/*************************************************************************** TODO: - It seems shadows can both affect underlying sprites and not. This is currently hardcoded in the drivers; there might be a control bit somewhere. Games requiring shadows to affect sprites behind them: - Surprise Attack (dark glass walls in level 3) - 88 Games (angle indicator in the long jump event) - Sunset Riders (bull's eye in the saloon cutscene) - TMNT 2 (lightbeam in level 4 cave) - Metamorphic Force (double! lightbeam just before the last boss) Games requiring shadows to NOT affect sprites behind them: - Asterix (Asterix's shadow would be over his feet otherwise) - X-Men is dubious, see enemies halfway through level 1 coming from above with boulders over their heads. - scrollcontrol = 30 in Golfing Greats (leader board) - detatwin: sprites are left on screen during attract mode Emulated | board #|year CPU tiles sprites priority palette other -----|---- ------- ------------- ------------- ------ ------ ---------------- Hyper Crash GX401 1985 GX400 Twinbee GX412*1985 68000 GX400 Yie Ar Kung Fu GX407*1985 6809 Gradius / Nemesis GX456*1985 68000 GX400 Shao-lins Road GX477*1985 6809 Jail Break GX507*1986 KONAMI-1 005849 PROMs Finalizer GX523*1985 KONAMI-1 005885 PROMs Konami's Ping Pong GX555*1985 Z80 Iron Horse GX560*1986 6809 005885 PROMs Konami GT GX561*1985 68000 GX400 Green Beret GX577*1985 Z80 005849 PROMs Galactic Warriors GX578*1985 68000 GX400 Salamander GX587*1986 68000 GX400 WEC Le Mans 24 GX602*1986 2x68000 BAW / Black Panther GX604*1987 68000 GX400 007593 Combat School / GX611*1987 6309 007121(x2) 007327 Boot Camp Rock 'n Rage / GX620*1986 6309 007342 007420 007327 Koi no Hotrock Mr Kabuki/Mr Goemon GX621*1986 Z80 005849 Jackal GX631*1986 6809 005885(x2) 007327 007343 (address decoder) Contra / Gryzor GX633*1987 6309 007121(x2) 007593 Flak Attack GX669*1987 6309 007121 007327 007452 Devil World / Dark GX687*1987 2x68000 TWIN16 Adventure / Majuu no Oukoku Double Dribble GX690*1986 3x6809 005885(x2) 007327 007452 Kitten Kaboodle / GX712*1988 GX400 007593 051550 Nyan Nyan Panic Chequered Flag GX717*1988 052001 051960 051937(x2) 051316(x2) (roz) 051733 (protection) Fast Lane GX752*1987 6309 007121 051733 (protection) 007801 Hot Chase GX763*1988 2x68000 051316(x3) (roz) 007634 007635 007558 007557 Rack 'Em Up / GX765*1987 6309 007342 007420 007327 007324 The Hustler Haunted Castle GX768*1988 052001 007121(x2) 007327 Ajax / Typhoon GX770*1987 6309+ 052109 051962 051960 051937 PROM 007327 051316 (roz) 052001 Labyrinth Runner / GX771*1987 6309 007121 007593 051733 (protection) 051550 Trick Trap Super Contra GX775*1988 052001 052109 051962 051960 051937 PROM 007327 Battlantis GX777*1987 6309 007342 007420 007327 007324 Vulcan Venture / GX785*1988 2x68000 TWIN16 Gradius 2 City Bomber GX787*1987 68000 GX400 007593 051550 Over Drive GX789*1990 2x68000 053247 053246 053251 051316(x2) (roz) 053249 053250(x2) (road) 053252(*) Hyper Crash GX790 1987 Blades of Steel GX797*1987 6309 007342 007420 007327 051733 (protection) The Main Event GX799*1988 6309 052109 051962 051960 051937 PROM Missing in Action GX808*1989 68000 052109 051962 051960 051937 PROM Missing in Action J GX808*1989 2x68000 TWIN16 Crime Fighters GX821*1989 052526 052109 051962 051960 051937 PROM Special Project Y GX857*1989 6309 052109 051962 051960 051937 PROM 052591 (protection) '88 Games GX861*1988 052001 052109 051962 051960 051937 PROM 051316 (roz) Final Round / GX870*1988 1x68000 TWIN16? Hard Puncher Thunder Cross GX873*1988 052001 052109 051962 051960 051937 PROM 007327 052591 (protection) Aliens GX875*1990 052526 052109 051962 051960 051937 PROM Gang Busters GX878*1988 052526 052109 051962 051960 051937 PROM Devastators GX890*1988 6309 052109 051962 051960 051937 PROM 007324 051733 (protection) Bottom of the Ninth GX891*1989 6809 052109 051962 051960 051937 PROM 051316 (roz) Cue Brick GX903*1989 68000 052109 051962 051960 051937 PROM Cue Brick GX903*1989 2x68000 TWIN16 Punk Shot GX907*1990 68000 052109 051962 051960 051937 053251 Ultraman GX910*1991 68000 ------ ------ 051960 051937 PROM 051316(x3) (roz) 051550 Surprise Attack GX911*1990 053248 052109 051962 053245 053244 053251 Lightning Fighters /GX939*1990 68000 052109 051962 053245 053244 053251 Trigon Gradius 3 GX945*1989 2x68000 052109 051962 051960 051937 PROM Parodius GX955*1990 053248 052109 051962 053245 053244 053251 TMNT GX963*1989 68000 052109 051962 051960 051937 PROM Block Hole GX973*1989 052526 052109 051962 051960 051937 PROM Escape Kids GX975*1991 053248 052109 051962 053247 053246 053251 053252(*) Rollergames GX999*1991 053248 ------ ------ 053245 053244 051316 (roz) 053252(*) Bells & Whistles / GX060*1991 68000 052109 051962 053245 053244 053251 054000 (collision) Detana!! Twin Bee Golfing Greats GX061*1991 68000 052109 051962 053245 053244 053251 053936 (roz+) TMNT 2 GX063*1991 68000 052109 051962 053245 053244 053251 053990 (protection) 051550 Sunset Riders GX064*1991 68000 052109 051962 053245 053244 053251 054358 X-Men GX065*1992 68000 052109 051962 053247 053246 053251 054539 (sound) XEXEX GX067*1991 68000 054157 054156 053247 053246 053251 053250?("road") 054338 (alpha blending) 054539 (sound) Asterix GX068*1992 68000 054157 054156 053245 053244 053251 054358 G.I. Joe GX069*1992 68000 054157 054156 053247 053246 053251 054539 (sound) The Simpsons GX072*1991 053248 052109 051962 053247 053246 053251 Thunder Cross 2 GX073*1991 68000 052109 051962 051960 051937 053251 054000 (collision) Vendetta / GX081*1991 053248 052109 051962 053247 053246 053251 054000 (collision) Crime Fighters 2 Premier Soccer GX101*1993 68000 052109 051962 053245 053244 053251 053936 (roz+) 054986 Hexion GX122*1992 Z80 052591 (protection) 053252(*) Entapous / GX123*1993 68000 054157 054156 055673 053246 055555 053252(*) 054000 053936 (roz+) Gaiapolis Mystic Warrior GX128*1993 68000 054157 054156 055673 053246 055555 054338 (alpha blending) 053252(*) 054539(x2) (sound) Cowboys of Moo Mesa GX151*1992 68000 054157 054156 053247 053246 053251 053252(*) 054338 (alpha blending) 053990 (protection) Violent Storm GX168*1993 68000 054157 054156 055673 053246 055555 054338 (alpha blending) 055550 054539(x2) (sound) Monster Maulers / GX170*1993 68000 054157 054156 055673 053246 055555 053252(*) 055550 054338 (alpha blending) 054539 (sound) 053936 (roz+) Ultimate Battler Dadandarn Bucky 'O Hare GX173*1992 68000 054157 054156 053247 053246 053251 054338 (alpha blending) 054539 (sound) Potrio GX174 1992 Lethal Enforcers GX191*1992 6309 054157(x2) 054156 053245 053244(x2) 054000 054539 (sound) Metamorphic Force GX224*1993 68000 054157 054157 055673 053246 055555 Martial Champion GX234*1993 68000 054157 054156 055673 053246 055555 053252(*) 054338 (alpha blending) 053990 054539 (sound) Run and Gun GX247*1993 68000 (TTL tilemap) 055673 053246 053253(x2) 053252(*) 053936 (roz+) 054539(x2) (sound) Quiz Gakumon no GX248*1993 68000 052109 051962 053245 053244 053251 053990 (protection) 051550 - same board as TMNT2 Susume Polygonet Commander GX305+1993 68020 (TTL tilemap) XC56156-40(3D DSP) 054009(x2) 054010(x2) 054539 (sound) System GX (ver 1) GX300*1993 68020 056832 054156 055673 053246 055555 054338 (alpha blending) 054539(x2) (sound) 053252(*) 053936 (optional on ROM board, roz+) System GX (ver 2) GX300*1995 68020 056832 058143 055673 058142 055555 058144 (alpha blending) 058141 (sound) 053252(*) 053936 (optional on ROM board, roz+) Beatmania DJ Main GX858+1996 68020 056832 058143 056766 055555 058144 (alpha blending) 058141 (sound) 053252(*) Tail to Nose *1989 68000 V-System 051316 (roz) F-1 Grand Prix *1991 2x68000 V-System 053936 (roz+) F-1 Grand Prix Part II *1992 2x68000 V-System 053936 (roz+) Lethal Crash Race *1993 68000 V-System 053936 (roz+) Super Slams *1995 68000 V-System 053936 (roz+) Blazing Tornado *1991 68000 Metro 053936 (roz+) Dragonball Z 2 *1994 68000 054157 054156 053247 053246 053251(x2) 053936(x2) (roz+) 053252(*) Notes: * 053252 seems to be just a timing/interrupt controller (see Vendetta schematics). - Old games use 051961 instead of 052109, it is an earlier version functionally equivalent (maybe 052109 had bugs fixed). The list always shows 052109 because the two are exchangeable and 052109's are found also on original boards whose schematics show a 051961. - Starting with the version 2 System GX mainboard, the following chip substitutions took place. All "new" chips are equivalent to their older counterparts, but are in a smaller package (and presumably are made on a smaller process). The exception is the 058141, which is equivalent to 2 54539s (and yet takes less board space than even 1). 058141 = 054539 (x2) (2 sound chips in one) 058142 = 053246 (sprites) 058143 = 054156 (tiles) 058144 = 054338 (alpha blending) Status of the ROM tests in the emulated games: Chequered Flag pass Ajax / Typhoon pass Super Contra pass Over Drive pass The Main Event pass Missing in Action pass Crime Fighters pass Special Project Y pass Konami 88 pass Thunder Cross pass Aliens pass Gang Busters pass Devastators pass Bottom of the Ninth pass Punk Shot pass Surprise Attack fails D05-6 (052109) because it uses mirror addresses to select banks, and supporting those addresses breaks the normal game ;-( Lightning Fighters pass Gradius 3 pass Parodius pass TMNT pass Block Hole pass Escape Kids pass Rollergames pass Bells & Whistles pass Golfing Greats pass TMNT 2 pass Sunset Riders pass X-Men pass The Simpsons pass Thunder Cross 2 pass Xexex pass Asterix pass GiJoe pass Vendetta pass Premier Soccer fails 16D 18D 18F (053936) Hexion pass Run and Gun fails 36M (053936) 2U 2Y 5U 5Y (sprites) Quiz Gakumon no Susume pass Dragonball Z 2 fails THE FOLLOWING INFORMATION IS PRELIMINARY AND INACCURATE. DON'T RELY ON IT. 005885 ------ Some games use two of these in pair. Jackal even puts together the two 4bpp tilemaps to form a single 8bpp one. It manages sprites and 32x32 or 64x32 tilemap (only Double Dribble uses the 64x32 one). The chip also generates clock and interrupt signals suitable for a 6809. It uses 0x2000 bytes of RAM for the tilemaps and sprites, and an additional 0x100 bytes, maybe for scroll RAM and line buffers. The maximum addressable ROM is 0x20000 bytes (addressed 16 bits at a time). Tile and sprite data both come from the same ROM space. Double Dribble and Jackal have external circuitry to extend the limits and use separated addressing spaces for sprites and tiles. All games use external circuitry to reuse one or both the tile flip attributes as an additional address bit. Two 256x4 lookup PROMs are also used to increase the color combinations. All tilemap / sprite priority handling is done internally and the chip exports 5 bits of color code, composed of 1 bit indicating tile or sprite, and 4 bits of ROM data remapped through the PROM. inputs: - address lines (A0-A13) - data lines (DB0-DB7) - misc interface stuff - data from the gfx ROMs (RDL0-RDL7, RDU0-RDU7) - data from the tile lookup PROMs (VCD0-VCD3) - data from the sprite lookup PROMs (OCD0-OCD3) outputs: - address lines for tilemap RAM (AX0-AX12) - data lines for tilemap RAM (VO0-VO7) - address lines for the small RAM (FA0-FA7) - data lines for the small RAM (FD0-FD7) - address lines for the gfx ROMs (R0-R15) - address lines for the tile lookup PROMs (VCF0-VCF3, VCB0-VCB3) - address lines for the sprite lookup PROMs (OCB0-OCB3, OCF0-OCF3) - NNMI, NIRQ, NFIR, NCPE, NCPQ, NEQ for the main CPU - misc interface stuff - color code to be output on screen (COL0-COL4) control registers 000: scroll y 001: scroll x (low 8 bits) 002: -------x scroll x (high bit) ----xxx- row/colscroll control 000 = solid scroll (finalizr, ddribble bg) 100 = solid scroll (jackal) 001 = ? (ddribble fg) 011 = colscroll (jackal high scores) 101 = rowscroll (ironhors, jackal map) 003: ------xx high bits of the tile code -----x-- unknown (finalizr) ----x--- selects sprite buffer (and makes a copy to a private buffer?) --x----- unknown (ironhors) -x------ unknown (ironhors) x------- unknown (ironhors, jackal) 004: -------x nmi enable ------x- irq enable -----x-- firq enable ----x--- flip screen 007121 ------ This is an interesting beast. It is an evolution of the 005885, with more features. Many games use two of these in pair. It manages sprites and two 32x32 tilemaps. The tilemaps can be joined to form a single 64x32 one, or one of them can be moved to the side of screen, giving a high score display suitable for vertical games. The chip also generates clock and interrupt signals suitable for a 6809. It uses 0x2000 bytes of RAM for the tilemaps and sprites, and an additional 0x100 bytes, maybe for scroll RAM and line buffers. The maximum addressable ROM is 0x80000 bytes (addressed 16 bits at a time). Tile and sprite data both come from the same ROM space. Two 256x4 lookup PROMs are also used to increase the color combinations. All tilemap / sprite priority handling is done internally and the chip exports 7 bits of color code, composed of 2 bits of palette bank, 1 bit indicating tile or sprite, and 4 bits of ROM data remapped through the PROM. inputs: - address lines (A0-A13) - data lines (DB0-DB7) - misc interface stuff - data from the gfx ROMs (RDL0-RDL7, RDU0-RDU7) - data from the tile lookup PROMs (VCD0-VCD3) - data from the sprite lookup PROMs (OCD0-OCD3) outputs: - address lines for tilemap RAM (AX0-AX12) - data lines for tilemap RAM (VO0-VO7) - address lines for the small RAM (FA0-FA7) - data lines for the small RAM (FD0-FD7) - address lines for the gfx ROMs (R0-R17) - address lines for the tile lookup PROMs (VCF0-VCF3, VCB0-VCB3) - address lines for the sprite lookup PROMs (OCB0-OCB3, OCF0-OCF3) - NNMI, NIRQ, NFIR, NE, NQ for the main CPU - misc interface stuff - color code to be output on screen (COA0-COA6) control registers 000: scroll x (low 8 bits) 001: -------x scroll x (high bit) ------x- enable rowscroll? (combatsc) ----x--- this probably selects an alternate screen layout used in combat school where tilemap #2 is overlayed on front and doesn't scroll. The 32 lines of the front layer can be individually turned on or off using the second 32 bytes of scroll RAM. 002: scroll y 003: -------x bit 13 of the tile code ------x- unknown (contra) -----x-- might be sprite / tilemap priority (0 = sprites have priority) (combat school, contra, haunted castle(0/1), labyrunr) ----x--- selects sprite buffer (and makes a copy to a private buffer?) ---x---- screen layout selector: when this is set, 5 columns are added on the left of the screen (that means 5 rows at the top for vertical games), and the rightmost 2 columns are chopped away. Tilemap #2 is used to display the 5 additional columns on the left. The rest of tilemap #2 is not used and can be used as work RAM by the program. The visible area becomes 280x224. Note that labyrunr changes this at runtime, setting it during gameplay and resetting it on the title screen and crosshatch. --x----- might be sprite / tilemap priority (0 = sprites have priority) (combat school, contra, haunted castle(0/1), labyrunr) -x------ Chops away the leftmost and rightmost columns, switching the visible area from 256 to 240 pixels. This is used by combatsc on the scrolling stages, and by labyrunr on the title screen. At first I thought that this enabled an extra bank of 0x40 sprites, needed by combatsc, but labyrunr proves that this is not the case x------- unknown (contra) 004: ----xxxx bits 9-12 of the tile code. Only the bits enabled by the following mask are actually used, and replace the ones selected by register 005. xxxx---- mask enabling the above bits 005: selects where in the attribute byte to pick bits 9-12 of the tile code, output to pins R12-R15. The bit of the attribute byte to use is the specified bit (0-3) + 3, that is one of bits 3-6. Bit 7 is hardcoded as bit 8 of the code. Bits 0-2 are used for the color, however note that some games use bit 3 as well (see below). ------xx attribute bit to use for tile code bit 9 ----xx-- attribute bit to use for tile code bit 10 --xx---- attribute bit to use for tile code bit 11 xx------ attribute bit to use for tile code bit 12 006: ----xxxx select additional effect for bits 3-6 of the tile attribute (the same ones indexed by register 005). Note that an attribute bit can therefore be used at the same time to be BOTH a tile code bit and an additional effect. -------x bit 3 of attribute is bit 3 of color (combatsc, fastlane, flkatck) ------x- bit 4 of attribute is tile flip X (assumption - no game uses this) -----x-- bit 5 of attribute is tile flip Y (flkatck) ----x--- bit 6 of attribute is tile priority over sprites (combatsc, hcastle, labyrunr) Note that hcastle sets this bit for layer 0, and bit 6 of the attribute is also used as bit 12 of the tile code, however that bit is ALWAYS set throughout the game. combatsc uses the bit in the "graduation" scene during attract mode, to place soldiers behind the stand. Use in labyrunr has not been investigated yet. --xx---- palette bank (both tiles and sprites, see contra) 007: -------x nmi enable ------x- irq enable -----x-- firq enable ----x--- flip screen ---x---- unknown (contra, labyrunr) 007342 ------ The 007342 manages 2 64x32 scrolling tilemaps with 8x8 characters, and optionally generates timing clocks and interrupt signals. It uses 0x2000 bytes of RAM, plus 0x0200 bytes for scrolling, and a variable amount of ROM. It cannot read the ROMs. control registers 000: ------x- INT control ---x---- flip screen (TODO: doesn't work with thehustl) 001: Used for banking in Rock'n'Rage 002: -------x MSB of x scroll 1 ------x- MSB of x scroll 2 ---xxx-- layer 1 row/column scroll control 000 = disabled 010 = unknown (bladestl shootout between periods) 011 = 32 columns (Blades of Steel) 101 = 256 rows (Battlantis, Rock 'n Rage) x------- enable sprite wraparound from bottom to top (see Blades of Steel high score table) 003: x scroll 1 004: y scroll 1 005: x scroll 2 006: y scroll 2 007: not used 007420 ------ Sprite generator. 8 bytes per sprite with zoom. It uses 0x200 bytes of RAM, and a variable amount of ROM. Nothing is known about its external interface. 052109/051962 ------------- These work in pair. The 052109 manages 3 64x32 scrolling tilemaps with 8x8 characters, and optionally generates timing clocks and interrupt signals. It uses 0x4000 bytes of RAM, and a variable amount of ROM. It cannot read the ROMs: instead, it exports 21 bits (16 from the tilemap RAM + 3 for the character raster line + 2 additional ones for ROM banking) and these are externally used to generate the address of the required data on the ROM; the output of the ROMs is sent to the 051962, along with a color code. In theory you could have any combination of bits in the tilemap RAM, as long as they add to 16. In practice, all the games supported so far standardize on the same format which uses 3 bits for the color code and 13 bits for the character code. The 051962 multiplexes the data of the three layers and converts it into palette indexes and transparency bits which will be mixed later in the video chain. Priority is handled externally: these chips only generate the tilemaps, they don't mix them. Both chips are interfaced with the main CPU. When the RMRD pin is asserted, the CPU can read the gfx ROM data. This is done by telling the 052109 which dword to read (this is a combination of some banking registers, and the CPU address lines), and then reading it from the 051962. 052109 inputs: - address lines (AB0-AB15, AB13-AB15 seem to have a different function) - data lines (DB0-DB7) - misc interface stuff 052109 outputs: - address lines for the private RAM (RA0-RA12) - data lines for the private RAM (VD0-VD15) - NMI, IRQ, FIRQ for the main CPU - misc interface stuff - ROM bank selector (CAB1-CAB2) - character "code" (VC0-VC10) - character "color" (COL0-COL7); used foc color but also bank switching and tile flipping. Exact meaning depends on externl connections. All evidence indicates that COL2 and COL3 select the tile bank, and are replaced with the low 2 bits from the bank register. The top 2 bits of the register go to CAB1-CAB2. However, this DOES NOT WORK with Gradius III. "color" seems to pass through unaltered. - layer A horizontal scroll (ZA1H-ZA4H) - layer B horizontal scroll (ZB1H-ZB4H) - ????? (BEN) 051962 inputs: - gfx data from the ROMs (VC0-VC31) - color code (COL0-COL7); only COL4-COL7 seem to really be used for color; COL0 is tile flip X. - layer A horizontal scroll (ZA1H-ZA4H) - layer B horizontal scroll (ZB1H-ZB4H) - let main CPU read the gfx ROMs (RMRD) - address lines to be used with RMRD (AB0-AB1) - data lines to be used with RMRD (DB0-DB7) - ????? (BEN) - misc interface stuff 051962 outputs: - FIX layer palette index (DFI0-DFI7) - FIX layer transparency (NFIC) - A layer palette index (DSA0-DSAD); DSAA-DSAD seem to be unused - A layer transparency (NSAC) - B layer palette index (DSB0-DSBD); DSBA-DSBD seem to be unused - B layer transparency (NSBC) - misc interface stuff 052109 memory layout: 0000-07ff: layer FIX tilemap (attributes) 0800-0fff: layer A tilemap (attributes) 1000-1fff: layer B tilemap (attributes) 180c-1833: A y scroll 1a00-1bff: A x scroll 1c00 : ? 1c80 : row/column scroll control ------xx layer A row scroll 00 = disabled 01 = disabled? (gradius3, vendetta) 10 = 32 lines 11 = 256 lines -----x-- layer A column scroll 0 = disabled 1 = 64 (actually 40) columns ---xx--- layer B row scroll --x----- layer B column scroll surpratk sets this register to 70 during the second boss. There is nothing obviously wrong so it's not clear what should happen. glfgreat sets it to 30 when showing the leader board 1d00 : bits 0 & 1 might enable NMI and FIRQ, not sure : bit 2 = IRQ enable 1d80 : ROM bank selector bits 0-3 = bank 0 bits 4-7 = bank 1 1e00 : ROM subbank selector for ROM testing 1e80 : bit 0 = flip screen (applies to tilemaps only, not sprites) : bit 1 = set by crimfght, mainevt, surpratk, xmen, mia, punkshot, thndrx2, spy : it seems to enable tile flip X, however flip X is handled by the : 051962 and it is not hardwired to a specific tile attribute. : Note that xmen, punkshot and thndrx2 set the bit but the current : drivers don't use flip X and seem to work fine. : bit 2 = enables tile flip Y when bit 1 of the tile attribute is set 1f00 : ROM bank selector bits 0-3 = bank 2 bits 4-7 = bank 3 2000-27ff: layer FIX tilemap (code) 2800-2fff: layer A tilemap (code) 3000-37ff: layer B tilemap (code) 3800-3807: nothing here, so the chip can share address space with a 051937 380c-3833: B y scroll 3a00-3bff: B x scroll 3c00-3fff: nothing here, so the chip can share address space with a 051960 3d80 : mirror of 1d80, but ONLY during ROM test (surpratk) 3e00 : mirror of 1e00, but ONLY during ROM test (surpratk) 3f00 : mirror of 1f00, but ONLY during ROM test (surpratk) EXTRA ADDRESSING SPACE USED BY X-MEN: 4000-47ff: layer FIX tilemap (code high bits) 4800-4fff: layer A tilemap (code high bits) 5000-57ff: layer B tilemap (code high bits) The main CPU doesn't have direct acces to the RAM used by the 052109, it has to through the chip. 054156/054157 054156/056832 ------------- [Except for tilemap sizes, all numbers are in hex] These work in pairs. Similar in principle to the 052109/051962, they manage 4 64x32 or 64x64 tilemaps. They also handle linescroll on each layer, and optional tile banking. They use 4000 to 10000 bytes of RAM, organized in 1000 or 2000 bytes banks. The 56832 is a complete superset of the 54157 and supports higher color depths (the 156/157 combo only goes to 5 bpp, the 156/832 combo goes to 8bpp). These chips work in a fairly unusual way. There are 4, 8, or 16 pages of VRAM, arranged conceptually in a 4x4 2 dimensional grid. Each page is a complete 64x32 tile tilemap. The 4 physical tilemaps A, B, C, and, D are made up of these pages "glued together". Each physical tilemap has an X and Y position in the 4x4 page grid indicating where the page making up it's upper left corner is, as well as a width and height in pages. If two tilemaps try to use the same page, the higher-letter one wins and the lower-letter one is disabled completely. E.g. A > B > C > D, so if A and B both try to use the same page only A will be displayed. Some games rely on this behavior to implicitly disable tilemaps which otherwise should be displayed. Tile encoding 2 bytes/tile (banks of 1000 bytes): pppx bbcc cccc cccc p = color palette x = flip x b = tile bank (0..3) c = tile code (0..3ff) Tile encoding 4 bytes/tile (banks of 2000 bytes): ---- ---- pppp --yx cccc cccc cccc cccc p = color palette x = flip x y = flip y b = tile bank (0..3) c = tile code (0..3ff) Communication with these ics go through 4 memory zones: 1000/2000 bytes: access to the currently selected ram bank 2000 bytes: readonly access the the currently select tile rom bank for rom checksumming 40 bytes: writeonly access to the first register bank 8 bytes: writeonly access to the second register bank One of the register banks is probably on the 054156, and the other on the 054157. First register bank map (offsets in bytes, '-' means unused): 00 ---- ---- ??yx ???? flip control 02 ---- ---- ???? ???? unknown 04 ---- ---- ???? ???? unknown (bit 1 may be bank count selection, 0 in xexex, 1 everywhere else) 06 ---- ---- ???? ???e enable irq 08 ---- ---- ???? ???? unknown 0a ---- ---- 3322 1100 linescroll control, each pair of bits indicates the mode for the corresponding layer: 0: per-line linescroll 1: unused/unknown 2: per-8 lines linescroll 3: no linescroll 0c ---- ---- ???? ???? unknown (bit 1 may be bank size selection, 1 in asterix, 0 everywhere else) 0e ---- ---- ---- ---- 10-13 ---- ---- ---y y-hh layer Y position in the VRAM grid and height in pages 14-17 ---- ---- ---x x-ww layer X position in the VRAM grid and width in pages 18-1f ---- ---- ???? ???? 20-27 yyyy yyyy yyyy yyyy scroll y position for each layer 28-2f xxxx xxxx xxxx xxxx scroll x position for each layer 30 ---- ---- ---b b--b linescroll ram bank selection 32 ---- ---- ---b b--b cpu-accessible ram bank selection 34 bbbb bbbb bbbb bbbb rom bank selection for checksumming (each bank is 0x2000 bytes) 36 ---- ---- ---- bbbb secondary rom bank selection for checksumming when tile banking is used 38 3333 2222 1111 0000 tile banking look up table. 4 bits are looked up here for the two bits in the tile data. 3a ???? ???? ???? ???? unknown 3c ???? ???? ???? ???? unknown 3e ---- ---- ---- ---- Second register bank map: 00 ---- ---- ???? ???? unknown 02-07 are copies of the 02-07 registers from the first bank. Linescroll: The linescroll is controlled by the register 0b, and uses the data in the ram bank pointed by register 31. The data for tilemap starts at offset 400*n in the bank for 1000 bytes ram banks, and 800*n+2 for 2000 bytes ram banks. The scrolling information is a vector of half words separated by 1 word padding for 2000 bytes banks. This is a source-oriented linescroll, i.e. the first word is associated to the first one of the tilemap, not matter what the current scrolly position is. In per-line mode, each word indicates the horizontal scroll of the associated line. Global scrollx is ignored. In per-8 lines mode, each word associated to a line multiple of 8 indicates the horizontal scroll for that line and the 7 following ones. The other 7 words are ignored. Global scrollx is ignored. 