, a rare variant of the TMS52xx family. Compatible to the speech data for the separate speech synthesizer for the TI-99/4A. Speech ROMs CD2325A, CD2326A (total 128K*1) ROM: TMS4764 (8K*8), called "ROM0" in the specifications [1] TMS47256 (32K*8), called "ROM1" [1] TMS47128 (16K*8), "P-Code ROM" (only available in late prototypes) See below for contents GROMs: TI-specific ROM circuits with internal address counter and 6 KiB capacity (see grom.c) 3 GROMs (system GROMs, access via port at logical address F830) 8 GROMs (Pascal / Text-to-speech GROMs, port at logical address F840) 8 GROMs (Pascal GROMs, port at logical address F850) 3 GROMs (Pascal GROMs, access via port at logical address F860) (total of 132 KiB GROM) RAM: 1 TMS4016 (SRAM 2K*8) 8 TMS4164 (DRAM 64K*1) PSI: (programmable system interface) TMS9901 with connections to keyboard, joystick port, cassette port, and external interrupt lines (video, peripheral devices) External connectors: - Joystick port (compatible to TI-99/4A joystick slot) - Cassette port - Cartridge port (compatible to TI-99/4A cartridge slot, but vertically orientated, so cartridges are plugged in from the top) - I/O port (not compatible to TI-99/4A I/O port, needs a special P-Box card called "Armadillo interface") - Hexbus port (new peripheral system, also seen with later TI designs) - Video port (composite) Custom chips: Five custom chips contain mapping and selection logic - "Vaquerro": Logical address space decoder - "Mofetta" : Physical address space decoder - "Amigo" : Mapper - "Pollo" : DRAM controller - "Oso" : Hexbus interface Modes: - Compatibility mode (TI-99/4A mode): Memory-mapped devices are placed at the same location as found in the TI-99/4A, thereby providing a good downward compatibility. The console starts up in compatibility mode. - Native mode (Armadillo mode): Devices are located at positions above 0xF000 that allow for a contiguous usage of memory. ROM contents ------------ The ROM0 chip is accessible at addresses 0000-1FFF in the logical address space of the compatibility mode. It contains the GPL interpreter. In native mode the ROM0 chip is invisible. ROM0 offset Logical address Name ----------------------------------- 0000 0000-1FFF ROM0 The ROM1 chip contains 32 KiB of various system software. It is located in the physical address space, so it must be mapped into the logical address space by defining an appropriate map. ROM1 offset Physical address Name ---------------------------------------------------------- 0000 FFA000-FFDFFF ROM1 4000 FF4000-FF5FFF @CRU>2700 Text-to-speech ROM/DSR 6000 FF4000-FF5FFF @CRU>1700 Hexbus DSR The DSR portions have to be selected via the CRU bits >1700 or >2700. Mapper ------ The mapper uses 4K pages (unlike the Geneve mapper with 8K pages) which are defined by a 32 bit word. The address bits A0-A3 serve as the page index, whereas bits A4-A15 are the offset in the page. From the 32 bits, 24 bits define the physical address, so this allows for a maximum of 16 MiB of mapped-addressable memory. See more about the mapper in the file mapper8.c. Availability of ROMs and documentation -------------------------------------- By written consent, TI granted free use of all software and documentation concerning the TI-99/8, including all specifications, ROMs, and source code of ROMs. Acknowledgements ---------------- Special thanks go to Ciro Barile of the TI99 Italian User Club (www.ti99iuc.it): By his courtesy we have a consistent dump of ROMs for one of the most evolved versions of the TI-99/8 with - complete GROM set (with Pascal) - complete ROM set (with Hexbus DSR and TTS) - complete speech ROM set Also, by applying test programs on his real console, many unclear specifications were resolved. References ---------- [1] Texas Instruments: Armadillo Product Specifications, July 1983 [2] Source code (Assembler and GPL) of the TI-99/8 ROMs and GROMs [3] Schematics of the TI-99/8 Implementation -------------- Initial version by Raphael Nabet, 2003. February 2012: Rewritten as class [Michael Zapf] November 2013: Included new dumps [Michael Zapf] =========================================================================== Known Issues (MZ, 2010-11-07) KEEP IN MIND THAT TEXAS INSTRUMENTS NEVER RELEASED THE TI-99/8 AND THAT THERE ARE ONLY A FEW PROTOTYPES OF THE TI-99/8 AVAILABLE. ALL SOFTWARE MUST BE ASSUMED TO HAVE REMAINED IN A PRELIMINARY STATE. - Extended Basic II does not start when a floppy controller is present. This is a problem of the prototypical XB II which we cannot solve. It seems as if only hexbus devices are properly supported, but we currently do not have an emulation for those. Thus you can currently only use cassette to load and save programs. You MUST not plug in any floppy controller when you intend to start XB II. Other cartridges (like Editor/Assembler) seem to be unaffected by this problem and can make use of the floppy controllers. Technical detail: The designers of XB II seem to have decided to put PABs (Peripheral access block; contains pointers to buffers, the file name, and the access modes) into CPU RAM instead of the