/*************************************************************************** video.c Functions to emulate the video hardware of the machine. ***************************************************************************/ #include "emu.h" #include "video/resnet.h" #include "includes/tp84.h" /* -The colortable is divided in 2 part: -The characters colors -The sprites colors -The characters colors are indexed like this: -2 bits from the characters -4 bits from the attribute in tp84_bg_colorram -2 bits from palette_bank (d3-d4) -3 bits from palette_bank (d0-d1-d2) -So, there is 2048 bytes for the characters -The sprites colors are indexed like this: -4 bits from the sprites (16 colors) -4 bits from the attribute of the sprites -3 bits from palette_bank (d0-d1-d2) -So, there is 2048 bytes for the sprites */ /* The RGB signals are generated by 3 proms 256X4 (prom 2C, 2D and 1E) The resistors values are: 1K ohm 470 ohm 220 ohm 100 ohm */ PALETTE_INIT( tp84 ) { static const int resistances[4] = { 1000, 470, 220, 100 }; double weights[4]; int i; /* compute the color output resistor weights */ compute_resistor_weights(0, 255, -1.0, 4, resistances, weights, 470, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); /* allocate the colortable */ machine.colortable = colortable_alloc(machine, 0x100); /* create a lookup table for the palette */ for (i = 0; i < 0x100; i++) { int bit0, bit1, bit2, bit3; int r, g, b; /* red component */ bit0 = (color_prom[i + 0x000] >> 0) & 0x01; bit1 = (color_prom[i + 0x000] >> 1) & 0x01; bit2 = (color_prom[i + 0x000] >> 2) & 0x01; bit3 = (color_prom[i + 0x000] >> 3) & 0x01; r = combine_4_weights(weights, bit0, bit1, bit2, bit3); /* green component */ bit0 = (color_prom[i + 0x100] >> 0) & 0x01; bit1 = (color_prom[i + 0x100] >> 1) & 0x01; bit2 = (color_prom[i + 0x100] >> 2) & 0x01; bit3 = (color_prom[i + 0x100] >> 3) & 0x01; g = combine_4_weights(weights, bit0, bit1, bit2, bit3); /* blue component */ bit0 = (color_prom[i + 0x200] >> 0) & 0x01; bit1 = (color_prom[i + 0x200] >> 1) & 0x01; bit2 = (color_prom[i + 0x200] >> 2) & 0x01; bit3 = (color_prom[i + 0x200] >> 3) & 0x01; b = combine_4_weights(weights, bit0, bit1, bit2, bit3); colortable_palette_set_color(machine.colortable, i, MAKE_RGB(r, g, b)); } /* color_prom now points to the beginning of the lookup table */ color_prom += 0x300; /* characters use colors 0x80-0xff, sprites use colors 0-0x7f */ for (i = 0; i < 0x200; i++) { int j; for (j = 0; j < 8; j++) { UINT8 ctabentry = ((~i & 0x100) >> 1) | (j << 4) | (color_prom[i] & 0x0f); colortable_entry_set_value(machine.colortable, ((i & 0x100) << 3) | (j << 8) | (i & 0xff), ctabentry); } } } WRITE8_HANDLER( tp84_spriteram_w ) { tp84_state *state = space->machine().driver_data(); /* the game multiplexes the sprites, so update now */ space->machine().primary_screen->update_now(); state->m_spriteram[offset] = data; } READ8_HANDLER( tp84_scanline_r ) { /* reads 1V - 128V */ return space->machine().primary_screen->vpos(); } static TILE_GET_INFO( get_bg_tile_info ) { tp84_state *state = machine.driver_data(); int code = ((state->m_bg_colorram[tile_index] & 0x30) << 4) | state->m_bg_videoram[tile_index]; int color = ((*state->m_palette_bank & 0x07) << 6) | ((*state->m_palette_bank & 0x18) << 1) | (state->m_bg_colorram[tile_index] & 0x0f); int flags = TILE_FLIPYX(state->m_bg_colorram[tile_index] >> 6); SET_TILE_INFO(0, code, color, flags); } static TILE_GET_INFO( get_fg_tile_info ) { tp84_state *state = machine.driver_data(); int code = ((state->m_fg_colorram[tile_index] & 0x30) << 4) | state->m_fg_videoram[tile_index]; int color = ((*state->m_palette_bank & 0x07) << 6) | ((*state->m_palette_bank & 0x18) << 1) | (state->m_fg_colorram[tile_index] & 0x0f); int flags = TILE_FLIPYX(state->m_fg_colorram[tile_index] >> 6); SET_TILE_INFO(0, code, color, flags); } VIDEO_START( tp84 ) { tp84_state *state = machine.driver_data(); state->m_bg_tilemap = tilemap_create(machine, get_bg_tile_info, tilemap_scan_rows, 8, 8, 32, 32); state->m_fg_tilemap = tilemap_create(machine, get_fg_tile_info, tilemap_scan_rows, 8, 8, 32, 32); } static void draw_sprites(running_machine &machine, bitmap_t *bitmap, const rectangle *cliprect) { tp84_state *state = machine.driver_data(); int offs; int palette_base = ((*state->m_palette_bank & 0x07) << 4); for (offs = 0x5c; offs >= 0; offs -= 4) { int x = state->m_spriteram[offs]; int y = 240 - state->m_spriteram[offs + 3]; int code = state->m_spriteram[offs + 1]; int color = palette_base | (state->m_spriteram[offs + 2] & 0x0f); int flip_x = ~state->m_spriteram[offs + 2] & 0x40; int flip_y = state->m_spriteram[offs + 2] & 0x80; drawgfx_transmask(bitmap, cliprect, machine.gfx[1], code, color, flip_x, flip_y, x, y, colortable_get_transpen_mask(machine.colortable, machine.gfx[1], color, palette_base)); } } SCREEN_UPDATE( tp84 ) { tp84_state *state = screen->machine().driver_data(); rectangle clip = *cliprect; const rectangle &visarea = screen->visible_area(); if (cliprect->min_y == screen->visible_area().min_y) { tilemap_mark_all_tiles_dirty_all(screen->machine()); tilemap_set_scrollx(state->m_bg_tilemap, 0, *state->m_scroll_x); tilemap_set_scrolly(state->m_bg_tilemap, 0, *state->m_scroll_y); tilemap_set_flip_all(screen->machine(), ((*state->m_flipscreen_x & 0x01) ? TILEMAP_FLIPX : 0) | ((*state->m_flipscreen_y & 0x01) ? TILEMAP_FLIPY : 0)); } tilemap_draw(bitmap, cliprect, state->m_bg_tilemap, 0, 0); draw_sprites(screen->machine(), bitmap, cliprect); /* draw top status region */ clip.min_x = visarea.min_x; clip.max_x = visarea.min_x + 15; tilemap_draw(bitmap, &clip, state->m_fg_tilemap, 0, 0); /* draw bottom status region */ clip.min_x = visarea.max_x - 15; clip.max_x = visarea.max_x; tilemap_draw(bitmap, &clip, state->m_fg_tilemap, 0, 0); return 0; }