051960/051937 ------------- Sprite generators. Designed to work in pair. The 051960 manages the sprite list and produces and address that is fed to the gfx ROMs. The data from the ROMs is sent to the 051937, along with color code and other stuff from the 051960. The 051937 outputs up to 12 bits of palette index, plus "shadow" and transparency information. Both chips are interfaced to the main CPU, through 8-bit data buses and 11 bits of address space. The 051937 sits in the range 000-007, while the 051960 in the range 400-7ff (all RAM). The main CPU can read the gfx ROM data though the 051937 data bus, while the 051960 provides the address lines. The 051960 is designed to directly address 1MB of ROM space, since it produces 18 address lines that go to two 16-bit wide ROMs (the 051937 has a 32-bit data bus to the ROMs). However, the addressing space can be increased by using one or more of the "color attribute" bits of the sprites as bank selectors. Moreover a few games store the gfx data in the ROMs in a format different from the one expected by the 051960, and use external logic to reorder the address lines. The 051960 can also genenrate IRQ, FIRQ and NMI signals. memory map: 000-007 is for the 051937, but also seen by the 051960 400-7ff is 051960 only 000 R bit 0 = unknown, looks like a status flag or something aliens waits for it to be 0 before starting to copy sprite data thndrx2 needs it to pulse for the startup checks to succeed 000 W bit 0 = irq enable/acknowledge? bit 2 = nmi enable? bit 3 = flip screen (applies to sprites only, not tilemaps) bit 4 = unknown, used by Devastators, TMNT, Aliens, Chequered Flag, maybe others aliens sets it just after checking bit 0, and before copying the sprite data bit 5 = enable gfx ROM reading 001 W Devastators sets bit 1, function unknown. Ultraman sets the register to 0x0f. None of the other games I tested seem to set this register to other than 0. 002-003 W selects the portion of the gfx ROMs to be read. 004 W Aliens uses this to select the ROM bank to be read, but Punk Shot and TMNT don't, they use another bit of the registers above. Many other games write to this register before testing. It is possible that bits 2-7 of 003 go to OC0-OC5, and bits 0-1 of 004 go to OC6-OC7. 004-007 R reads data from the gfx ROMs (32 bits in total). The address of the data is determined by the register above and by the last address accessed on the 051960; plus bank switch bits for larger ROMs. It seems that the data can also be read directly from the 051960 address space: 88 Games does this. First it reads 004 and discards the result, then it reads from the 051960 the data at the address it wants. The normal order is the opposite, read from the 051960 at the address you want, discard the result, and fetch the data from 004-007. 400-7ff RW sprite RAM, 8 bytes per sprite 053245/053244 ------------- Sprite generators. The 053245 has a 16-bit data bus to the main CPU. The sprites are buffered, a write to 006 activates to copy between the main ram and the buffer. 053244 memory map (but the 053245 sees and processes them too): 000-001 W global X offset 002-003 W global Y offset 004 W unknown 005 W bit 0 = flip screen X bit 1 = flip screen Y bit 2 = unknown, used by Parodius bit 4 = enable gfx ROM reading bit 5 = unknown, used by Rollergames 006 RW accessing this register copies the sprite ram to the internal buffer 007 W unknown 008-009 W low 16 bits of the ROM address to read 00a-00b W high bits of the ROM address to read. 3 bits for most games, 1 for asterix 00c-00f R reads data from the gfx ROMs (32 bits in total). The address of the data is determined by the registers above; plus bank switch bits for larger ROMs. 053247/053246 ------------- Sprite generators. Nothing is known about their external interface. The sprite RAM format is very similar to the 053245. 053246 memory map (but the 053247 sees and processes them too): 000-001 W global X offset 002-003 W global Y offset 004 W low 8 bits of the ROM address to read 005 W bit 0 = flip screen X bit 1 = flip screen Y bit 2 = unknown bit 4 = interrupt enable bit 5 = unknown 006-007 W high 16 bits of the ROM address to read ???-??? R reads data from the gfx ROMs (16 bits in total). The address of the data is determined by the registers above 051316 ------ Manages a 32x32 tilemap (16x16 tiles, 512x512 pixels) which can be zoomed, distorted and rotated. It uses two internal 24 bit counters which are incremented while scanning the picture. The coordinates of the pixel in the tilemap that has to be drawn to the current beam position are the counters / (2^11). The chip doesn't directly generate the color information for the pixel, it just generates a 24 bit address (whose top 16 bits are the contents of the tilemap RAM), and a "visible" signal. It's up to external circuitry to convert the address into a pixel color. Most games seem to use 4bpp graphics, but Ajax uses 7bpp. If the value in the internal counters is out of the visible range (0..511), it is truncated and the corresponding address is still generated, but the "visible" signal is not asserted. The external circuitry might ignore that signal and still generate the pixel, therefore making the tilemap a continuous playfield that wraps around instead of a large sprite. control registers 000-001 X counter starting value / 256 002-003 amount to add to the X counter after each horizontal pixel 004-005 amount to add to the X counter after each line (0 = no rotation) 006-007 Y counter starting value / 256 008-009 amount to add to the Y counter after each horizontal pixel (0 = no rotation) 00a-00b amount to add to the Y counter after each line 00c-00d ROM bank to read, used during ROM testing 00e bit 0 = enable ROM reading (active low). This only makes the chip output the requested address: the ROM is actually read externally, not through the chip's data bus. bit 1 = unknown bit 2 = unknown 00f unused 053936 ------ Evolution of the 051316. The data bus is 16-bit instead of 8-bit. When used in "simple" mode it can generate the same effects of the 051316, but it doesn't have internal tilemap RAM, so it just generates a couple of X/Y coordinates indicating the pixel to display at each moment. Therefore, the tilemap and tile sizes are not fixed. The important addition over the 051316 is 512x4 words of internal RAM used to control rotation and zoom scanline by scanline instead that on the whole screen, allowing for effects like linescroll (Super Slams) or 3D rotation of the tilemap (Golfing Greats, Premier Soccer). control registers 000 X counter starting value / 256 001 Y counter starting value / 256 002 ["simple" mode only] amount to add to the X counter after each line (0 = no rotation) 003 ["simple" mode only] amount to add to the Y counter after each line 004 ["simple" mode only] amount to add to the X counter after each horizontal pixel 005 ["simple" mode only] amount to add to the Y counter after each horizontal pixel (0 = no rotation) 006 x------- -------- when set, register (line*4)+2 must be multiplied by 256 -x------ -------- when set, registers 002 and 003 must be multiplied by 256 --xxxxxx -------- clipping for the generated address? usually 3F, Premier Soccer sets it to 07 before penalty kicks -------- x------- when set, register (line*4)+3 must be multiplied by 256 -------- -x------ when set, registers 004 and 005 must be multiplied by 256 -------- --xxxxxx clipping for the generated address? usually 3F, Premier Soccer sets it to 0F before penalty kicks 007 -------- -x------ enable "super" mode -------- --x----- unknown (enable address clipping from register 006?) -------- ---x---- unknown -------- ------x- (not sure) enable clipping with registers 008-00b 008 min x screen coordinate to draw to (only when enabled by register 7) 009 max x screen coordinate to draw to (only when enabled by register 7) 00a min y screen coordinate to draw to (only when enabled by register 7) 00b max y screen coordinate to draw to (only when enabled by register 7) 00c unknown 00d unknown 00e unknown 00f unknown additional control from extra RAM: (line*4)+0 X counter starting value / 256 (add to register 000) (line*4)+1 Y counter starting value / 256 (add to register 001) (line*4)+2 amount to add to the X counter after each horizontal pixel (line*4)+3 amount to add to the Y counter after each horizontal pixel 053251 ------ Priority encoder. The chip has inputs for 5 layers (CI0-CI4); only 4 are used (CI1-CI4) CI0-CI2 are 9(=5+4) bits inputs, CI3-CI4 8(=4+4) bits The input connctions change from game to game. E.g. in Simpsons, CI0 = grounded (background color) CI1 = sprites CI2 = FIX CI3 = A CI4 = B in lgtnfght: CI0 = grounded CI1 = sprites CI2 = FIX CI3 = B CI4 = A there are three 6 bit priority inputs, PR0-PR2 simpsons: PR0 = 111111 PR1 = xxxxx0 x bits coming from the sprite attributes PR2 = 111111 lgtnfght: PR0 = 111111 PR1 = 1xx000 x bits coming from the sprite attributes PR2 = 111111 also two shadow inputs, SDI0 and SDI1 (from the sprite attributes) the chip outputs the 11 bit palette index, CO0-CO10, and two shadow bits. 16 internal registers; registers are 6 bits wide (input is D0-D5) For the most part, their meaning is unknown All registers are write only. There must be a way to enable/disable the three external PR inputs. Some games initialize the priorities of the sprite & background layers, others don't. It isn't clear whether the data written to those registers is actually used, since the priority is taken from the external ports. 0 priority of CI0 (higher = lower priority) punkshot: unused? lgtnfght: unused? simpsons: 3f = 111111 xmen: 05 = 000101 default value xmen: 09 = 001001 used to swap CI0 and CI2 1 priority of CI1 (higher = lower priority) punkshot: 28 = 101000 lgtnfght: unused? simpsons: unused? xmen: 02 = 000010 2 priority of CI2 (higher = lower priority) punkshot: 24 = 100100 lgtnfght: 24 = 100100 simpsons: 04 = 000100 xmen: 09 = 001001 default value xmen: 05 = 000101 used to swap CI0 and CI2 3 priority of CI3 (higher = lower priority) punkshot: 34 = 110100 lgtnfght: 34 = 110100 simpsons: 28 = 101000 xmen: 00 = 000000 4 priority of CI4 (higher = lower priority) punkshot: 2c = 101100 default value punkshot: 3c = 111100 used to swap CI3 and CI4 punkshot: 26 = 100110 used to swap CI1 and CI4 lgtnfght: 2c = 101100 simpsons: 18 = 011000 xmen: fe = 111110 5 unknown punkshot: unused? lgtnfght: 2a = 101010 simpsons: unused? xmen: unused? 6 unknown punkshot: 26 = 100110 lgtnfght: 30 = 110000 simpsons: 17 = 010111 xmen: 03 = 000011 (written after initial tests) 7 unknown punkshot: unused? lgtnfght: unused? simpsons: 27 = 100111 xmen: 07 = 000111 (written after initial tests) 8 unknown punkshot: unused? lgtnfght: unused? simpsons: 37 = 110111 xmen: ff = 111111 (written after initial tests) 9 ----xx CI0 palette index base (CO9-CO10) --xx-- CI1 palette index base (CO9-CO10) xx---- CI2 palette index base (CO9-CO10) 10 ---xxx CI3 palette index base (CO8-CO10) xxx--- CI4 palette index base (CO8-CO10) 11 unknown punkshot: 00 = 000000 lgtnfght: 00 = 000000 simpsons: 00 = 000000 xmen: 00 = 000000 (written after initial tests) 12 unknown punkshot: 04 = 000100 lgtnfght: 04 = 000100 simpsons: 05 = 000101 xmen: 05 = 000101 13 unused 14 unused 15 unused 054000 ------ Sort of a protection device, used for collision detection. It is passed a few parameters, and returns a boolean telling if collision happened. It has no access to gfx data, it only does arithmetical operations on the parameters. Memory map: 00 unused 01-03 W A center X 04 W unknown, needed by thndrx2 to pass the startup check, we use a hack 05 unused 06 W A semiaxis X 07 W A semiaxis Y 08 unused 09-0b W A center Y 0c W unknown, needed by thndrx2 to pass the startup check, we use a hack 0d unused 0e W B semiaxis X 0f W B semiaxis Y 10 unused 11-13 W B center Y 14 unused 15-17 W B center X 18 R 0 = collision, 1 = no collision 051733 ------ Sort of a protection device, used for collision detection, and for arithmetical operations. It is passed a few parameters, and returns the result. Memory map(preliminary): ------------------------ 00-01 W operand 1 02-03 W operand 2 04-05 W operand 3 00-01 R operand 1 / operand 2 02-03 R operand 1 % operand 2? 04-05 R sqrt(operand 3<<16) 06 R unknown - return value written to 13? 06-07 W distance for collision check 08-09 W Y pos of obj1 0a-0b W X pos of obj1 0c-0d W Y pos of obj2 0e-0f W X pos of obj2 13 W unknown 07 R collision (0x80 = no, 0x00 = yes) 0a-0b R unknown (chequered flag), might just read back X pos 0e-0f R unknown (chequered flag), might just read back X pos Other addresses are unknown or unused. Fast Lane: ---------- $9def: This routine is called only after a collision. (R) 0x0006: unknown. Only bits 0-3 are used. Blades of Steel: ---------------- $ac2f: (R) 0x2f86: unknown. Only uses bit 0. $a5de: writes to 0x2f84-0x2f85, waits a little, and then reads from 0x2f84. $7af3: (R) 0x2f86: unknown. Only uses bit 0. Devastators: ------------ $6ce8: reads from 0x0006, and only uses bit 1. K055550 ------- Protection chip which performs a memset() operation. Used in Violent Storm and Ultimate Battler to clear VRAM between scenes, among other things. May also perform other functions since Violent Storm still isn't happy... Has word-wide registers as follows: 0: Count of units to transfer. The write here triggers the transfer. 