traditional storage in VDP RAM. The existing peripheral cards are hard-coded to interpret the given pointer to the PAB as pointing to a VDP RAM address. That is, as soon as the card is found, control is passed to the DSR (device service routine), the file name will not be found, and control returns with an error. It seems as if XB II does not properly handle this situation and may lock up (sometimes it starts up, but file access is still not possible). TODO: Emulate a Hexbus floppy. - Multiple cartridges are not shown in the startup screen; only one cartridge is presented. You have to manually select the cartridges with the dip switch. - SAVE and OLD MINIMEM do not work properly in XB II. It seems as if the mapper shadows the NVRAM of the cartridge. You will lose the contents when you turn off the machine. *****************************************************************************/ #include "emu.h" #include "cpu/tms9900/tms9995.h" #include "sound/sn76496.h" #include "sound/wave.h" #include "machine/tms9901.h" #include "imagedev/cassette.h" #include "machine/ti99/videowrp.h" #include "machine/ti99/speech8.h" #include "bus/ti99_peb/peribox.h" #include "machine/ti99/mapper8.h" #include "machine/ti99/grom.h" #include "machine/ti99/gromport.h" #include "machine/ti99/joyport.h" // Debugging #define TRACE_READY 0 #define TRACE_INTERRUPTS 0 #define TRACE_CRU 0 /* READY bits. */ enum { READY_GROM = 1, READY_MAPPER = 2, READY_PBOX = 4, READY_SOUND = 8, READY_CART = 16, READY_SPEECH = 32 }; class ti99_8_state : public driver_device { public: ti99_8_state(const machine_config &mconfig, device_type type, const char *tag) : driver_device(mconfig, type, tag), m_cpu(*this, "maincpu"), m_tms9901(*this, TMS9901_TAG), m_gromport(*this, GROMPORT_TAG), m_peribox(*this, PERIBOX_TAG), m_mainboard(*this, MAINBOARD8_TAG), m_joyport(*this, JOYPORT_TAG), m_video(*this, VIDEO_SYSTEM_TAG), m_cassette(*this, "cassette") { } // Machine management DECLARE_MACHINE_START(ti99_8); DECLARE_MACHINE_RESET(ti99_8); // Processor connections with the main board DECLARE_READ8_MEMBER( cruread ); DECLARE_WRITE8_MEMBER( cruwrite ); DECLARE_WRITE8_MEMBER( external_operation ); DECLARE_WRITE_LINE_MEMBER( clock_out ); // Connections from outside towards the CPU (callbacks) DECLARE_WRITE_LINE_MEMBER( console_ready_mapper ); DECLARE_WRITE_LINE_MEMBER( console_ready_sound ); DECLARE_WRITE_LINE_MEMBER( console_ready_pbox ); DECLARE_WRITE_LINE_MEMBER( console_ready_cart ); DECLARE_WRITE_LINE_MEMBER( console_ready_grom ); DECLARE_WRITE_LINE_MEMBER( console_ready_speech ); DECLARE_WRITE_LINE_MEMBER( console_reset ); DECLARE_WRITE_LINE_MEMBER( notconnected ); // Connections with the system interface chip 9901 DECLARE_WRITE_LINE_MEMBER( extint ); DECLARE_WRITE_LINE_MEMBER( video_interrupt ); // Connections with the system interface TMS9901 DECLARE_READ8_MEMBER(read_by_9901); DECLARE_WRITE_LINE_MEMBER(keyC0); DECLARE_WRITE_LINE_MEMBER(keyC1); DECLARE_WRITE_LINE_MEMBER(keyC2); DECLARE_WRITE_LINE_MEMBER(keyC3); DECLARE_WRITE_LINE_MEMBER(CRUS); DECLARE_WRITE_LINE_MEMBER(PTGEN); DECLARE_WRITE_LINE_MEMBER(audio_gate); DECLARE_WRITE_LINE_MEMBER(cassette_output); DECLARE_WRITE_LINE_MEMBER(cassette_motor); DECLARE_WRITE8_MEMBER(tms9901_interrupt); private: // Keyboard support void set_keyboard_column(int number, int data); int m_keyboard_column; // READY handling int m_nready_combined; int m_nready_prev; void console_ready_join(int id, int state); // Latch for 9901 INT2, INT1 lines line_state m_int1; line_state m_int2; // Connected devices required_device m_cpu; required_device m_tms9901; required_device m_gromport; required_device m_peribox; required_device m_mainboard; required_device m_joyport; required_device m_video; required_device m_cassette; }; /* Memory map. We have a configurable mapper, so we need to delegate the job to the mapper completely. */ static ADDRESS_MAP_START(memmap, AS_PROGRAM, 8, ti99_8_state) AM_RANGE(0x0000, 0xffff) AM_DEVREADWRITE(MAINBOARD8_TAG, mainboard8_device, readm, writem ) ADDRESS_MAP_END /* CRU map - see description above The TMS9901 is fully decoded according to the specification, so we only have 32 bits for it; the rest goes to the CRU bus (decoded by the "Vaquerro" chip, signal NNOICS*) */ static ADDRESS_MAP_START(crumap, AS_IO, 8, ti99_8_state) AM_RANGE(0x0000, 0x0003) AM_DEVREAD(TMS9901_TAG, tms9901_device, read) AM_RANGE(0x0000, 0x02ff) AM_READ(cruread) AM_RANGE(0x0000, 0x001f) AM_DEVWRITE(TMS9901_TAG, tms9901_device, write) AM_RANGE(0x0000, 0x17ff) AM_WRITE(cruwrite) ADDRESS_MAP_END /* ti99/8 : 54-key keyboard */ static INPUT_PORTS_START(ti99_8) /* 16 ports for keyboard and joystick */ PORT_START("COL0") /* col 0 */ PORT_BIT(0x10, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_NAME("ALPHA LOCK") PORT_CODE(KEYCODE_CAPSLOCK) PORT_BIT(0x08, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_NAME("FCTN") PORT_CODE(KEYCODE_LALT) PORT_CODE(KEYCODE_RALT) PORT_BIT(0x04, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_NAME("CTRL") PORT_CODE(KEYCODE_LCONTROL) PORT_CODE(KEYCODE_RCONTROL) PORT_BIT(0x02, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_NAME("LSHIFT") PORT_CODE(KEYCODE_LSHIFT) PORT_CHAR(UCHAR_SHIFT_1) PORT_BIT(0x01, IP_ACTIVE_LOW, IPT_UNUSED) PORT_START("COL1") /* col 1 */ PORT_BIT(0x10, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_NAME("1 ! DEL") PORT_CODE(KEYCODE_1) PORT_CHAR('1') PORT_CHAR('!') PORT_BIT(0x08, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_NAME("q Q") PORT_CODE(KEYCODE_Q) PORT_CHAR('q') PORT_CHAR('Q') PORT_BIT(0x04, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_NAME("a A") PORT_CODE(KEYCODE_A) PORT_CHAR('a') PORT_CHAR('A') PORT_BIT(0x02, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_NAME("z Z") PORT_CODE(KEYCODE_Z) PORT_CHAR('z') PORT_CHAR('Z') PORT_BIT(0x01, IP_ACTIVE_LOW, IPT_UNUSED) PORT_START("COL2") /* col 2 */ PORT_BIT(0x10, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_NAME("2 @ INS") PORT_CODE(KEYCODE_2) PORT_CHAR('2') PORT_CHAR('@') PORT_BIT(0x08, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_NAME("w W") PORT_CODE(KEYCODE_W) PORT_CHAR('w') PORT_CHAR('W') PORT_BIT(0x04, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_NAME("s S (LEFT)") PORT_CODE(KEYCODE_S) PORT_CHAR('s') PORT_CHAR('S') PORT_BIT(0x02, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_NAME("x X (DOWN)") PORT_CODE(KEYCODE_X) PORT_CHAR('x') PORT_CHAR('X') PORT_BIT(0x01, IP_ACTIVE_LOW, IPT_UNUSED) PORT_START("COL3") /* col 3 */ PORT_BIT(0x10, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_NAME("3 #") PORT_CODE(KEYCODE_3) PORT_CHAR('3') PORT_CHAR('#') PORT_BIT(0x08, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_NAME("e E (UP)") PORT_CODE(KEYCODE_E) PORT_CHAR('e') PORT_CHAR('E') PORT_BIT(0x04, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_NAME("d D (RIGHT)") PORT_CODE(KEYCODE_D) PORT_CHAR('d') PORT_CHAR('D') PORT_BIT(0x02, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_NAME("c C") PORT_CODE(KEYCODE_C) PORT_CHAR('c') PORT_CHAR('C') PORT_BIT(0x01, IP_ACTIVE_LOW, IPT_UNUSED) PORT_START("COL4") /* col 4 */ PORT_BIT(0x10, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_NAME("4 $ CLEAR") PORT_CODE(KEYCODE_4) PORT_CHAR('4') PORT_CHAR('$') PORT_BIT(0x08, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_NAME("r R") PORT_CODE(KEYCODE_R) PORT_CHAR('r') PORT_CHAR('R') PORT_BIT(0x04, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_NAME("f F") PORT_CODE(KEYCODE_F) PORT_CHAR('f') PORT_CHAR('F') PORT_BIT(0x02, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_NAME("v V") PORT_CODE(KEYCODE_V) PORT_CHAR('v') PORT_CHAR('V') PORT_BIT(0x01, IP_ACTIVE_LOW, IPT_UNUSED) PORT_START("COL5") /* col 5 */ PORT_BIT(0x10, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_NAME("5 % BEGIN") PORT_CODE(KEYCODE_5) PORT_CHAR('5') PORT_CHAR('%') PORT_BIT(0x08, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_NAME("t T") PORT_CODE(KEYCODE_T) PORT_CHAR('t') PORT_CHAR('T') PORT_BIT(0x04, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_NAME("g G") PORT_CODE(KEYCODE_G) PORT_CHAR('g') PORT_CHAR('G') PORT_BIT(0x02, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_NAME("b B") PORT_CODE(KEYCODE_B) PORT_CHAR('b') PORT_CHAR('B') PORT_BIT(0x01, IP_ACTIVE_LOW, IPT_UNUSED) PORT_START("COL6") /* col 6 */ PORT_BIT(0x10, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_NAME("6 ^ PROC'D") PORT_CODE(KEYCODE_6) PORT_CHAR('6') PORT_CHAR('^') PORT_BIT(0x08, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_Y) PORT_CHAR('y') PORT_CHAR('Y') PORT_BIT(0x04, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_H) PORT_CHAR('h') PORT_CHAR('H') PORT_BIT(0x02, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_N) PORT_CHAR('n') PORT_CHAR('N') PORT_BIT(0x01, IP_ACTIVE_LOW, IPT_UNUSED) PORT_START("COL7") /* col 7 */ PORT_BIT(0x10, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_NAME("7 & AID") PORT_CODE(KEYCODE_7) PORT_CHAR('7') PORT_CHAR('&') PORT_BIT(0x08, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_U) PORT_CHAR('u') PORT_CHAR('U') PORT_BIT(0x04, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_J) PORT_CHAR('j') PORT_CHAR('J') PORT_BIT(0x02, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_M) PORT_CHAR('m') PORT_CHAR('M') PORT_BIT(0x01, IP_ACTIVE_LOW, IPT_UNUSED) PORT_START("COL8") /* col 8 */ PORT_BIT(0x10, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_NAME("8 * REDO") PORT_CODE(KEYCODE_8) PORT_CHAR('8') PORT_CHAR('*') PORT_BIT(0x08, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_I) PORT_CHAR('i') PORT_CHAR('I') PORT_BIT(0x04, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_K) PORT_CHAR('k') PORT_CHAR('K') PORT_BIT(0x02, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_COMMA) PORT_CHAR(',') PORT_CHAR('<') PORT_BIT(0x01, IP_ACTIVE_LOW, IPT_UNUSED) PORT_START("COL9") /* col 9 */ PORT_BIT(0x10, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_NAME("9 ( BACK") PORT_CODE(KEYCODE_9) PORT_CHAR('9') PORT_CHAR('(') PORT_BIT(0x08, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_O) PORT_CHAR('o') PORT_CHAR('O') PORT_BIT(0x04, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_L) PORT_CHAR('l') PORT_CHAR('L') PORT_BIT(0x02, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_STOP) PORT_CHAR('.') PORT_CHAR('>') PORT_BIT(0x01, IP_ACTIVE_LOW, IPT_UNUSED) PORT_START("COL10") /* col 