1-6: Unknown 7: Destination address, MSW 8: Destination address, LSW 9: Unknown 10: Size of transfer units, MSW 11: Size of transfer units, LSW 12: Unknown 13: Value to fill destination region with 14-15: Unknown K055555 ------- Priority encoder. Always found in conjunction with k054338, but the reverse isn't true. The 55555 has 8 inputs: "A", "B", "C", and "D" intended for a 156/157 type tilemap chip, "OBJ" intended for a '246 type sprite chip, and "SUB1-SUB3" which can be used for 3 additional layers. When used in combintion with a k054338, each input can be chosen to participate in shadow/highlight operations, R/G/B alpha blending, and R/G/B brightness control. Per-tile priority is supported for tilemap planes A and B. There are also 3 shadow priority registers. When these are enabled, layers and sprites with a priority greater than or equal to them become a shadow, and either then gets drawn as a shadow/highlight or not at all (I'm not sure what selects this yet. Dadandarn relies on this mechanism to hide the 53936 plane when it doesn't want it visible). It also appears that brightness control and alpha blend can be decided per-tile and per-sprite, although this is not certain. Additionally the 55555 can provide a gradient background with one palette entry per scanline. This is fairly rarely used, but does turn up in Gokujou Parodius as well as the Sexy Parodius title screen. Lots of byte-wise registers. A partial map: 0: Palette index(?) for the gradient background 1: related to tilemap brightness control 2-5: COLSEL for various inputs (?) 6: COLCHG ON 7-18: priority levels (VA1/VA2/VAC/VB1/VB2/VBC/VC/VD/OBJ/S1/S2/S3) 19-22: INPRI for OBJ/S1/S2/S3 23-32: palette bases (VA/VB/VC/VD/OBJ/S1/S2/S3) 37: shadow 1 priority 38: shadow 2 priority 39: shadow 3 priority 40: shadow/highlight master enable 41: master shadow/highlight priority 42: VBRI: enables brightness control for each VRAM layer (bits: x x x x D B C A) 43: OSBRI: enables brightness control for OBJ and SUB layers, depending for OBJ on attr bits 44: OSBRI_ON: not quite sure 45: input enables. bits as follows: (MSB) S3 S2 S1 OB VD VC VB VA (LSB) k054338 ------- Color combiner engine. Designed for use with the 55555, but also found in games without one. Registers (word-wise): 0: first 8 bits unknown, second 8 bits are the R component of the background color 1: G and B components (8 bits each) of the background color 2-4: shadow 1 R/G/B (16 bits per component. In shadow mode, determines a blend value between total blackness and the original color. In highlight mode, determines a blend value between total whiteness and the original color. The hardware clamps at black or white as necessary: see the Graphics Test in many System GX games). 5-7: shadow 2 R/G/B 8-10: shadow 3 R/G/B 11-12: brightness R/G/B (external circuit such as the 55555 decides which layers this applies to) 13-14: alpha blend R/G/B (external circuit such as the 55555 decides which layers this applies to) ***************************************************************************/ #include "emu.h" #include "video/konicdev.h" #define VERBOSE 0 #define LOG(x) do { if (VERBOSE) logerror x; } while (0) #define XOR(a) WORD_XOR_BE(a) /* This recursive function doesn't use additional memory (it could be easily converted into an iterative one). It's called shuffle because it mimics the shuffling of a deck of cards. */ static void konami_shuffle_16(UINT16 *buf,int len) { int i; UINT16 t; if (len == 2) return; if (len % 4) fatalerror("shuffle() - not modulo 4"); /* must not happen */ len /= 2; for (i = 0; i < len / 2; i++) { t = buf[len / 2 + i]; buf[len / 2 + i] = buf[len + i]; buf[len + i] = t; } konami_shuffle_16(buf,len); konami_shuffle_16(buf + len,len); } static void konami_shuffle_8(UINT8 *buf,int len) { int i; UINT8 t; if (len == 2) return; if (len % 4) fatalerror("shuffle() - not modulo 4"); /* must not happen */ len /= 2; for (i = 0; i < len / 2; i++) { t = buf[len / 2 + i]; buf[len / 2 + i] = buf[len + i]; buf[len + i] = t; } konami_shuffle_8(buf,len); konami_shuffle_8(buf + len,len); } /* helper function to join two 16-bit ROMs and form a 32-bit data stream */ void konamid_rom_deinterleave_2(running_machine &machine, const char *mem_region) { konami_shuffle_16((UINT16 *)machine.region(mem_region)->base(),machine.region(mem_region)->bytes()/2); } /* hacked version of rom_deinterleave_2_half for Lethal Enforcers */ void konamid_rom_deinterleave_2_half(running_machine &machine, const char *mem_region) { UINT8 *rgn = machine.region(mem_region)->base(); konami_shuffle_16((UINT16 *)rgn,machine.region(mem_region)->bytes()/4); konami_shuffle_16((UINT16 *)(rgn+machine.region(mem_region)->bytes()/2),machine.region(mem_region)->bytes()/4); } /* helper function to join four 16-bit ROMs and form a 64-bit data stream */ void konamid_rom_deinterleave_4(running_machine &machine, const char *mem_region) { konamid_rom_deinterleave_2(machine, mem_region); konamid_rom_deinterleave_2(machine, mem_region); } static void decode_gfx(running_machine &machine, int gfx_index, UINT8 *data, UINT32 total, const gfx_layout *layout, int bpp) { gfx_layout gl; memcpy(&gl, layout, sizeof(gl)); gl.total = total; machine.gfx[gfx_index] = gfx_element_alloc(machine, &gl, data, machine.total_colors() >> bpp, 0); } static void deinterleave_gfx(running_machine &machine, const char *gfx_memory_region, int deinterleave) { switch (deinterleave) { case KONAMI_ROM_DEINTERLEAVE_NONE: break; case KONAMI_ROM_DEINTERLEAVE_2: konamid_rom_deinterleave_2(machine, gfx_memory_region); break; case KONAMI_ROM_DEINTERLEAVE_2_HALF: konamid_rom_deinterleave_2_half(machine, gfx_memory_region); break; case KONAMI_ROM_DEINTERLEAVE_4: konamid_rom_deinterleave_4(machine, gfx_memory_region); break; case KONAMI_ROM_SHUFFLE8: konami_shuffle_8(machine.region(gfx_memory_region)->base(), machine.region(gfx_memory_region)->bytes()); break; } } /* useful function to sort three tile layers by priority order */ void konami_sortlayers3( int *layer, int *pri ) { #define SWAP(a,b) \ if (pri[a] < pri[b]) \ { \ int t; \ t = pri[a]; pri[a] = pri[b]; pri[b] = t; \ t = layer[a]; layer[a] = layer[b]; layer[b] = t; \ } SWAP(0,1) SWAP(0,2) SWAP(1,2) #undef SWAP } /* useful function to sort four tile layers by priority order */ void konami_sortlayers4( int *layer, int *pri ) { #define SWAP(a,b) \ if (pri[a] <= pri[b]) \ { \ int t; \ t = pri[a]; pri[a] = pri[b]; pri[b] = t; \ t = layer[a]; layer[a] = layer[b]; layer[b] = t; \ } SWAP(0, 1) SWAP(0, 2) SWAP(0, 3) SWAP(1, 2) SWAP(1, 3) SWAP(2, 3) #undef SWAP } /* useful function to sort five tile layers by priority order */ void konami_sortlayers5( int *layer, int *pri ) { #define SWAP(a,b) \ if (pri[a] <= pri[b]) \ { \ int t; \ t = pri[a]; pri[a] = pri[b]; pri[b] = t; \ t = layer[a]; layer[a] = layer[b]; layer[b] = t; \ } SWAP(0, 1) SWAP(0, 2) SWAP(0, 3) SWAP(0, 4) SWAP(1, 2) SWAP(1, 3) SWAP(1, 4) SWAP(2, 3) SWAP(2, 4) SWAP(3, 4) #undef SWAP } /***************************************************************************/ /* */ /* 007121 */ /* */ /***************************************************************************/ typedef struct _k007121_state k007121_state ; struct _k007121_state { UINT8 ctrlram[8]; int flipscreen; }; /***************************************************************************** INLINE FUNCTIONS *****************************************************************************/ INLINE k007121_state *k007121_get_safe_token( device_t *device ) { assert(device != NULL); assert(device->type() == K007121); return (k007121_state *)downcast(device)->token(); } /***************************************************************************** DEVICE HANDLERS *****************************************************************************/ READ8_DEVICE_HANDLER( k007121_ctrlram_r ) { k007121_state *k007121 = k007121_get_safe_token(device); assert(offset < 8); return k007121->ctrlram[offset]; } WRITE8_DEVICE_HANDLER( k007121_ctrl_w ) { k007121_state *k007121 = k007121_get_safe_token(device); assert(offset < 8); switch (offset) { case 6: /* palette bank change */ if ((k007121->ctrlram[offset] & 0x30) != (data & 0x30)) tilemap_mark_all_tiles_dirty_all(device->machine()); break; case 7: k007121->flipscreen = data & 0x08; break; } k007121->ctrlram[offset] = data; } /* * Sprite Format * ------------------ * * There are 0x40 sprites, each one using 5 bytes. However the number of * sprites can be increased to 0x80 with a control register (Combat School * sets it on and off during the game). * * Byte | Bit(s) | Use * -----+-76543210-+---------------- * 0 | xxxxxxxx | sprite code * 1 | xxxx---- | color * 1 | ----xx-- | sprite code low 2 bits for 16x8/8x8 sprites * 1 | ------xx | sprite code bank bits 1/0 * 2 | xxxxxxxx | y position * 3 | xxxxxxxx | x position (low 8 bits) * 4 | xx------ | sprite code bank bits 3/2 * 4 | --x----- | flip y * 4 | ---x---- | flip x * 4 | ----xxx- | sprite size 000=16x16 001=16x8 010=8x16 011=8x8 100=32x32 * 4 | -------x | x position (high bit) * * Flack Attack uses a different, "wider" layout with 32 bytes per sprite, * mapped as follows, and the priority order is reversed. Maybe it is a * compatibility mode with an older custom IC. It is not known how this * alternate layout is selected. * * 0 -> e * 1 -> f * 2 -> 6 * 3 -> 4 * 4 -> 8 * */ void k007121_sprites_draw( device_t *device, bitmap_t *bitmap, const rectangle *cliprect, gfx_element *gfx, colortable_t *ctable, const UINT8 *source, int base_color, int global_x_offset, int bank_base, UINT32 pri_mask ) { k007121_state *k007121 = k007121_get_safe_token(device); // const gfx_element *gfx = gfxs[chip]; bitmap_t *priority_bitmap = gfx->machine().priority_bitmap; int flipscreen = k007121->flipscreen; int i, num, inc, offs[5]; int is_flakatck = (ctable == NULL); if (is_flakatck) { num = 0x40; inc = -0x20; source += 0x3f * 0x20; offs[0] = 0x0e; offs[1] = 0x0f; offs[2] = 0x06; offs[3] = 0x04; offs[4] = 0x08; } else /* all others */ { /* TODO: sprite limit is supposed to be per-line! (check MT #00185) */ num = 0x40; //num = (k007121->ctrlram[0x03] & 0x40) ? 0x80 : 0x40; /* WRONG!!! (needed by combatsc) */ inc = 5; offs[0] = 0x00; offs[1] = 0x01; offs[2] = 0x02; offs[3] = 0x03; offs[4] = 0x04; /* when using priority buffer, draw front to back */ if (pri_mask != -1) { source += (num - 1)*inc; inc = -inc; } } for (i = 0; i < num; i++) { int number = source[offs[0]]; /* sprite number */ int sprite_bank = source[offs[1]] & 0x0f; /* sprite bank */ int sx = source[offs[3]]; /* vertical position */ int sy = source[offs[2]]; /* horizontal position */ int attr = source[offs[4]]; /* attributes */ int xflip = source[offs[4]] & 0x10; /* flip x */ int yflip = source[offs[4]] & 0x20; /* flip y */ int color = base_color + ((source[offs[1]] & 0xf0) >> 4); int width, height; int transparent_mask; static const int x_offset[4] = {0x0,0x1,0x4,0x5}; static const int y_offset[4] = {0x0,0x2,0x8,0xa}; int x,y, ex, ey, flipx, flipy, destx, desty; if (attr & 0x01) sx -= 256; if (sy >= 240) sy -= 256; number += ((sprite_bank & 0x3) << 8) + ((attr & 0xc0) << 4); number = number << 2; number += (sprite_bank >> 2) & 3; /* Flak Attack doesn't use a lookup PROM, it maps the color code directly */ /* to a palette entry */ if (is_flakatck) transparent_mask = 1 << 0; else transparent_mask = colortable_get_transpen_mask(ctable, gfx, color, 0); if (!is_flakatck || source[0x00]) /* Flak Attack needs this */ { number += bank_base; switch (attr & 0xe) { case 0x06: width = height = 1; break; case 0x04: width = 1; height = 2; number &= (~2); break; case 0x02: width = 2; height = 1; number &= (~1); break; case 0x00: width = height = 2; number &= (~3); break; case 0x08: width = height = 4; number &= (~3); break; default: width = 1; height = 1; // logerror("Unknown sprite size %02x\n", attr & 0xe); // popmessage("Unknown sprite size %02x\n", attr & 0xe); } for (y = 0; y < height; y++) { for (x = 0; x < width; x++) { ex = xflip ? (width - 1 - x) : x; ey = yflip ? (height - 1 - y) : y; if (flipscreen) { flipx = !xflip; flipy = !yflip; destx = 248 - (sx + x * 8); desty = 248 - (sy + y * 8); } else { flipx = xflip; flipy = yflip; destx = global_x_offset + sx + x * 8; desty = sy + y * 8; } if (pri_mask != -1) pdrawgfx_transmask(bitmap,cliprect,gfx, number + x_offset[ex] + y_offset[ey], color, flipx,flipy, destx,desty, priority_bitmap,pri_mask, transparent_mask); else drawgfx_transmask(bitmap,cliprect,gfx, number + x_offset[ex] + y_offset[ey], color, flipx,flipy, destx,desty, transparent_mask); } } } source += inc; } } /***************************************************************************** DEVICE INTERFACE *****************************************************************************/ static DEVICE_START( k007121 ) { k007121_state *k007121 = k007121_get_safe_token(device); device->save_item(NAME(k007121->ctrlram)); device->save_item(NAME(k007121->flipscreen)); } static DEVICE_RESET( k007121 ) { k007121_state *k007121 = k007121_get_safe_token(device); int i; k007121->flipscreen = 0; for (i = 0; i < 8; i++) k007121->ctrlram[i] = 0; } /***************************************************************************/ /* */ /* 007342 */ /* */ /***************************************************************************/ typedef struct _k007342_state k007342_state; struct _k007342_state { UINT8 *ram; UINT8 *scroll_ram; UINT8 *videoram_0; UINT8 *videoram_1; UINT8 *colorram_0; UINT8 *colorram_1; tilemap_t *tilemap[2]; int flipscreen, gfxnum, int_enabled; UINT8 regs[8]; UINT16 scrollx[2]; UINT8 scrolly[2]; k007342_callback callback; }; /***************************************************************************** INLINE FUNCTIONS *****************************************************************************/ INLINE k007342_state *k007342_get_safe_token( device_t *device ) { assert(device != NULL); assert(device->type() == K007342); return (k007342_state *)downcast(device)->token(); } INLINE const k007342_interface *k007342_get_interface( device_t *device ) { assert(device != NULL); assert((device->type() == K007342)); return (const k007342_interface *) device->static_config(); } /***************************************************************************** DEVICE HANDLERS *****************************************************************************/ READ8_DEVICE_HANDLER( k007342_r ) { k007342_state *k007342 = k007342_get_safe_token(device); return k007342->ram[offset]; } WRITE8_DEVICE_HANDLER( k007342_w ) { k007342_state *k007342 = k007342_get_safe_token(device); k007342->ram[offset] = data; if (offset < 0x1000) /* layer 0 */ tilemap_mark_tile_dirty(k007342->tilemap[0], offset & 0x7ff); else /* layer 1 */ tilemap_mark_tile_dirty(k007342->tilemap[1], offset & 0x7ff); } READ8_DEVICE_HANDLER( k007342_scroll_r ) { k007342_state *k007342 = k007342_get_safe_token(device); return k007342->scroll_ram[offset]; } WRITE8_DEVICE_HANDLER( k007342_scroll_w ) { k007342_state *k007342 = k007342_get_safe_token(device); k007342->scroll_ram[offset] = data; } WRITE8_DEVICE_HANDLER( k007342_vreg_w ) { k007342_state *k007342 = k007342_get_safe_token(device); switch(offset) { case 0x00: /* bit 1: INT control */ k007342->int_enabled = data & 0x02; k007342->flipscreen = data & 0x10; tilemap_set_flip(k007342->tilemap[0], k007342->flipscreen ? (TILEMAP_FLIPY | TILEMAP_FLIPX) : 0); tilemap_set_flip(k007342->tilemap[1], k007342->flipscreen ? (TILEMAP_FLIPY | TILEMAP_FLIPX) : 0); break; case 0x01: /* used for banking in Rock'n'Rage */ if (data != k007342->regs[1]) tilemap_mark_all_tiles_dirty_all(device->machine()); case 0x02: k007342->scrollx[0] = (k007342->scrollx[0] & 0xff) | ((data & 0x01) << 8); k007342->scrollx[1] = (k007342->scrollx[1] & 0xff) | ((data & 0x02) << 7); break; case 0x03: /* scroll x (register 0) */ k007342->scrollx[0] = (k007342->scrollx[0] & 0x100) | data; break; case 0x04: /* scroll y (register 0) */ k007342->scrolly[0] = data; break; case 0x05: /* scroll x (register 1) */ k007342->scrollx[1] = (k007342->scrollx[1] & 0x100) | data; break; case 0x06: /* scroll y (register 1) */ k007342->scrolly[1] = data; case 0x07: /* unused */ break; } k007342->regs[offset] = data; } void k007342_tilemap_update( device_t *device ) { k007342_state *k007342 = k007342_get_safe_token(device); int offs; /* update scroll */ switch (k007342->regs[2] & 0x1c) { case 0x00: case 0x08: /* unknown, blades of steel shootout between periods */ tilemap_set_scroll_rows(k007342->tilemap[0], 1); tilemap_set_scroll_cols(k007342->tilemap[0], 1); tilemap_set_scrollx(k007342->tilemap[0], 0, k007342->scrollx[0]); tilemap_set_scrolly(k007342->tilemap[0], 0, k007342->scrolly[0]); break; case 0x0c: /* 32 columns */ tilemap_set_scroll_rows(k007342->tilemap[0], 1); tilemap_set_scroll_cols(k007342->tilemap[0], 512); tilemap_set_scrollx(k007342->tilemap[0], 0, k007342->scrollx[0]); for (offs = 0; offs < 256; offs++) tilemap_set_scrolly(k007342->tilemap[0], (offs + k007342->scrollx[0]) & 0x1ff, k007342->scroll_ram[2 * (offs / 8)] + 256 * k007342->scroll_ram[2 * (offs / 8) + 1]); break; case 0x14: /* 256 rows */ tilemap_set_scroll_rows(k007342->tilemap[0], 256); tilemap_set_scroll_cols(k007342->tilemap[0], 1); tilemap_set_scrolly(k007342->tilemap[0], 0, k007342->scrolly[0]); for (offs = 0; offs < 256; offs++) tilemap_set_scrollx(k007342->tilemap[0], (offs + k007342->scrolly[0]) & 0xff, k007342->scroll_ram[2 * offs] + 256 * k007342->scroll_ram[2 * offs + 1]); break; default: // popmessage("unknown scroll ctrl %02x", k007342->regs[2] & 0x1c); break; } tilemap_set_scrollx(k007342->tilemap[1], 0, k007342->scrollx[1]); tilemap_set_scrolly(k007342->tilemap[1], 0, k007342->scrolly[1]); #if 0 { static int current_layer = 0; if (machine.input().code_pressed_once(KEYCODE_Z)) current_layer = !current_layer; tilemap_set_enable(k007342->tilemap[current_layer], 1); tilemap_set_enable(k007342->tilemap[!current_layer], 0); popmessage("regs:%02x %02x %02x %02x-%02x %02x %02x %02x:%02x", k007342->regs[0], k007342->regs[1], k007342->regs[2], k007342->regs[3], k007342->regs[4], k007342->regs[5], k007342->regs[6], k007342->regs[7], current_layer); } #endif } void k007342_tilemap_draw( device_t *device, bitmap_t *bitmap, const rectangle *cliprect, int num, int flags, UINT32 priority ) { k007342_state *k007342 = k007342_get_safe_token(device); tilemap_draw(bitmap, cliprect, k007342->tilemap[num], flags, priority); } int k007342_is_int_enabled( device_t *device ) { k007342_state *k007342 = k007342_get_safe_token(device); return k007342->int_enabled; } /*************************************************************************** Callbacks for the TileMap code ***************************************************************************/ /* data format: video RAM xxxxxxxx tile number (bits 0-7) color RAM x------- tiles with priority over the sprites color RAM -x------ depends on external conections color RAM --x----- flip Y color RAM ---x---- flip X color RAM ----xxxx depends on external connections (usually color and banking) */ static TILEMAP_MAPPER( k007342_scan ) { /* logical (col,row) -> memory offset */ return (col & 0x1f) + ((row & 0x1f) << 5) + ((col & 0x20) << 5); } INLINE void k007342_get_tile_info( device_t *device, tile_data *tileinfo, int tile_index, int layer, UINT8 *cram, UINT8 *vram ) { k007342_state *k007342 = k007342_get_safe_token(device); int color, code, flags; color = cram[tile_index]; code = vram[tile_index]; flags = TILE_FLIPYX((color & 0x30) >> 4); tileinfo->category = (color & 0x80) >> 7; k007342->callback(device->machine(), layer, k007342->regs[1], &code, &color, &flags); SET_TILE_INFO_DEVICE( k007342->gfxnum, code, color, flags); } static TILE_GET_INFO_DEVICE( k007342_get_tile_info0 ) { k007342_state *k007342 = k007342_get_safe_token(device); k007342_get_tile_info(device, tileinfo, tile_index, 0, k007342->colorram_0, k007342->videoram_0); } static TILE_GET_INFO_DEVICE( k007342_get_tile_info1 ) { k007342_state *k007342 = k007342_get_safe_token(device); k007342_get_tile_info(device, tileinfo, tile_index, 1, k007342->colorram_1, k007342->videoram_1); } /***************************************************************************** DEVICE INTERFACE *****************************************************************************/ static DEVICE_START( k007342 ) { k007342_state *k007342 = k007342_get_safe_token(device); const k007342_interface *intf = k007342_get_interface(device); k007342->gfxnum = intf->gfxnum; k007342->callback = intf->callback; k007342->tilemap[0] = tilemap_create_device(device, k007342_get_tile_info0, k007342_scan, 8, 8, 64, 32); k007342->tilemap[1] = tilemap_create_device(device, k007342_get_tile_info1, k007342_scan, 8, 8, 64, 32); k007342->ram = auto_alloc_array(device->machine(), UINT8, 0x2000); k007342->scroll_ram = auto_alloc_array(device->machine(), UINT8, 0x0200); k007342->colorram_0 = &k007342->ram[0x0000]; k007342->colorram_1 = &k007342->ram[0x1000]; k007342->videoram_0 = &k007342->ram[0x0800]; k007342->videoram_1 = &k007342->ram[0x1800]; tilemap_set_transparent_pen(k007342->tilemap[0], 0); tilemap_set_transparent_pen(k007342->tilemap[1], 0); device->save_pointer(NAME(k007342->ram), 0x2000); device->save_pointer(NAME(k007342->scroll_ram), 0x0200); device->save_item(NAME(k007342->int_enabled)); device->save_item(NAME(k007342->flipscreen)); device->save_item(NAME(k007342->scrollx)); device->save_item(NAME(k007342->scrolly)); device->save_item(NAME(k007342->regs)); } static DEVICE_RESET( k007342 ) { k007342_state *k007342 = k007342_get_safe_token(device); int i; k007342->int_enabled = 0; k007342->flipscreen = 0; k007342->scrollx[0] = 0; k007342->scrollx[1] = 0; k007342->scrolly[0] = 0; k007342->scrolly[1] = 0; for (i = 0; i < 8; i++) k007342->regs[i] = 0; } /***************************************************************************/ /* */ /* 007420 */ /* */ /***************************************************************************/ typedef struct _k007420_state k007420_state; struct _k007420_state { UINT8 *ram; int banklimit; int flipscreen; // current code uses the 7342 flipscreen!! UINT8 regs[8]; // current code uses the 7342 regs!! (only [2]) k007420_callback callback; }; /***************************************************************************** INLINE FUNCTIONS *****************************************************************************/ INLINE k007420_state *k007420_get_safe_token( device_t *device ) { assert(device != NULL); assert(device->type() == K007420); return (k007420_state *)downcast(device)->token(); } INLINE const k007420_interface *k007420_get_interface( device_t *device ) { assert(device != NULL); assert((device->type() == K007420)); return (const k007420_interface *) device->static_config(); } /***************************************************************************** DEVICE HANDLERS *****************************************************************************/ READ8_DEVICE_HANDLER( k007420_r ) { k007420_state *k007420 = k007420_get_safe_token(device); return k007420->ram[offset]; } WRITE8_DEVICE_HANDLER( k007420_w ) { k007420_state *k007420 = k007420_get_safe_token(device); k007420->ram[offset] = data; } /* * Sprite Format * ------------------ * * Byte | Bit(s) | Use * -----+-76543210-+---------------- * 0 | xxxxxxxx | y position * 1 | xxxxxxxx | sprite code (low 8 bits) * 2 | xxxxxxxx | depends on external conections. Usually banking * 3 | xxxxxxxx | x position (low 8 bits) * 4 | x------- | x position (high bit) * 4 | -xxx---- | sprite size 000=16x16 001=8x16 010=16x8 011=8x8 100=32x32 * 4 | ----x--- | flip y * 4 | -----x-- | flip x * 4 | ------xx | zoom (bits 8 & 9) * 5 | xxxxxxxx | zoom (low 8 bits) 0x080 = normal, < 0x80 enlarge, > 0x80 reduce * 6 | xxxxxxxx | unused * 7 | xxxxxxxx | unused */ void k007420_sprites_draw( device_t *device, bitmap_t *bitmap, const rectangle *cliprect, gfx_element *gfx ) { k007420_state *k007420 = k007420_get_safe_token(device); int offs; int codemask = k007420->banklimit; int bankmask = ~k007420->banklimit; for (offs = K007420_SPRITERAM_SIZE - 8; offs >= 0; offs -= 8) { int ox, oy, code, color, flipx, flipy, zoom, w, h, x, y, bank; static const int xoffset[4] = { 0, 1, 4, 5 }; static const int yoffset[4] = { 0, 2, 8, 10 }; code = k007420->ram[offs + 1]; color = k007420->ram[offs + 2]; ox = k007420->ram[offs + 3] - ((k007420->ram[offs + 4] & 0x80) << 1); oy = 256 - k007420->ram[offs + 0]; flipx = k007420->ram[offs + 4] & 0x04; flipy = k007420->ram[offs + 4] & 0x08; k007420->callback(device->machine(), &code, &color); bank = code & bankmask; code &= codemask; /* 0x080 = normal scale, 0x040 = double size, 0x100 half size */ zoom = k007420->ram[offs + 5] | ((k007420->ram[offs + 4] & 0x03) << 8); if (!zoom) continue; zoom = 0x10000 * 128 / zoom; switch (k007420->ram[offs + 4] & 0x70) { case 0x30: w = h = 1; break; case 0x20: w = 2; h = 1; code &= (~1); break; case 0x10: w = 1; h = 2; code &= (~2); break; case 0x00: w = h = 2; code &= (~3); break; case 0x40: w = h = 4; code &= (~3); break; default: w = 1; h = 1; //logerror("Unknown sprite size %02x\n",(k007420->ram[offs + 4] & 0x70) >> 4); } if (k007420->flipscreen) { ox = 256 - ox - ((zoom * w + (1 << 12)) >> 13); oy = 256 - oy - ((zoom * h + (1 << 12)) >> 13); flipx = !flipx; flipy = !flipy; } if (zoom == 0x10000) { int sx, sy; for (y = 0; y < h; y++) { sy = oy + 8 * y; for (x = 0; x < w; x++) { int c = code; sx = ox + 8 * x; if (flipx) c += xoffset[(w - 1 - x)]; else c += xoffset[x]; if (flipy) c += yoffset[(h - 1 - y)]; else c += yoffset[y]; if (c & bankmask) continue; else c += bank; drawgfx_transpen(bitmap,cliprect,gfx, c, color, flipx,flipy, sx,sy,0); if (k007420->regs[2] & 0x80) drawgfx_transpen(bitmap,cliprect,gfx, c, color, flipx,flipy, sx,sy-256,0); } } } else { int sx, sy, zw, zh; for (y = 0; y < h; y++) { sy = oy + ((zoom * y + (1 << 12)) >> 13); zh = (oy + ((zoom * (y + 1) + (1 << 12)) >> 13)) - sy; for (x = 0; x < w; x++) { int c = code; sx = ox + ((zoom * x + (1<<12)) >> 13); zw = (ox + ((zoom * (x + 1) + (1 << 12)) >> 13)) - sx; if (flipx) c += xoffset[(w - 1 - x)]; else c += xoffset[x]; if (flipy) c += yoffset[(h - 1 - y)]; else c += yoffset[y]; if (c & bankmask) continue; else c += bank; drawgfxzoom_transpen(bitmap,cliprect,gfx, c, color, flipx,flipy, sx,sy, (zw << 16) / 8,(zh << 16) / 8,0); if (k007420->regs[2] & 0x80) drawgfxzoom_transpen(bitmap,cliprect,gfx, c, color, flipx,flipy, sx,sy-256, (zw << 16) / 8,(zh << 16) / 8,0); } } } } #if 0 { static int current_sprite = 0; if (machine.input().code_pressed_once(KEYCODE_Z)) current_sprite = (current_sprite+1) & ((K007420_SPRITERAM_SIZE/8)-1); if (machine.input().code_pressed_once(KEYCODE_X)) current_sprite = (current_sprite-1) & ((K007420_SPRITERAM_SIZE/8)-1); popmessage("%02x:%02x %02x %02x %02x %02x %02x %02x %02x", current_sprite, k007420->ram[(current_sprite*8)+0], k007420->ram[(current_sprite*8)+1], k007420->ram[(current_sprite*8)+2], k007420->ram[(current_sprite*8)+3], k007420->ram[(current_sprite*8)+4], k007420->ram[(current_sprite*8)+5], k007420->ram[(current_sprite*8)+6], k007420->ram[(current_sprite*8)+7]); } #endif } /***************************************************************************** DEVICE INTERFACE *****************************************************************************/ static DEVICE_START( k007420 ) { k007420_state *k007420 = k007420_get_safe_token(device); const k007420_interface *intf = k007420_get_interface(device); k007420->callback = intf->callback; k007420->banklimit = intf->banklimit; k007420->ram = auto_alloc_array(device->machine(), UINT8, 0x200); device->save_pointer(NAME(k007420->ram), 0x200); device->save_item(NAME(k007420->flipscreen)); // current one uses 7342 one device->save_item(NAME(k007420->regs)); // current one uses 7342 ones } static DEVICE_RESET( k007420 ) { k007420_state *k007420 = k007420_get_safe_token(device); int i; k007420->flipscreen = 0; for (i = 0; i < 8; i++) k007420->regs[i] = 0; } /***************************************************************************/ /* */ /* 052109 */ /* */ /***************************************************************************/ typedef struct _k052109_state k052109_state; struct _k052109_state { UINT8 *ram; UINT8 *videoram_F; UINT8 *videoram_A; UINT8 *videoram_B; UINT8 *videoram2_F; UINT8 *videoram2_A; UINT8 *videoram2_B; UINT8 *colorram_F; UINT8 *colorram_A; UINT8 *colorram_B; tilemap_t *tilemap[3]; int tileflip_enable, gfxnum; UINT8 charrombank[4]; UINT8 charrombank_2[4]; UINT8 has_extra_video_ram; INT32 rmrd_line; UINT8 irq_enabled; INT32 dx[3], dy[3]; UINT8 romsubbank, scrollctrl; k052109_callback callback; const char *memory_region; }; /***************************************************************************** INLINE FUNCTIONS *****************************************************************************/ INLINE k052109_state *k052109_get_safe_token( device_t *device ) { assert(device != NULL); assert(device->type() == K052109); return (k052109_state *)downcast(device)->token(); } INLINE const k052109_interface *k052109_get_interface( device_t *device ) { assert(device != NULL); assert((device->type() == K052109)); return (const k052109_interface *) device->static_config(); } /***************************************************************************** DEVICE HANDLERS *****************************************************************************/ READ8_DEVICE_HANDLER( k052109_r ) { k052109_state *k052109 = k052109_get_safe_token(device); if (k052109->rmrd_line == CLEAR_LINE) { if ((offset & 0x1fff) >= 0x1800) { if (offset >= 0x180c && offset < 0x1834) { /* A y scroll */ } else if (offset >= 0x1a00 && offset < 0x1c00) { /* A x scroll */ } else if (offset == 0x1d00) { /* read for bitwise operations before writing */ } else if (offset >= 0x380c && offset < 0x3834) { /* B y scroll */ } else if (offset >= 0x3a00 && offset < 0x3c00) { /* B x scroll */ } // else //logerror("%04x: read from unknown 052109 address %04x\n",cpu_get_pc(&space->device()),offset); } return k052109->ram[offset]; } else /* Punk Shot and TMNT read from 0000-1fff, Aliens from 2000-3fff */ { int code = (offset & 0x1fff) >> 5; int color = k052109->romsubbank; int flags = 0; int priority = 0; int bank = k052109->charrombank[(color & 0x0c) >> 2] >> 2; /* discard low bits (TMNT) */ int addr; bank |= (k052109->charrombank_2[(color & 0x0c) >> 2] >> 2); // Surprise Attack uses this 2nd bank in the rom test if (k052109->has_extra_video_ram) code |= color << 8; /* kludge for X-Men */ else k052109->callback(device->machine(), 0, bank, &code, &color, &flags, &priority); addr = (code << 5) + (offset & 0x1f); addr &= device->machine().region(k052109->memory_region)->bytes() - 1; // logerror("%04x: off = %04x sub = %02x (bnk = %x) adr = %06x\n", cpu_get_pc(&space->device()), offset, k052109->romsubbank, bank, addr); return device->machine().region(k052109->memory_region)->base()[addr]; } } WRITE8_DEVICE_HANDLER( k052109_w ) { k052109_state *k052109 = k052109_get_safe_token(device); if ((offset & 0x1fff) < 0x1800) /* tilemap RAM */ { if (offset >= 0x4000) k052109->has_extra_video_ram = 1; /* kludge for X-Men */ k052109->ram[offset] = data; tilemap_mark_tile_dirty(k052109->tilemap[(offset & 0x1800) >> 11],offset & 0x7ff); } else /* control registers */ { k052109->ram[offset] = data; if (offset >= 0x180c && offset < 0x1834) { /* A y scroll */ } else if (offset >= 0x1a00 && offset < 0x1c00) { /* A x scroll */ } else if (offset == 0x1c80) { if (k052109->scrollctrl != data) { //popmessage("scrollcontrol = %02x", data); //logerror("%04x: rowscrollcontrol = %02x\n", cpu_get_pc(&space->device()), data); k052109->scrollctrl = data; } } else if (offset == 0x1d00) { //logerror("%04x: 052109 register 1d00 = %02x\n", cpu_get_pc(&space->device()), data); /* bit 2 = irq enable */ /* the custom chip can also generate NMI and FIRQ, for use with a 6809 */ k052109->irq_enabled = data & 0x04; } else if (offset == 0x1d80) { int dirty = 0; if (k052109->charrombank[0] != (data & 0x0f)) dirty |= 1; if (k052109->charrombank[1] != ((data >> 4) & 0x0f)) dirty |= 2; if (dirty) { int i; k052109->charrombank[0] = data & 0x0f; k052109->charrombank[1] = (data >> 4) & 0x0f; for (i = 0; i < 0x1800; i++) { int bank = (k052109->ram[i]&0x0c) >> 2; if ((bank == 0 && (dirty & 1)) || (bank == 1 && (dirty & 2))) { tilemap_mark_tile_dirty(k052109->tilemap[(i & 0x1800) >> 11], i & 0x7ff); } } } } else if (offset == 0x1e00 || offset == 0x3e00) // Surprise Attack uses offset 0x3e00 { //logerror("%04x: 052109 register 1e00 = %02x\n",cpu_get_pc(&space->device()),data); k052109->romsubbank = data; } else if (offset == 0x1e80) { //if ((data & 0xfe)) logerror("%04x: 052109 register 1e80 = %02x\n",cpu_get_pc(&space->device()),data); tilemap_set_flip(k052109->tilemap[0], (data & 1) ? (TILEMAP_FLIPY | TILEMAP_FLIPX) : 0); tilemap_set_flip(k052109->tilemap[1], (data & 1) ? (TILEMAP_FLIPY | TILEMAP_FLIPX) : 0); tilemap_set_flip(k052109->tilemap[2], (data & 1) ? (TILEMAP_FLIPY | TILEMAP_FLIPX) : 0); if (k052109->tileflip_enable != ((data & 0x06) >> 1)) { k052109->tileflip_enable = ((data & 0x06) >> 1); tilemap_mark_all_tiles_dirty(k052109->tilemap[0]); tilemap_mark_all_tiles_dirty(k052109->tilemap[1]); tilemap_mark_all_tiles_dirty(k052109->tilemap[2]); } } else if (offset == 0x1f00) { int dirty = 0; if (k052109->charrombank[2] != (data & 0x0f)) dirty |= 1; if (k052109->charrombank[3] != ((data >> 4) & 0x0f)) dirty |= 2; if (dirty) { int i; k052109->charrombank[2] = data & 0x0f; k052109->charrombank[3] = (data >> 4) & 0x0f; for (i = 0; i < 0x1800; i++) { int bank = (k052109->ram[i] & 0x0c) >> 2; if ((bank == 2 && (dirty & 1)) || (bank == 3 && (dirty & 2))) tilemap_mark_tile_dirty(k052109->tilemap[(i & 0x1800) >> 11],i & 0x7ff); } } } else if (offset >= 0x380c && offset < 0x3834) { /* B y scroll */ } else if (offset >= 0x3a00 && offset < 0x3c00) { /* B x scroll */ } else if (offset == 0x3d80) // Surprise Attack uses offset 0x3d80 in rom test { // mirroring this write, breaks Surprise Attack in game tilemaps k052109->charrombank_2[0] = data & 0x0f; k052109->charrombank_2[1] = (data >> 4) & 0x0f; } else if (offset == 0x3f00) // Surprise Attack uses offset 0x3f00 in rom test { // mirroring this write, breaks Surprise Attack in game tilemaps k052109->charrombank_2[2] = data & 0x0f; k052109->charrombank_2[3] = (data >> 4) & 0x0f; } // else // logerror("%04x: write %02x to unknown 052109 address %04x\n",cpu_get_pc(&space->device()),data,offset); } } READ16_DEVICE_HANDLER( k052109_word_r ) { return k052109_r(device, offset + 0x2000) | (k052109_r(device, offset) << 8); } WRITE16_DEVICE_HANDLER( k052109_word_w ) { if (ACCESSING_BITS_8_15) k052109_w(device, offset, (data >> 8) & 0xff); if (ACCESSING_BITS_0_7) k052109_w(device, offset + 0x2000, data & 0xff); } READ16_DEVICE_HANDLER( k052109_lsb_r ) { return k052109_r(device, offset); } WRITE16_DEVICE_HANDLER( k052109_lsb_w ) { if(ACCESSING_BITS_0_7) k052109_w(device, offset, data & 0xff); } void k052109_set_rmrd_line( device_t *device, int state ) { k052109_state *k052109 = k052109_get_safe_token(device); k052109->rmrd_line = state; } int k052109_get_rmrd_line(device_t *device ) { k052109_state *k052109 = k052109_get_safe_token(device); return k052109->rmrd_line; } void k052109_tilemap_mark_dirty( device_t *device, int tmap_num ) { k052109_state *k052109 = k052109_get_safe_token(device); tilemap_mark_all_tiles_dirty(k052109->tilemap[tmap_num]); } void k052109_tilemap_update( device_t *device ) { k052109_state *k052109 = k052109_get_safe_token(device); int xscroll, yscroll, offs; #if 0 { popmessage("%x %x %x %x", k052109->charrombank[0], k052109->charrombank[1], k052109->charrombank[2], k052109->charrombank[3]); } #endif if ((k052109->scrollctrl & 0x03) == 0x02) { UINT8 *scrollram = &k052109->ram[0x1a00]; tilemap_set_scroll_rows(k052109->tilemap[1], 256); tilemap_set_scroll_cols(k052109->tilemap[1], 1); yscroll = k052109->ram[0x180c]; tilemap_set_scrolly(k052109->tilemap[1], 0, yscroll + k052109->dy[1]); for (offs = 0; offs < 256; offs++) { xscroll = scrollram[2 * (offs & 0xfff8) + 0] + 256 * scrollram[2 * (offs & 0xfff8) + 1]; xscroll -= 6; tilemap_set_scrollx(k052109->tilemap[1], (offs + yscroll) & 0xff, xscroll + k052109->dx[1]); } } else if ((k052109->scrollctrl & 0x03) == 0x03) { UINT8 *scrollram = &k052109->ram[0x1a00]; tilemap_set_scroll_rows(k052109->tilemap[1], 256); tilemap_set_scroll_cols(k052109->tilemap[1], 1); yscroll = k052109->ram[0x180c]; tilemap_set_scrolly(k052109->tilemap[1], 0, yscroll + k052109->dy[1]); for (offs = 0; offs < 256; offs++) { xscroll = scrollram[2 * offs + 0] + 256 * scrollram[2 * offs + 1]; xscroll -= 6; tilemap_set_scrollx(k052109->tilemap[1], (offs + yscroll) & 0xff, xscroll + k052109->dx[1]); } } else if ((k052109->scrollctrl & 0x04) == 0x04) { UINT8 *scrollram = &k052109->ram[0x1800]; tilemap_set_scroll_rows(k052109->tilemap[1], 1); tilemap_set_scroll_cols(k052109->tilemap[1], 512); xscroll = k052109->ram[0x1a00] + 256 * k052109->ram[0x1a01]; xscroll -= 6; tilemap_set_scrollx(k052109->tilemap[1], 0, xscroll + k052109->dx[1]); for (offs = 0; offs < 512; offs++) { yscroll = scrollram[offs / 8]; tilemap_set_scrolly(k052109->tilemap[1], (offs + xscroll) & 0x1ff, yscroll + k052109->dy[1]); } } else { UINT8 *scrollram = &k052109->ram[0x1a00]; tilemap_set_scroll_rows(k052109->tilemap[1], 1); tilemap_set_scroll_cols(k052109->tilemap[1], 1); xscroll = scrollram[0] + 256 * scrollram[1]; xscroll -= 6; yscroll = k052109->ram[0x180c]; tilemap_set_scrollx(k052109->tilemap[1], 0, xscroll + k052109->dx[1]); tilemap_set_scrolly(k052109->tilemap[1], 0, yscroll + k052109->dy[1]); } if ((k052109->scrollctrl & 0x18) == 0x10) { UINT8 *scrollram = &k052109->ram[0x3a00]; tilemap_set_scroll_rows(k052109->tilemap[2], 256); tilemap_set_scroll_cols(k052109->tilemap[2], 1); yscroll = k052109->ram[0x380c]; tilemap_set_scrolly(k052109->tilemap[2], 0, yscroll + k052109->dy[2]); for (offs = 0; offs < 256; offs++) { xscroll = scrollram[2 * (offs & 0xfff8) + 0] + 256 * scrollram[2 * (offs & 0xfff8) + 1]; xscroll -= 6; tilemap_set_scrollx(k052109->tilemap[2], (offs + yscroll) & 0xff, xscroll + k052109->dx[2]); } } else if ((k052109->scrollctrl & 0x18) == 0x18) { UINT8 *scrollram = &k052109->ram[0x3a00]; tilemap_set_scroll_rows(k052109->tilemap[2], 256); tilemap_set_scroll_cols(k052109->tilemap[2], 1); yscroll = k052109->ram[0x380c]; tilemap_set_scrolly(k052109->tilemap[2], 0, yscroll + k052109->dy[2]); for (offs = 0; offs < 256; offs++) { xscroll = scrollram[2 * offs + 0] + 256 * scrollram[2 * offs + 1]; xscroll -= 6; tilemap_set_scrollx(k052109->tilemap[2], (offs + yscroll) & 0xff, xscroll + k052109->dx[2]); } } else if ((k052109->scrollctrl & 0x20) == 0x20) { UINT8 *scrollram = &k052109->ram[0x3800]; tilemap_set_scroll_rows(k052109->tilemap[2], 1); tilemap_set_scroll_cols(k052109->tilemap[2], 512); xscroll = k052109->ram[0x3a00] + 256 * k052109->ram[0x3a01]; xscroll -= 6; tilemap_set_scrollx(k052109->tilemap[2], 0, xscroll + k052109->dx[2]); for (offs = 0; offs < 512; offs++) { yscroll = scrollram[offs / 8]; tilemap_set_scrolly(k052109->tilemap[2], (offs + xscroll) & 0x1ff, yscroll + k052109->dy[2]); } } else { UINT8 *scrollram = &k052109->ram[0x3a00]; tilemap_set_scroll_rows(k052109->tilemap[2], 1); tilemap_set_scroll_cols(k052109->tilemap[2], 1); xscroll = scrollram[0] + 256 * scrollram[1]; xscroll -= 6; yscroll = k052109->ram[0x380c]; tilemap_set_scrollx(k052109->tilemap[2], 0, xscroll + k052109->dx[2]); tilemap_set_scrolly(k052109->tilemap[2], 0, yscroll + k052109->dy[2]); } #if 0 if ((k052109->scrollctrl & 0x03) == 0x01 || (k052109->scrollctrl & 0x18) == 0x08 || ((k052109->scrollctrl & 0x04) && (k052109->scrollctrl & 0x03)) || ((k052109->scrollctrl & 0x20) && (k052109->scrollctrl & 0x18)) || (k052109->scrollctrl & 0xc0) != 0) popmessage("scrollcontrol = %02x", k052109->scrollctrl); if (machine.input().code_pressed(KEYCODE_F)) { FILE *fp; fp=fopen("TILE.DMP", "w+b"); if (fp) { fwrite(k052109->ram, 0x6000, 1, fp); popmessage("saved"); fclose(fp); } } #endif } void k052109_tilemap_draw( device_t *device, bitmap_t *bitmap, const rectangle *cliprect, int tmap_num, UINT32 flags, UINT8 priority ) { k052109_state *k052109 = k052109_get_safe_token(device); tilemap_draw(bitmap, cliprect, k052109->tilemap[tmap_num], flags, priority); } int k052109_is_irq_enabled( device_t *device ) { k052109_state *k052109 = k052109_get_safe_token(device); return k052109->irq_enabled; } void k052109_set_layer_offsets( device_t *device, int layer, int dx, int dy ) { k052109_state *k052109 = k052109_get_safe_token(device); k052109->dx[layer] = dx; k052109->dy[layer] = dy; } /*************************************************************************** Callbacks for the TileMap code ***************************************************************************/ /* data format: video RAM xxxxxxxx tile number (low 8 bits) color RAM xxxx---- depends on external connections (usually color and banking) color RAM ----xx-- bank select (0-3): these bits are replaced with the 2 bottom bits of the bank register before being placed on the output pins. The other two bits of the bank register are placed on the CAB1 and CAB2 output pins. color RAM ------xx depends on external connections (usually banking, flip) */ INLINE void k052109_get_tile_info( device_t *device, tile_data *tileinfo, int tile_index, int layer, UINT8 *cram, UINT8 *vram1, UINT8 *vram2 ) { k052109_state *k052109 = k052109_get_safe_token(device); int flipy = 0; int code = vram1[tile_index] + 256 * vram2[tile_index]; int color = cram[tile_index]; int flags = 0; int priority = 0; int bank = k052109->charrombank[(color & 0x0c) >> 2]; if (k052109->has_extra_video_ram) bank = (color & 0x0c) >> 2; /* kludge for X-Men */ color = (color & 0xf3) | ((bank & 0x03) << 2); bank >>= 2; flipy = color & 0x02; k052109->callback(device->machine(), layer, bank, &code, &color, &flags, &priority); /* if the callback set flip X but it is not enabled, turn it off */ if (!