10 */ PORT_BIT(0x10, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_0) PORT_CHAR('0') PORT_CHAR(')') PORT_BIT(0x08, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_P) PORT_CHAR('p') PORT_CHAR('P') PORT_BIT(0x04, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_COLON) PORT_CHAR(';') PORT_CHAR(':') PORT_BIT(0x02, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_SLASH) PORT_CHAR('/') PORT_CHAR('?') PORT_BIT(0x01, IP_ACTIVE_LOW, IPT_UNUSED) PORT_START("COL11") /* col 11 */ PORT_BIT(0x10, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_NAME("= + QUIT") PORT_CODE(KEYCODE_EQUALS) PORT_CHAR('=') PORT_CHAR('+') PORT_BIT(0x08, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_OPENBRACE) PORT_CHAR('[') PORT_CHAR('{') PORT_BIT(0x04, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_QUOTE) PORT_CHAR('\'') PORT_CHAR('"') PORT_BIT(0x02, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_NAME("RSHIFT") PORT_CODE(KEYCODE_RSHIFT) PORT_BIT(0x01, IP_ACTIVE_LOW, IPT_UNUSED) PORT_START("COL12") /* col 12 */ PORT_BIT(0x10, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_MINUS) PORT_CHAR('-') PORT_CHAR('_') PORT_BIT(0x08, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_CLOSEBRACE) PORT_CHAR(']') PORT_CHAR('}') PORT_BIT(0x04, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_NAME("ENTER") PORT_CODE(KEYCODE_ENTER) PORT_CHAR(13) PORT_BIT(0x02, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_NAME("(SPACE)") PORT_CODE(KEYCODE_SPACE) PORT_CHAR(' ') PORT_BIT(0x01, IP_ACTIVE_LOW, IPT_UNUSED) PORT_START("COL13") /* col 13 */ PORT_BIT(0x10, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_BACKSLASH) PORT_CHAR('\\') PORT_CHAR('|') PORT_BIT(0x08, IP_ACTIVE_LOW, IPT_KEYBOARD) PORT_CODE(KEYCODE_BACKSLASH2) PORT_CHAR('`') PORT_CHAR('~') PORT_BIT(0x07, IP_ACTIVE_LOW, IPT_UNUSED) INPUT_PORTS_END /***************************************************************************** Components ******************************************************************************/ #define region_sysgrom "sysgrom" static GROM_CONFIG(grom0_config) { false, 0, region_sysgrom, 0x0000, 0x1800, GROMFREQ }; static GROM_CONFIG(grom1_config) { false, 1, region_sysgrom, 0x2000, 0x1800, GROMFREQ }; static GROM_CONFIG(grom2_config) { false, 2, region_sysgrom, 0x4000, 0x1800, GROMFREQ }; /**************************************************** PASCAL groms, 3 libraries @ 8 GROMs Do some macro tricks to keep writing effort low *****************************************************/ #define region_gromlib1 "gromlib1" #define region_gromlib2 "gromlib2" #define region_gromlib3 "gromlib3" #define MCFG_GROM_LIBRARY_ADD8(_tag, _config) \ MCFG_DEVICE_ADD(#_tag "0", GROM, 0) \ MCFG_DEVICE_CONFIG(_config##0) \ MCFG_DEVICE_ADD(#_tag "1", GROM, 0) \ MCFG_DEVICE_CONFIG(_config##1) \ MCFG_DEVICE_ADD(#_tag "2", GROM, 0) \ MCFG_DEVICE_CONFIG(_config##2) \ MCFG_DEVICE_ADD(#_tag "3", GROM, 0) \ MCFG_DEVICE_CONFIG(_config##3) \ MCFG_DEVICE_ADD(#_tag "4", GROM, 0) \ MCFG_DEVICE_CONFIG(_config##4) \ MCFG_DEVICE_ADD(#_tag "5", GROM, 0) \ MCFG_DEVICE_CONFIG(_config##5) \ MCFG_DEVICE_ADD(#_tag "6", GROM, 0) \ MCFG_DEVICE_CONFIG(_config##6) \ MCFG_DEVICE_ADD(#_tag "7", GROM, 0) \ MCFG_DEVICE_CONFIG(_config##7) #define MCFG_GROM_LIBRARY_ADD3(_tag, _config) \ MCFG_DEVICE_ADD(#_tag "0", GROM, 0) \ MCFG_DEVICE_CONFIG(_config##0) \ MCFG_DEVICE_ADD(#_tag "1", GROM, 0) \ MCFG_DEVICE_CONFIG(_config##1) \ MCFG_DEVICE_ADD(#_tag "2", GROM, 0) \ MCFG_DEVICE_CONFIG(_config##2) #define GROM_LIBRARY_CONFIG8(_conf, _region) \ static GROM_CONFIG(_conf##0) \ { false, 0, _region, 0x0000, 0x1800, GROMFREQ }; \ static GROM_CONFIG(_conf##1) \ { false, 1, _region, 0x2000, 0x1800, GROMFREQ }; \ static GROM_CONFIG(_conf##2) \ { false, 2, _region, 0x4000, 0x1800, GROMFREQ }; \ static GROM_CONFIG(_conf##3) \ { false, 3, _region, 0x6000, 0x1800, GROMFREQ }; \ static GROM_CONFIG(_conf##4) \ { false, 4, _region, 0x8000, 0x1800, GROMFREQ }; \ static GROM_CONFIG(_conf##5) \ { false, 5, _region, 0xa000, 0x1800, GROMFREQ }; \ static GROM_CONFIG(_conf##6) \ { false, 6, _region, 0xc000, 0x1800, GROMFREQ }; \ static GROM_CONFIG(_conf##7) \ { false, 7, _region, 0xe000, 0x1800, GROMFREQ }; #define GROM_LIBRARY_CONFIG3(_conf, _region) \ static GROM_CONFIG(_conf##0) \ { false, 0, _region, 0x0000, 0x1800, GROMFREQ }; \ static GROM_CONFIG(_conf##1) \ { false, 1, _region, 0x2000, 0x1800, GROMFREQ }; \ static GROM_CONFIG(_conf##2) \ { false, 2, _region, 0x4000, 0x1800, GROMFREQ }; GROM_LIBRARY_CONFIG8(pascal1, region_gromlib1) GROM_LIBRARY_CONFIG8(pascal2, region_gromlib2) GROM_LIBRARY_CONFIG3(pascal3, region_gromlib3) READ8_MEMBER( ti99_8_state::cruread ) { // if (VERBOSE>6) logerror("read access to CRU address %04x\n", offset << 4); UINT8 value = 0; // Similar to the bus8z_devices, just let the mapper, the gromport, and the p-box // decide whether they want to change the value at the CRU address // Also, we translate the bit addresses to base addresses