(k052109->tileflip_enable & 1)) flags &= ~TILE_FLIPX; /* if flip Y is enabled and the attribute but is set, turn it on */ if (flipy && (k052109->tileflip_enable & 2)) flags |= TILE_FLIPY; SET_TILE_INFO_DEVICE( k052109->gfxnum, code, color, flags); tileinfo->category = priority; } static TILE_GET_INFO_DEVICE( k052109_get_tile_info0 ) { k052109_state *k052109 = k052109_get_safe_token(device); k052109_get_tile_info(device, tileinfo, tile_index, 0, k052109->colorram_F, k052109->videoram_F, k052109->videoram2_F); } static TILE_GET_INFO_DEVICE( k052109_get_tile_info1 ) { k052109_state *k052109 = k052109_get_safe_token(device); k052109_get_tile_info(device, tileinfo, tile_index, 1, k052109->colorram_A, k052109->videoram_A, k052109->videoram2_A); } static TILE_GET_INFO_DEVICE( k052109_get_tile_info2 ) { k052109_state *k052109 = k052109_get_safe_token(device); k052109_get_tile_info(device, tileinfo, tile_index, 2, k052109->colorram_B, k052109->videoram_B, k052109->videoram2_B); } static void k052109_tileflip_reset(k052109_state *k052109) { int data = k052109->ram[0x1e80]; tilemap_set_flip(k052109->tilemap[0], (data & 1) ? (TILEMAP_FLIPY | TILEMAP_FLIPX) : 0); tilemap_set_flip(k052109->tilemap[1], (data & 1) ? (TILEMAP_FLIPY | TILEMAP_FLIPX) : 0); tilemap_set_flip(k052109->tilemap[2], (data & 1) ? (TILEMAP_FLIPY | TILEMAP_FLIPX) : 0); k052109->tileflip_enable = ((data & 0x06) >> 1); } static DEVICE_START( k052109 ) { k052109_state *k052109 = k052109_get_safe_token(device); const k052109_interface *intf = k052109_get_interface(device); running_machine &machine = device->machine(); UINT32 total; static const gfx_layout charlayout = { 8,8, 0, 4, { 24, 16, 8, 0 }, { 0, 1, 2, 3, 4, 5, 6, 7 }, { 0*32, 1*32, 2*32, 3*32, 4*32, 5*32, 6*32, 7*32 }, 32*8 }; static const gfx_layout charlayout_gradius3 = { 8,8, 0, 4, { 0, 1, 2, 3 }, { XOR(0)*4, XOR(1)*4, XOR(2)*4, XOR(3)*4, XOR(4)*4, XOR(5)*4, XOR(6)*4, XOR(7)*4 }, { 0*32, 1*32, 2*32, 3*32, 4*32, 5*32, 6*32, 7*32 }, 32*8 }; /* decode the graphics */ switch (intf->plane_order) { case NORMAL_PLANE_ORDER: total = machine.region(intf->gfx_memory_region)->bytes() / 32; decode_gfx(machine, intf->gfx_num, machine.region(intf->gfx_memory_region)->base(), total, &charlayout, 4); break; case GRADIUS3_PLANE_ORDER: total = 0x1000; decode_gfx(machine, intf->gfx_num, machine.region(intf->gfx_memory_region)->base(), total, &charlayout_gradius3, 4); break; default: fatalerror("Unsupported plane_order"); } /* deinterleave the graphics, if needed */ deinterleave_gfx(machine, intf->gfx_memory_region, intf->deinterleave); k052109->memory_region = intf->gfx_memory_region; k052109->gfxnum = intf->gfx_num; k052109->callback = intf->callback; k052109->tilemap[0] = tilemap_create_device(device, k052109_get_tile_info0, tilemap_scan_rows, 8, 8, 64, 32); k052109->tilemap[1] = tilemap_create_device(device, k052109_get_tile_info1, tilemap_scan_rows, 8, 8, 64, 32); k052109->tilemap[2] = tilemap_create_device(device, k052109_get_tile_info2, tilemap_scan_rows, 8, 8, 64, 32); k052109->ram = auto_alloc_array_clear(machine, UINT8, 0x6000); k052109->colorram_F = &k052109->ram[0x0000]; k052109->colorram_A = &k052109->ram[0x0800]; k052109->colorram_B = &k052109->ram[0x1000]; k052109->videoram_F = &k052109->ram[0x2000]; k052109->videoram_A = &k052109->ram[0x2800]; k052109->videoram_B = &k052109->ram[0x3000]; k052109->videoram2_F = &k052109->ram[0x4000]; k052109->videoram2_A = &k052109->ram[0x4800]; k052109->videoram2_B = &k052109->ram[0x5000]; tilemap_set_transparent_pen(k052109->tilemap[0], 0); tilemap_set_transparent_pen(k052109->tilemap[1], 0); tilemap_set_transparent_pen(k052109->tilemap[2], 0); device->save_pointer(NAME(k052109->ram), 0x6000); device->save_item(NAME(k052109->rmrd_line)); device->save_item(NAME(k052109->romsubbank)); device->save_item(NAME(k052109->scrollctrl)); device->save_item(NAME(k052109->irq_enabled)); device->save_item(NAME(k052109->charrombank)); device->save_item(NAME(k052109->charrombank_2)); device->save_item(NAME(k052109->dx)); device->save_item(NAME(k052109->dy)); device->save_item(NAME(k052109->has_extra_video_ram)); device->machine().save().register_postload(save_prepost_delegate(FUNC(k052109_tileflip_reset), k052109)); } static DEVICE_RESET( k052109 ) { k052109_state *k052109 = k052109_get_safe_token(device); int i; k052109->rmrd_line = CLEAR_LINE; k052109->irq_enabled = 0; k052109->romsubbank = 0; k052109->scrollctrl = 0; k052109->has_extra_video_ram = 0; for (i = 0; i < 3; i++) k052109->dx[i] = k052109->dy[i] = 0; for (i = 0; i < 4; i++) { k052109->charrombank[i] = 0; k052109->charrombank_2[i] = 0; } } /***************************************************************************/ /* */ /* 051960 */ /* */ /***************************************************************************/ typedef struct _k051960_state k051960_state; struct _k051960_state { UINT8 *ram; gfx_element *gfx; UINT8 spriterombank[3]; int dx, dy; int romoffset; int spriteflip, readroms; int irq_enabled, nmi_enabled; int k051937_counter; k051960_callback callback; const char *memory_region; }; /***************************************************************************** INLINE FUNCTIONS *****************************************************************************/ INLINE k051960_state *k051960_get_safe_token( device_t *device ) { assert(device != NULL); assert(device->type() == K051960); return (k051960_state *)downcast(device)->token(); } INLINE const k051960_interface *k051960_get_interface( device_t *device ) { assert(device != NULL); assert((device->type() == K051960)); return (const k051960_interface *) device->static_config(); } /***************************************************************************** DEVICE HANDLERS *****************************************************************************/ static int k051960_fetchromdata( device_t *device, int byte ) { k051960_state *k051960 = k051960_get_safe_token(device); int code, color, pri, shadow, off1, addr; addr = k051960->romoffset + (k051960->spriterombank[0] << 8) + ((k051960->spriterombank[1] & 0x03) << 16); code = (addr & 0x3ffe0) >> 5; off1 = addr & 0x1f; color = ((k051960->spriterombank[1] & 0xfc) >> 2) + ((k051960->spriterombank[2] & 0x03) << 6); pri = 0; shadow = color & 0x80; k051960->callback(device->machine(), &code, &color, &pri, &shadow); addr = (code << 7) | (off1 << 2) | byte; addr &= device->machine().region(k051960->memory_region)->bytes() - 1; // popmessage("%s: addr %06x", device->machine().describe_context(), addr); return device->machine().region(k051960->memory_region)->base()[addr]; } READ8_DEVICE_HANDLER( k051960_r ) { k051960_state *k051960 = k051960_get_safe_token(device); if (k051960->readroms) { /* the 051960 remembers the last address read and uses it when reading the sprite ROMs */ k051960->romoffset = (offset & 0x3fc) >> 2; return k051960_fetchromdata(device, offset & 3); /* only 88 Games reads the ROMs from here */ } else return k051960->ram[offset]; } WRITE8_DEVICE_HANDLER( k051960_w ) { k051960_state *k051960 = k051960_get_safe_token(device); k051960->ram[offset] = data; } READ16_DEVICE_HANDLER( k051960_word_r ) { return k051960_r(device, offset * 2 + 1) | (k051960_r(device, offset * 2) << 8); } WRITE16_DEVICE_HANDLER( k051960_word_w ) { if (ACCESSING_BITS_8_15) k051960_w(device, offset * 2, (data >> 8) & 0xff); if (ACCESSING_BITS_0_7) k051960_w(device, offset * 2 + 1, data & 0xff); } /* should this be split by k051960? */ READ8_DEVICE_HANDLER( k051937_r ) { k051960_state *k051960 = k051960_get_safe_token(device); if (k051960->readroms && offset >= 4 && offset < 8) return k051960_fetchromdata(device, offset & 3); else { if (offset == 0) { /* some games need bit 0 to pulse */ return (k051960->k051937_counter++) & 1; } //logerror("%04x: read unknown 051937 address %x\n", cpu_get_pc(device->cpu), offset); return 0; } return 0; } WRITE8_DEVICE_HANDLER( k051937_w ) { k051960_state *k051960 = k051960_get_safe_token(device); if (offset == 0) { //if (data & 0xc2) popmessage("051937 reg 00 = %02x",data); /* bit 0 is IRQ enable */ k051960->irq_enabled = data & 0x01; /* bit 1: probably FIRQ enable */ /* bit 2 is NMI enable */ k051960->nmi_enabled = data & 0x04; /* bit 3 = flip screen */ k051960->spriteflip = data & 0x08; /* bit 4 used by Devastators and TMNT, unknown */ /* bit 5 = enable gfx ROM reading */ k051960->readroms = data & 0x20; //logerror("%04x: write %02x to 051937 address %x\n", cpu_get_pc(machine.cpu), data, offset); } else if (offset == 1) { // popmessage("%04x: write %02x to 051937 address %x", cpu_get_pc(machine.cpu), data, offset); //logerror("%04x: write %02x to unknown 051937 address %x\n", cpu_get_pc(machine.cpu), data, offset); } else if (offset >= 2 && offset < 5) { k051960->spriterombank[offset - 2] = data; } else { // popmessage("%04x: write %02x to 051937 address %x", cpu_get_pc(machine.cpu), data, offset); //logerror("%04x: write %02x to unknown 051937 address %x\n", cpu_get_pc(machine.cpu), data, offset); } } int k051960_is_irq_enabled( device_t *device ) { k051960_state *k051960 = k051960_get_safe_token(device); return k051960->irq_enabled; } int k051960_is_nmi_enabled( device_t *device ) { k051960_state *k051960 = k051960_get_safe_token(device); return k051960->nmi_enabled; } void k051960_set_sprite_offsets( device_t *device, int dx, int dy ) { k051960_state *k051960 = k051960_get_safe_token(device); k051960->dx = dx; k051960->dy = dy; } READ16_DEVICE_HANDLER( k051937_word_r ) { return k051937_r(device, offset * 2 + 1) | (k051937_r(device, offset * 2) << 8); } WRITE16_DEVICE_HANDLER( k051937_word_w ) { if (ACCESSING_BITS_8_15) k051937_w(device, offset * 2,(data >> 8) & 0xff); if (ACCESSING_BITS_0_7) k051937_w(device, offset * 2 + 1,data & 0xff); } /* * Sprite Format * ------------------ * * Byte | Bit(s) | Use * -----+-76543210-+---------------- * 0 | x------- | active (show this sprite) * 0 | -xxxxxxx | priority order * 1 | xxx----- | sprite size (see below) * 1 | ---xxxxx | sprite code (high 5 bits) * 2 | xxxxxxxx | sprite code (low 8 bits) * 3 | xxxxxxxx | "color", but depends on external connections (see below) * 4 | xxxxxx-- | zoom y (0 = normal, >0 = shrink) * 4 | ------x- | flip y * 4 | -------x | y position (high bit) * 5 | xxxxxxxx | y position (low 8 bits) * 6 | xxxxxx-- | zoom x (0 = normal, >0 = shrink) * 6 | ------x- | flip x * 6 | -------x | x position (high bit) * 7 | xxxxxxxx | x position (low 8 bits) * * Example of "color" field for Punk Shot: * 3 | x------- | shadow * 3 | -xx----- | priority * 3 | ---x---- | use second gfx ROM bank * 3 | ----xxxx | color code * * shadow enables transparent shadows. Note that it applies to pen 0x0f ONLY. * The rest of the sprite remains normal. * Note that Aliens also uses the shadow bit to select the second sprite bank. */ void k051960_sprites_draw( device_t *device, bitmap_t *bitmap, const rectangle *cliprect, int min_priority, int max_priority ) { #define NUM_SPRITES 128 k051960_state *k051960 = k051960_get_safe_token(device); running_machine &machine = device->machine(); int offs, pri_code; int sortedlist[NUM_SPRITES]; UINT8 drawmode_table[256]; memset(drawmode_table, DRAWMODE_SOURCE, sizeof(drawmode_table)); drawmode_table[0] = DRAWMODE_NONE; for (offs = 0; offs < NUM_SPRITES; offs++) sortedlist[offs] = -1; /* prebuild a sorted table */ for (offs = 0; offs < 0x400; offs += 8) { if (k051960->ram[offs] & 0x80) { if (max_priority == -1) /* draw front to back when using priority buffer */ sortedlist[(k051960->ram[offs] & 0x7f) ^ 0x7f] = offs; else sortedlist[k051960->ram[offs] & 0x7f] = offs; } } for (pri_code = 0; pri_code < NUM_SPRITES; pri_code++) { int ox, oy, code, color, pri, shadow, size, w, h, x, y, flipx, flipy, zoomx, zoomy; /* sprites can be grouped up to 8x8. The draw order is 0 1 4 5 16 17 20 21 2 3 6 7 18 19 22 23 8 9 12 13 24 25 28 29 10 11 14 15 26 27 30 31 32 33 36 37 48 49 52 53 34 35 38 39 50 51 54 55 40 41 44 45 56 57 60 61 42 43 46 47 58 59 62 63 */ static const int xoffset[8] = { 0, 1, 4, 5, 16, 17, 20, 21 }; static const int yoffset[8] = { 0, 2, 8, 10, 32, 34, 40, 42 }; static const int width[8] = { 1, 2, 