m_mainboard->crureadz(space, offset<<4, &value); m_gromport->crureadz(space, offset<<4, &value); m_peribox->crureadz(space, offset<<4, &value); if (TRACE_CRU) logerror("ti99_8: CRU %04x -> %02x\n", offset<<4, value); return value; } WRITE8_MEMBER( ti99_8_state::cruwrite ) { if (TRACE_CRU) logerror("ti99_8: CRU %04x <- %x\n", offset<<1, data); m_mainboard->cruwrite(space, offset<<1, data); m_gromport->cruwrite(space, offset<<1, data); m_peribox->cruwrite(space, offset<<1, data); } /*************************************************************************** TI99/8-specific tms9901 I/O handlers These methods are callbacks from the TMS9901 system interface. That is, they deliver the values queried via the TMS9901, and they represent console functions which are under control of the TMS9901 (like the keyboard column selection.) ***************************************************************************/ static const char *const column[] = { "COL0", "COL1", "COL2", "COL3", "COL4", "COL5", "COL6", "COL7", "COL8", "COL9", "COL10", "COL11", "COL12", "COL13" }; READ8_MEMBER( ti99_8_state::read_by_9901 ) { int answer=0; UINT8 joyst; switch (offset & 0x03) { case TMS9901_CB_INT7: // Read pins INT3*-INT7* of TI99's 9901. // // bit 1: INT1 status // bit 2: INT2 status // bits 3-4: unused? // bit 5: ??? // bit 6-7: keyboard status bits 0 through 1 // |K|K|-|-|-|I2|I1|C| if (m_keyboard_column >= 14) { // TI-99/8's wiring differs from the TI-99/4A joyst = m_joyport->read_port(); answer = (joyst & 0x01) | ((joyst & 0x10)>>3); } else { answer = ioport(column[m_keyboard_column])->read(); } answer = (answer << 6); if (m_int1 == CLEAR_LINE) answer |= 0x02; if (m_int2 == CLEAR_LINE) answer |= 0x04; break; case TMS9901_INT8_INT15: // Read pins INT8*-INT15* of TI99's 9901. // // bit 0-2: keyboard status bits 2 to 4 // bit 3: tape input mirror // bit 4: unused // bit 5-7: weird, not emulated // |0|0|0|0|0|K|K|K| if (m_keyboard_column >= 14) { joyst = m_joyport->read_port(); answer = joyst << 1; } else { answer = ioport(column[m_keyboard_column])->read(); } answer = (answer >> 2) & 0x07; break; case TMS9901_P0_P7: // Read pins P0-P7 of TI99's 9901. None here. break; case TMS9901_P8_P15: // Read pins P8-P15 of TI99's 9901. (TI-99/8) // // bit 26: high // bit 27: tape input answer = 4; if (m_cassette->input() > 0) answer |= 8; break; } return answer; } /* WRITE key column select (P2-P4), TI-99/8 */ void ti99_8_state::set_keyboard_column(int number, int data) { if (data != 0) m_keyboard_column |= 1 << number; else m_keyboard_column &= ~(1 << number); if (m_keyboard_column >= 14) { m_joyport->write_port(m_keyboard_column - 13); } } WRITE_LINE_MEMBER( ti99_8_state::keyC0 ) { set_keyboard_column(0, state); } WRITE_LINE_MEMBER( ti99_8_state::keyC1 ) { set_keyboard_column(1, state); } WRITE_LINE_MEMBER( ti99_8_state::keyC2 ) { set_keyboard_column(2, state); } WRITE_LINE_MEMBER( ti99_8_state::keyC3 ) { set_keyboard_column(3, state); } /* Set 99/4A compatibility mode (CRUS=1) */ WRITE_LINE_MEMBER( ti99_8_state::CRUS ) { m_mainboard->CRUS_set(state==ASSERT_LINE); // In Armadillo mode, GROMs are located at f830; accordingly, the // gromport must be reconfigured if (state==ASSERT_LINE) { m_gromport->set_grom_base(0x9800, 0xfbf1); } else { m_gromport->set_grom_base(0xf830, 0xfff1); } } /* Set mapper /PTGEN. This is negative logic; we use PTGE as the positive logic signal. */ WRITE_LINE_MEMBER( ti99_8_state::PTGEN ) { m_mainboard->PTGE_set(state==CLEAR_LINE); } /* Control cassette tape unit motor (P6) */ WRITE_LINE_MEMBER( ti99_8_state::cassette_motor ) { m_cassette->change_state(state==ASSERT_LINE? CASSETTE_MOTOR_ENABLED : CASSETTE_MOTOR_DISABLED,CASSETTE_MASK_MOTOR); } /* Audio gate (P8) Set to 1 before using tape: this enables the mixing of tape input sound with computer sound. We do not really need to emulate this as the tape recorder generates sound on its own. */ WRITE_LINE_MEMBER( ti99_8_state::audio_gate ) { } /* Tape output (P9) I think polarity is correct, but don't take my word for it. */ WRITE_LINE_MEMBER( ti99_8_state::cassette_output ) { m_cassette->output(state==ASSERT_LINE? +1 : -1); } WRITE8_MEMBER( ti99_8_state::tms9901_interrupt ) { m_cpu->set_input_line(INT_9995_INT1, data); } /*****************************************************************************/ /* set the state of TMS9901's INT2 (called by the tms9928 core) */ WRITE_LINE_MEMBER( ti99_8_state::video_interrupt ) { if (TRACE_INTERRUPTS) logerror("ti99_8: VDP int 2 on tms9901, level=%02x\n", state); m_int2 = (line_state)state; m_tms9901->set_single_int(2, state); } /*********************************************************** Links to external devices ***********************************************************/ /* We combine the incoming READY signals and propagate them to the CPU. An alternative would be to let the CPU get the READY state, but this would be a much higher overhead, as this happens in each clock tick. */ void ti99_8_state::console_ready_join(int id, int state) { if (state==CLEAR_LINE) m_nready_combined |= id; else m_nready_combined &= ~id; if (TRACE_READY) { if (m_nready_prev != m_nready_combined) logerror("ti99_8: READY bits = %04x\n", ~m_nready_combined); } m_nready_prev = m_nready_combined; m_cpu->set_ready(m_nready_combined==0); } /* Connections to the READY line. This might look a bit ugly; we need an implementation of a "Wired AND" device. */ WRITE_LINE_MEMBER( ti99_8_state::console_ready_grom ) { console_ready_join(READY_GROM, state); } WRITE_LINE_MEMBER( ti99_8_state::console_ready_mapper ) { console_ready_join(READY_MAPPER, state); } WRITE_LINE_MEMBER( ti99_8_state::console_ready_pbox ) { console_ready_join(READY_PBOX, state); } WRITE_LINE_MEMBER( ti99_8_state::console_ready_sound ) { console_ready_join(READY_SOUND, state); } WRITE_LINE_MEMBER( ti99_8_state::console_ready_cart ) { console_ready_join(READY_CART, state); } WRITE_LINE_MEMBER( ti99_8_state::console_ready_speech ) { console_ready_join(READY_SPEECH, state); } /* The RESET line leading to a reset of the CPU. */ WRITE_LINE_MEMBER( ti99_8_state::console_reset ) { if (machine().phase() != MACHINE_PHASE_INIT) { m_cpu->set_input_line(INT_9995_RESET, state); m_video->reset_vdp(state); } } WRITE_LINE_MEMBER( ti99_8_state::extint ) { if (TRACE_READY) logerror("ti99_8: EXTINT level = %02x\n", state); m_int1 = (line_state)state; m_tms9901->set_single_int(1, state); } WRITE_LINE_MEMBER( ti99_8_state::notconnected ) { if (TRACE_READY) logerror("ti99_8: Setting a not connected line ... ignored\n"); } static TMS9928A_INTERFACE(ti99_8_tms9118a_interface) { 0x4000, DEVCB_DRIVER_LINE_MEMBER(ti99_8_state, video_interrupt) }; WRITE8_MEMBER( ti99_8_state::external_operation ) { static const char* extop[8] = { "inv1", "inv2", "IDLE", "RSET", "inv3", "CKON", "CKOF", "LREX" }; if (offset == IDLE_OP) return; else { logerror("ti99_4x: External operation %s not implemented on TI-99/8 board\n", extop[offset]); } } /* Clock line from the CPU. Used to control wait state generation. */ WRITE_LINE_MEMBER( ti99_8_state::clock_out ) { m_mainboard->clock_in(state); } /*****************************************************************************/ /* Format: Name, mode, stop, mask, select, write, read8z function, write8 function Multiple devices may have the same select pattern; as in the real hardware, care must be taken that only one device actually responds. In the case of GROMs, each chip has an internal address counter and an ID, and the chip only responds when the ID and the most significant 3 bits match. NATIVE <-> CRUS=0 TI99EM <-> CRUS=1 PATGEN <-> PTGEN=1 CONT: Mapper continues iterating through devices STOP: Mapper stops iterating when found Access to the mapper registers is done directly in the mapper, not via this list. TODO: This should (must) be improved in terms of performance. Every single memory access goes through the mapper. Either we use an ordered search list, or we order the entries according to their frequency. (I did this right now, putting the Pascal GROMs at the end.) We should think about a set entry where devices with the same address are collected as one single entry (think about the Pascal lib with 21 GROMs, twice eight and once three of them on the same address). */ #define PASCAL_GROM_LIB8(_tag, _addr) \ { _tag "0", PATGEN, CONT, _addr, 0xfff1, 0x0000 }, \ { _tag "1", PATGEN, CONT, _addr, 0xfff1, 0x0000 }, \ { _tag "2", PATGEN, CONT, _addr, 0xfff1, 0x0000 }, \ { _tag "3", PATGEN, CONT, _addr, 0xfff1, 0x0000 }, \ { _tag "4", PATGEN, CONT, _addr, 0xfff1, 0x0000 }, \ { _tag "5", PATGEN, CONT, _addr, 0xfff1, 0x0000 }, \ { _tag "6", PATGEN, CONT, _addr, 0xfff1, 0x0000 }, \ { _tag "7", PATGEN, CONT, _addr, 0xfff1, 0x0000 } #define PASCAL_GROM_LIB3(_tag, _addr) \ { _tag "0", PATGEN, CONT, _addr, 0xfff1, 0x0000 }, \ { _tag "1", PATGEN, CONT, _addr, 0xfff1, 0x0000 }, \ { _tag "2", PATGEN, CONT, _addr, 0xfff1, 0x0000 } static const mapper8_list_entry mapper_devices[] = { // TI-99/4A mode (CRUS=1) // Full/partial decoding has been verified on a real machine // GROMs: According to the spec, the 99/8 supports up to 4 GROM libraries // (99/4A supports 256 libraries) // at 9800, 9804, 9808, 980c. Address counter access is at 9802,6,a,e. Write access +0400. { ROM0NAME, TI99EM, STOP, 0x0000, 0xe000, 0x0000 }, // 0000-1fff { TISOUND_TAG, TI99EM, STOP, 0x8400, 0xfff1, 0x0000 }, // 8400-840f { VIDEO_SYSTEM_TAG, TI99EM, STOP, 0x8800, 0xfff1, 0x0400 }, // 8800,8802 / 8c00,8c02 { SPEECH_TAG, TI99EM, STOP, 0x9000, 0xfff1, 0x0400 }, // 9000-900f / 9400-940f { SRAMNAME, TI99EM, STOP, 0x8000, 0xf800, 0x0000 }, // 8000-87ff; must follow the sound generator { MAINBOARD8_TAG, TI99EM, STOP, 0x8810, 0xfff0, 0x0000 }, { GROM0_TAG, TI99EM, CONT, 0x9800, 0xfff1, 0x0400 }, // 9800,2,4,...e/9c00,2,4,...e { GROM1_TAG, TI99EM, CONT, 0x9800, 0xfff1, 0x0400 }, // dto. { GROM2_TAG, TI99EM, CONT, 0x9800, 0xfff1, 0x0400 }, // dto. (GROMs are connected in parallel, { GROMPORT_TAG, TI99EM, CONT, 0x9800, 0xfff1, 0x0400 }, // dto. use internal address counter and id) // TI-99/8 mode // Full/partial decoding has been verified on a real machine // Sound ports are at f800, f802, f804, ..., f80e // VDP ports are (f810,f812), (f814,f816), (f818,f81a), (f81c,f81e) // Note that unmapped GROM accesses (odd addresses like F831) return FF, // not 00 as in our emulation, so that is not quite consistent, but tolerable ... I guess { SRAMNAME, NATIVE, STOP, 0xf000, 0xf800, 0x0000 }, // f000-f7ff { TISOUND_TAG, NATIVE, STOP, 0xf800, 0xfff1, 0x0000 }, // f800-f80e (even addresses) { VIDEO_SYSTEM_TAG, NATIVE, STOP, 0xf810, 0xfff1, 0x0000 }, // f810,2 (unlike 99/4A, no different read/write ports) { SPEECH_TAG, NATIVE, STOP, 0xf820, 0xfff1, 0x0000 }, // f820-f82f { MAINBOARD8_TAG, NATIVE, STOP, 0xf870, 0xfff0, 0x0000 }, { GROM0_TAG, NATIVE, CONT, 0xf830, 0xfff1, 0x0000 }, // f830-f83e (4 banks), no different read/write ports { GROM1_TAG, NATIVE, CONT, 0xf830, 0xfff1, 0x0000 }, { GROM2_TAG, NATIVE, CONT, 0xf830, 0xfff1, 0x0000 }, { GROMPORT_TAG, NATIVE, CONT, 0xf830, 0xfff1, 0x0000 }, PASCAL_GROM_LIB8("pascal1_grom", 0xf840), PASCAL_GROM_LIB8("pascal2_grom", 0xf850), PASCAL_GROM_LIB3("pascal3_grom", 0xf860), // Physical (need to pack this in here as well to keep config simple) // but these lines will be put into a separate list { DRAMNAME, PHYSIC, STOP, 0x000000, 0xff0000, 0x000000 }, // 000000-00ffff 64 KiB DRAM { PCODENAME, PHYSIC, STOP, 0xf00000, 0xffc000, 0x000000 }, // f00000-f03fff P-Code ROM { MAINBOARD8_TAG, PHYSIC, CONT, 0xff4000, 0xffe000, 0x000000 }, // ff4000-ff5fff Internal DSR { GROMPORT_TAG, PHYSIC, STOP, 0xff6000, 0xffe000, 0x000000 }, // ff6000-ff7fff Cartridge ROM space { GROMPORT_TAG, PHYSIC, STOP, 0xff8000, 0xffe000, 0x000000 }, // ff8000-ff9fff Cartridge ROM space { ROM1A0NAME, PHYSIC, STOP, 0xffa000, 0xffe000, 0x000000 }, // ffa000-ffbfff ROM1 { ROM1C0NAME, PHYSIC, STOP, 0xffc000, 0xffe000, 0x000000 }, // ffc000-ffdfff ROM1 { INTSNAME, PHYSIC, STOP, 0xffe000, 0xfffff0, 0x000000 }, // ffe000-ffe00f Interrupt level sense { PERIBOX_TAG, PHYSIC, STOP, 0x000000, 0x000000, 0x000000 }, // Peripheral Expansion Box { NULL, 0, 0, 0, 0, 0 } }; static MAPPER8_CONFIG( mapper_conf ) { mapper_devices }; MACHINE_START_MEMBER(ti99_8_state,ti99_8) { m_nready_combined = 0; m_peribox->senila(CLEAR_LINE); m_peribox->senilb(CLEAR_LINE); } MACHINE_RESET_MEMBER(ti99_8_state, ti99_8) { m_cpu->set_hold(CLEAR_LINE); // Pulling down the line on RESET configures the CPU to insert one wait // state on external memory accesses m_cpu->set_ready(CLEAR_LINE); // But we assert the line here so that the system starts running m_nready_combined = 0; m_gromport->set_grom_base(0x9800, 0xfff1); // Clear INT1 and INT2 latch m_int1 = CLEAR_LINE; m_int2 = CLEAR_LINE; } static MACHINE_CONFIG_START( ti99_8, ti99_8_state ) // basic machine hardware */ // TMS9995-MP9537 CPU @ 10.7 MHz // MP9537 mask: This variant of the TMS9995 does not contain on-chip RAM MCFG_TMS99xx_ADD("maincpu", TMS9995_MP9537, XTAL_10_738635MHz, memmap, crumap) MCFG_TMS9995_EXTOP_HANDLER( WRITE8(ti99_8_state, external_operation) ) MCFG_TMS9995_CLKOUT_HANDLER( WRITELINE(ti99_8_state, clock_out) ) MCFG_MACHINE_START_OVERRIDE(ti99_8_state, ti99_8 ) MCFG_MACHINE_RESET_OVERRIDE(ti99_8_state, ti99_8 ) /* Main board */ MCFG_DEVICE_ADD(TMS9901_TAG, TMS9901, XTAL_10_738635MHz/4.0) MCFG_TMS9901_READBLOCK_HANDLER( READ8(ti99_8_state, read_by_9901) ) MCFG_TMS9901_P0_HANDLER( WRITELINE( ti99_8_state, keyC0) ) MCFG_TMS9901_P1_HANDLER( WRITELINE( ti99_8_state, keyC1) ) MCFG_TMS9901_P2_HANDLER( WRITELINE( ti99_8_state, keyC2) ) MCFG_TMS9901_P3_HANDLER( WRITELINE( ti99_8_state, keyC3) ) MCFG_TMS9901_P4_HANDLER( WRITELINE( ti99_8_state, CRUS) ) MCFG_TMS9901_P5_HANDLER( WRITELINE( ti99_8_state, PTGEN) ) MCFG_TMS9901_P6_HANDLER( WRITELINE( ti99_8_state, cassette_motor) ) MCFG_TMS9901_P8_HANDLER( WRITELINE( ti99_8_state, audio_gate) ) MCFG_TMS9901_P9_HANDLER( WRITELINE( ti99_8_state, cassette_output) ) MCFG_TMS9901_INTLEVEL_HANDLER( WRITE8( ti99_8_state, tms9901_interrupt) ) MCFG_MAINBOARD8_ADD( MAINBOARD8_TAG, mapper_conf ) MCFG_MAINBOARD8_READY_CALLBACK(WRITELINE(ti99_8_state, console_ready_mapper)) MCFG_TI99_GROMPORT_ADD( GROMPORT_TAG ) MCFG_GROMPORT_READY_HANDLER( WRITELINE(ti99_8_state, console_ready_cart) ) MCFG_GROMPORT_RESET_HANDLER( WRITELINE(ti99_8_state, console_reset) ) /* Peripheral expansion box */ MCFG_DEVICE_ADD( PERIBOX_TAG, PERIBOX_998, 0) MCFG_PERIBOX_INTA_HANDLER( WRITELINE(ti99_8_state, extint) ) MCFG_PERIBOX_INTB_HANDLER( WRITELINE(ti99_8_state, notconnected) ) MCFG_PERIBOX_READY_HANDLER( WRITELINE(ti99_8_state, console_ready_pbox) ) /* Sound hardware */ MCFG_TI_SOUND_76496_ADD( TISOUND_TAG ) MCFG_TI_SOUND_READY_HANDLER( WRITELINE(ti99_8_state, console_ready_sound) ) /* Cassette drives */ MCFG_SPEAKER_STANDARD_MONO("cass_out") MCFG_CASSETTE_ADD( "cassette", default_cassette_interface ) MCFG_SOUND_WAVE_ADD(WAVE_TAG, "cassette") MCFG_SOUND_ROUTE(ALL_OUTPUTS, "cass_out", 0.25) /* Console GROMs */ MCFG_GROM_ADD( GROM0_TAG, grom0_config ) MCFG_GROM_READY_CALLBACK(WRITELINE(ti99_8_state, console_ready_grom)) MCFG_GROM_ADD( GROM1_TAG, grom1_config ) MCFG_GROM_READY_CALLBACK(WRITELINE(ti99_8_state, console_ready_grom)) MCFG_GROM_ADD( GROM2_TAG, grom2_config ) MCFG_GROM_READY_CALLBACK(WRITELINE(ti99_8_state, console_ready_grom)) /* Pascal GROM libraries. */ MCFG_GROM_LIBRARY_ADD8(pascal1_grom, pascal1) MCFG_GROM_LIBRARY_ADD8(pascal2_grom, pascal2) MCFG_GROM_LIBRARY_ADD3(pascal3_grom, pascal3) /* Devices */ MCFG_DEVICE_ADD(SPEECH_TAG, TI99_SPEECH8, 0) MCFG_SPEECH8_READY_CALLBACK(WRITELINE(ti99_8_state, console_ready_speech)) // Joystick port MCFG_TI_JOYPORT4A_ADD( JOYPORT_TAG ) MACHINE_CONFIG_END /* TI-99/8 US version (NTSC, 60 Hz) */ static MACHINE_CONFIG_DERIVED( ti99_8_60hz, ti99_8 ) MCFG_TI998_ADD_NTSC(VIDEO_SYSTEM_TAG, TMS9118, ti99_8_tms9118a_interface) MACHINE_CONFIG_END /* TI-99/8 European version (PAL, 50 Hz) */ static MACHINE_CONFIG_DERIVED( ti99_8_50hz, ti99_8 ) MCFG_TI998_ADD_PAL(VIDEO_SYSTEM_TAG, TMS9129, ti99_8_tms9118a_interface) MACHINE_CONFIG_END /* All ROM dumps except the speech ROM have a CRC16 checksum as the final two bytes. ROM1 contains four 8K chunks of ROM contents with an own CRC at their ends. All GROMs, ROM0, and the four ROM1 parts were successfully validated. */ ROM_START(ti99_8) // Logical (CPU) memory space: ROM0 ROM_REGION(0x2000, ROM0_TAG, 0) ROM_LOAD("u4_rom0.bin", 0x0000, 0x2000, CRC(901eb8d6) SHA1(13190c5e834baa9c0a70066b566cfcef438ed88a)) // Physical memory space (mapped): ROM1 ROM_REGION(0x8000, ROM1_TAG, 0) ROM_LOAD("u25_rom1.bin", 0x0000, 0x8000, CRC(b574461a) SHA1(42c6aed44802cfabdd26b565d6e5ddfcd689f11e)) // Physical memory space (mapped): P-Code ROM // This circuit is only available in later versions of the console and seems // to be picky-backed on ROM1. // To make things worse, the decoding logic of the custom chips do not show // the required select line for this ROM on the available schematics, so // they seem to be from the earlier version. The location in the address // space was determined by ROM disassembly. ROM_REGION(0x8000, PCODEROM_TAG, 0) ROM_LOAD("u25a_pas.bin", 0x0000, 0x4000, CRC(d7ed6dd6) SHA1(32212ce6426ceccbff73d342d4a3ef699c0ae1e4)) // System GROMs. 3 chips @ f830 // The schematics do not enumerate the circuits but only talk about // "circuits on board" (COB) so we name the GROMs as gM_N.bin where M is the // ID (0-7) and N is the access port in the logical address space. ROM_REGION(0x6000, region_sysgrom, 0) ROM_LOAD("g0_f830.bin", 0x0000, 0x1800, CRC(1026db60) SHA1(7327095bf4f390476e69d9fd8424e98ea1f2325a)) ROM_LOAD("g1_f830.bin", 0x2000, 0x1800, CRC(93a43d65) SHA1(19be8a07d674bc7554c2bc9c7a5725d81e888e6e)) ROM_LOAD("g2_f830.bin", 0x4000, 0x1800, CRC(06f2b901) SHA1(f65e0fcb2c63e230b4a9563c72f91259b94ce955)) // TTS & Pascal library. 8 chips @ f840 ROM_REGION(0x10000, region_gromlib1, 0) ROM_LOAD("g0_f840.bin", 0x0000, 0x1800, CRC(44501071) SHA1(4b5ef7f1aa43a87e7ae4f02090944be5c39b1f26)) ROM_LOAD("g1_f840.bin", 0x2000, 0x1800, CRC(5a271d9e) SHA1(bb95befa2ffba2cc17ac437386e069e8ff621248)) ROM_LOAD("g2_f840.bin", 0x4000, 0x1800, CRC(d52502df) SHA1(17063e33ee8709d0df8030f38bb92c4322d55e1e)) ROM_LOAD("g3_f840.bin", 0x6000, 0x1800, CRC(86c12396) SHA1(119b6df9211b5399245e017721fc51b88b60879f)) ROM_LOAD("g4_f840.bin", 0x8000, 0x1800, CRC(f17a2ef8) SHA1(dcb044f71d7f8a165b41f39e35a368d8f2d63b67)) ROM_LOAD("g5_f840.bin", 0xA000, 0x1800, CRC(7dc41301) SHA1(dff714da68de352db93fba309db8e5a8ae7cab1a)) ROM_LOAD("g6_f840.bin", 0xC000, 0x1800, CRC(7e310a90) SHA1(e927d8b3f8b32aa4fb9f7d080d5262c566a77fc7)) ROM_LOAD("g7_f840.bin", 0xE000, 0x1800, CRC(3a9d20df) SHA1(1e6f9f8ec7df4b997a7579be742d0a7d54bc8763)) // Pascal library. 8 chips @ f850 ROM_REGION(0x10000, region_gromlib2, 0) ROM_LOAD("g0_f850.bin", 0x0000, 0x1800, CRC(2d948672) SHA1(cf15912d6dae5a450e0cfd796aa36ea5e521dc56)) ROM_LOAD("g1_f850.bin", 0x2000, 0x1800, CRC(7d64a842) SHA1(d5884bb2af21c8027311478ee506beac6f46203d)) ROM_LOAD("g2_f850.bin", 0x4000, 0x1800, CRC(e5ed8900) SHA1(03826882ce10fb5a6b3a9ccc85d3d1fe51979d0b)) ROM_LOAD("g3_f850.bin", 0x6000, 0x1800, CRC(87aaf19e) SHA1(fdbe163773b8a30fa6b9508e679be6fa4f99bf7a)) ROM_LOAD("g4_f850.bin", 0x8000, 0x1800, CRC(d3e789a5) SHA1(5ab06aa75ca694b1035ce5ac0bebacc928721388)) ROM_LOAD("g5_f850.bin", 0xA000, 0x1800, CRC(49fd90bd) SHA1(44b2cef29c2d5304a0dcfedbdcdf9f21f2201bf9)) ROM_LOAD("g6_f850.bin", 0xC000, 0x1800, CRC(31bac4ab) SHA1(e29049f0597d5de0bfd5c9c7bfea902abe858010)) ROM_LOAD("g7_f850.bin", 0xE000, 0x1800, CRC(71534098) SHA1(75e87123efde885e27dd749e07cb189eb2cc45a8)) // Pascal library. 3 chips @ f860 ROM_REGION(0x6000, region_gromlib3, 0) ROM_LOAD("g0_f860.bin", 0x0000, 0x1800, CRC(0ceef210) SHA1(b89957fbff094b758746391a69dea6907c66b950)) ROM_LOAD("g1_f860.bin", 0x2000, 0x1800, CRC(fc87de25) SHA1(4695b7f979f59a01ec16c55e4587c3379482b658)) ROM_LOAD("g2_f860.bin", 0x4000, 0x1800, CRC(e833e350) SHA1(6ffe501981a1112be1af596a489d96e287fc6be5)) // Built-in RAM ROM_REGION(SRAM_SIZE, SRAM_TAG, 0) ROM_FILL(0x0000, SRAM_SIZE, 0x00) ROM_REGION(DRAM_SIZE, DRAM_TAG, 0) ROM_FILL(0x0000, DRAM_SIZE, 0x00) ROM_END #define rom_ti99_8e rom_ti99_8 /* YEAR NAME PARENT COMPAT MACHINE INPUT INIT COMPANY FULLNAME */ COMP( 1983, ti99_8, 0, 0, ti99_8_60hz,ti99_8, driver_device, 0, "Texas Instruments", "TI-99/8 Computer (US)" , 0) COMP( 1983, ti99_8e, ti99_8, 0, ti99_8_50hz,ti99_8, driver_device, 0, "Texas Instruments", "TI-99/8 Computer (Europe)" , 0 )