1, 2, 4, 2, 4, 8 }; static const int height[8] = { 1, 1, 2, 2, 2, 4, 4, 8 }; offs = sortedlist[pri_code]; if (offs == -1) continue; code = k051960->ram[offs + 2] + ((k051960->ram[offs + 1] & 0x1f) << 8); color = k051960->ram[offs + 3] & 0xff; pri = 0; shadow = color & 0x80; k051960->callback(device->machine(), &code, &color, &pri, &shadow); if (max_priority != -1) if (pri < min_priority || pri > max_priority) continue; size = (k051960->ram[offs + 1] & 0xe0) >> 5; w = width[size]; h = height[size]; if (w >= 2) code &= ~0x01; if (h >= 2) code &= ~0x02; if (w >= 4) code &= ~0x04; if (h >= 4) code &= ~0x08; if (w >= 8) code &= ~0x10; if (h >= 8) code &= ~0x20; ox = (256 * k051960->ram[offs + 6] + k051960->ram[offs + 7]) & 0x01ff; oy = 256 - ((256 * k051960->ram[offs + 4] + k051960->ram[offs + 5]) & 0x01ff); ox += k051960->dx; oy += k051960->dy; flipx = k051960->ram[offs + 6] & 0x02; flipy = k051960->ram[offs + 4] & 0x02; zoomx = (k051960->ram[offs + 6] & 0xfc) >> 2; zoomy = (k051960->ram[offs + 4] & 0xfc) >> 2; zoomx = 0x10000 / 128 * (128 - zoomx); zoomy = 0x10000 / 128 * (128 - zoomy); if (k051960->spriteflip) { ox = 512 - (zoomx * w >> 12) - ox; oy = 256 - (zoomy * h >> 12) - oy; flipx = !flipx; flipy = !flipy; } drawmode_table[k051960->gfx->color_granularity - 1] = shadow ? DRAWMODE_SHADOW : DRAWMODE_SOURCE; if (zoomx == 0x10000 && zoomy == 0x10000) { int sx, sy; for (y = 0; y < h; y++) { sy = oy + 16 * y; for (x = 0; x < w; x++) { int c = code; sx = ox + 16 * x; if (flipx) c += xoffset[(w - 1 - x)]; else c += xoffset[x]; if (flipy) c += yoffset[(h - 1 - y)]; else c += yoffset[y]; if (max_priority == -1) pdrawgfx_transtable(bitmap,cliprect,k051960->gfx, c, color, flipx,flipy, sx & 0x1ff,sy, machine.priority_bitmap,pri, drawmode_table,machine.shadow_table); else drawgfx_transtable(bitmap,cliprect,k051960->gfx, c, color, flipx,flipy, sx & 0x1ff,sy, drawmode_table,machine.shadow_table); } } } else { int sx, sy, zw, zh; for (y = 0; y < h; y++) { sy = oy + ((zoomy * y + (1 << 11)) >> 12); zh = (oy + ((zoomy * (y + 1) + (1 << 11)) >> 12)) - sy; for (x = 0; x < w; x++) { int c = code; sx = ox + ((zoomx * x + (1 << 11)) >> 12); zw = (ox + ((zoomx * (x+1) + (1 << 11)) >> 12)) - sx; if (flipx) c += xoffset[(w - 1 - x)]; else c += xoffset[x]; if (flipy) c += yoffset[(h - 1 - y)]; else c += yoffset[y]; if (max_priority == -1) pdrawgfxzoom_transtable(bitmap,cliprect,k051960->gfx, c, color, flipx,flipy, sx & 0x1ff,sy, (zw << 16) / 16,(zh << 16) / 16, machine.priority_bitmap,pri, drawmode_table,machine.shadow_table); else drawgfxzoom_transtable(bitmap,cliprect,k051960->gfx, c, color, flipx,flipy, sx & 0x1ff,sy, (zw << 16) / 16,(zh << 16) / 16, drawmode_table,machine.shadow_table); } } } } #if 0 if (machine.input().code_pressed(KEYCODE_D)) { FILE *fp; fp=fopen("SPRITE.DMP", "w+b"); if (fp) { fwrite(k051960_ram, 0x400, 1, fp); popmessage("saved"); fclose(fp); } } #endif #undef NUM_SPRITES } /***************************************************************************** DEVICE INTERFACE *****************************************************************************/ static DEVICE_START( k051960 ) { k051960_state *k051960 = k051960_get_safe_token(device); const k051960_interface *intf = k051960_get_interface(device); running_machine &machine = device->machine(); UINT32 total; static const gfx_layout spritelayout = { 16,16, 0, 4, { 0, 8, 16, 24 }, { 0, 1, 2, 3, 4, 5, 6, 7, 8*32+0, 8*32+1, 8*32+2, 8*32+3, 8*32+4, 8*32+5, 8*32+6, 8*32+7 }, { 0*32, 1*32, 2*32, 3*32, 4*32, 5*32, 6*32, 7*32, 16*32, 17*32, 18*32, 19*32, 20*32, 21*32, 22*32, 23*32 }, 128*8 }; static const gfx_layout spritelayout_reverse = { 16,16, 0, 4, { 24, 16, 8, 0 }, { 0, 1, 2, 3, 4, 5, 6, 7, 8*32+0, 8*32+1, 8*32+2, 8*32+3, 8*32+4, 8*32+5, 8*32+6, 8*32+7 }, { 0*32, 1*32, 2*32, 3*32, 4*32, 5*32, 6*32, 7*32, 16*32, 17*32, 18*32, 19*32, 20*32, 21*32, 22*32, 23*32 }, 128*8 }; static const gfx_layout spritelayout_gradius3 = { 16,16, 0, 4, { 0, 1, 2, 3 }, { 2*4, 3*4, 0*4, 1*4, 6*4, 7*4, 4*4, 5*4, 32*8+2*4, 32*8+3*4, 32*8+0*4, 32*8+1*4, 32*8+6*4, 32*8+7*4, 32*8+4*4, 32*8+5*4 }, { 0*32, 1*32, 2*32, 3*32, 4*32, 5*32, 6*32, 7*32, 64*8+0*32, 64*8+1*32, 64*8+2*32, 64*8+3*32, 64*8+4*32, 64*8+5*32, 64*8+6*32, 64*8+7*32 }, 128*8 }; /* decode the graphics */ switch (intf->plane_order) { case NORMAL_PLANE_ORDER: total = machine.region(intf->gfx_memory_region)->bytes() / 128; decode_gfx(machine, intf->gfx_num, machine.region(intf->gfx_memory_region)->base(), total, &spritelayout, 4); break; case REVERSE_PLANE_ORDER: total = machine.region(intf->gfx_memory_region)->bytes() / 128; decode_gfx(machine, intf->gfx_num, machine.region(intf->gfx_memory_region)->base(), total, &spritelayout_reverse, 4); break; case GRADIUS3_PLANE_ORDER: total = 0x4000; decode_gfx(machine, intf->gfx_num, machine.region(intf->gfx_memory_region)->base(), total, &spritelayout_gradius3, 4); break; default: fatalerror("Unknown plane_order"); } if (VERBOSE && !(machine.config().m_video_attributes & VIDEO_HAS_SHADOWS)) popmessage("driver should use VIDEO_HAS_SHADOWS"); /* deinterleave the graphics, if needed */ deinterleave_gfx(machine, intf->gfx_memory_region, intf->deinterleave); k051960->memory_region = intf->gfx_memory_region; k051960->gfx = machine.gfx[intf->gfx_num]; k051960->callback = intf->callback; k051960->ram = auto_alloc_array_clear(machine, UINT8, 0x400); device->save_item(NAME(k051960->romoffset)); device->save_item(NAME(k051960->spriteflip)); device->save_item(NAME(k051960->readroms)); device->save_item(NAME(k051960->spriterombank)); device->save_pointer(NAME(k051960->ram), 0x400); device->save_item(NAME(k051960->irq_enabled)); device->save_item(NAME(k051960->nmi_enabled)); device->save_item(NAME(k051960->dx)); device->save_item(NAME(k051960->dy)); device->save_item(NAME(k051960->k051937_counter)); } static DEVICE_RESET( k051960 ) { k051960_state *k051960 = k051960_get_safe_token(device); k051960->dx = k051960->dy = 0; k051960->k051937_counter = 0; k051960->romoffset = 0; k051960->spriteflip = 0; k051960->readroms = 0; k051960->irq_enabled = 0; k051960->nmi_enabled = 0; k051960->spriterombank[0] = 0; k051960->spriterombank[1] = 0; k051960->spriterombank[2] = 0; } /***************************************************************************/ /* */ /* 05324x Family Sprite Generators */ /* */ /***************************************************************************/ /***************************************************************************/ /* */ /* 053244 / 053245 */ /* */ /***************************************************************************/ typedef struct _k05324x_state k05324x_state; struct _k05324x_state { UINT16 *ram; UINT16 *buffer; gfx_element *gfx; UINT8 regs[0x10]; // 053244 int dx, dy; int rombank; // 053244 int ramsize; int z_rejection; k05324x_callback callback; const char *memory_region; }; /***************************************************************************** INLINE FUNCTIONS *****************************************************************************/ INLINE k05324x_state *k05324x_get_safe_token( device_t *device ) { assert(device != NULL); assert((device->type() == K053244 || device->type() == K053245)); return (k05324x_state *)downcast(device)->token(); } INLINE const k05324x_interface *k05324x_get_interface( device_t *device ) { assert(device != NULL); assert((device->type() == K053244 || device->type() == K053245)); return (const k05324x_interface *) device->static_config(); } /***************************************************************************** DEVICE HANDLERS *****************************************************************************/ void k053245_set_sprite_offs( device_t *device, int offsx, int offsy ) { k05324x_state *k053245 = k05324x_get_safe_token(device); k053245->dx = offsx; k053245->dy = offsy; } READ16_DEVICE_HANDLER( k053245_word_r ) { k05324x_state *k053245 = k05324x_get_safe_token(device); return k053245->ram[offset]; } WRITE16_DEVICE_HANDLER( k053245_word_w ) { k05324x_state *k053245 = k05324x_get_safe_token(device); COMBINE_DATA(k053245->ram + offset); } READ8_DEVICE_HANDLER( k053245_r ) { k05324x_state *k053245 = k05324x_get_safe_token(device); if(offset & 1) return k053245->ram[offset >> 1] & 0xff; else return (k053245->ram[offset >> 1] >> 8) & 0xff; } WRITE8_DEVICE_HANDLER( k053245_w ) { k05324x_state *k053245 = k05324x_get_safe_token(device); if(offset & 1) k053245->ram[offset >> 1] = (k053245->ram[offset >> 1] & 0xff00) | data; else k053245->ram[offset >> 1] = (k053245->ram[offset >> 1] & 0x00ff) | (data << 8); } void k053245_clear_buffer( device_t *device ) { k05324x_state *k053245 = k05324x_get_safe_token(device); int i, e; for (e = k053245->ramsize / 2, i = 0; i < e; i += 8) k053245->buffer[i] = 0; } INLINE void k053245_update_buffer( device_t *device ) { k05324x_state *k053245 = k05324x_get_safe_token(device); memcpy(k053245->buffer, k053245->ram, k053245->ramsize); } READ8_DEVICE_HANDLER( k053244_r ) { k05324x_state *k053244 = k05324x_get_safe_token(device); running_machine &machine = device->machine(); if ((k053244->regs[5] & 0x10) && offset >= 0x0c && offset < 0x10) { int addr; addr = (k053244->rombank << 19) | ((k053244->regs[11] & 0x7) << 18) | (k053244->regs[8] << 10) | (k053244->regs[9] << 2) | ((offset & 3) ^ 1); addr &= machine.region(k053244->memory_region)->bytes() - 1; // popmessage("%s: offset %02x addr %06x", machine.describe_context(), offset & 3, addr); return machine.region(k053244->memory_region)->base()[addr]; } else if (offset == 0x06) { k053245_update_buffer(device); return 0; } else { //logerror("%s: read from unknown 053244 address %x\n", machine.describe_context(), offset); return 0; } } WRITE8_DEVICE_HANDLER( k053244_w ) { k05324x_state *k053244 = k05324x_get_safe_token(device); k053244->regs[offset] = data; switch(offset) { case 0x05: // if (data & 0xc8) // popmessage("053244 reg 05 = %02x",data); /* bit 2 = unknown, Parodius uses it */ /* bit 5 = unknown, Rollergames uses it */ // logerror("%s: write %02x to 053244 address 5\n", device->machine().describe_context(), data); break; case 0x06: k053245_update_buffer(device); break; } } READ16_DEVICE_HANDLER( k053244_lsb_r ) { return k053244_r(device, offset); } WRITE16_DEVICE_HANDLER( k053244_lsb_w ) { if (ACCESSING_BITS_0_7) k053244_w(device, offset, data & 0xff); } READ16_DEVICE_HANDLER( k053244_word_r ) { return (k053244_r(device, offset * 2) << 8) | k053244_r(device, offset * 2 + 1); } WRITE16_DEVICE_HANDLER( k053244_word_w ) { if (ACCESSING_BITS_8_15) k053244_w(device, offset * 2, (data >> 8) & 0xff); if (ACCESSING_BITS_0_7) k053244_w(device, offset * 2 + 1, data & 0xff); } void k053244_bankselect( device_t *device, int bank ) { k05324x_state *k053244 = k05324x_get_safe_token(device); k053244->rombank = bank; } /* * Sprite Format * ------------------ * * Word | Bit(s) | Use * -----+-fedcba9876543210-+---------------- * 0 | x--------------- | active (show this sprite) * 0 | -x-------------- | maintain aspect ratio (when set, zoom y acts on both axis) * 0 | --x------------- | flip y * 0 | ---x------------ | flip x * 0 | ----xxxx-------- | sprite size (see below) * 0 | ---------xxxxxxx | priority order * 1 | --xxxxxxxxxxxxxx | sprite code. We use an additional bit in TMNT2, but this is * probably not accurate (protection related so we can't verify) * 2 | ------xxxxxxxxxx | y position * 3 | ------xxxxxxxxxx | x position * 4 | xxxxxxxxxxxxxxxx | zoom y (0x40 = normal, <0x40 = enlarge, >0x40 = reduce) * 5 | xxxxxxxxxxxxxxxx | zoom x (0x40 = normal, <0x40 = enlarge, >0x40 = reduce) * 6 | ------x--------- | mirror y (top half is drawn as mirror image of the bottom) * 6 | -------x-------- | mirror x (right half is drawn as mirror image of the left) * 6 | --------x------- | shadow * 6 | ---------xxxxxxx | "color", but depends on external connections * 7 | ---------------- | * * shadow enables transparent shadows. Note that it applies to pen 0x0f ONLY. * The rest of the sprite remains normal. */ void k053245_sprites_draw( device_t *device, bitmap_t *bitmap, const rectangle *cliprect ) { #define NUM_SPRITES 128 k05324x_state *k053245 = k05324x_get_safe_token(device); running_machine &machine = device->machine(); int offs, pri_code, i; int sortedlist[NUM_SPRITES]; int flipscreenX, flipscreenY, spriteoffsX, spriteoffsY; UINT8 drawmode_table[256]; memset(drawmode_table, DRAWMODE_SOURCE, sizeof(drawmode_table)); drawmode_table[0] = DRAWMODE_NONE; flipscreenX = k053245->regs[5] & 0x01; flipscreenY = k053245->regs[5] & 0x02; spriteoffsX = (k053245->regs[0] << 8) | k053245->regs[1]; spriteoffsY = (k053245->regs[2] << 8) | k053245->regs[3]; for (offs = 0; offs < NUM_SPRITES; offs++) sortedlist[offs] = -1; /* prebuild a sorted table */ for (i = k053245->ramsize / 2, offs = 0; offs < i; offs += 8) { pri_code = k053245->buffer[offs]; if (pri_code & 0x8000) { pri_code &= 0x007f; if (offs && pri_code == k053245->z_rejection) continue; if (sortedlist[pri_code] == -1) sortedlist[pri_code] = offs; } } for (pri_code = NUM_SPRITES - 1; pri_code >= 0; pri_code--) { int ox, oy, color, code, size, w, h, x, y, flipx, flipy, mirrorx, mirrory, shadow, zoomx, zoomy, pri; offs = sortedlist[pri_code]; if (offs == -1) continue; /* the following changes the sprite draw order from 0 1 4 5 16 17 20 21 2 3 6 7 18 19 22 23 8 9 12 13 24 25 28 29 10 11 14 15 26 27 30 31 32 33 36 37 48 49 52 53 34 35 38 39 50 51 54 55 40 41 44 45 56 57 60 61 42 43 46 47 58 59 62 63 to 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 */ /* NOTE: from the schematics, it looks like the top 2 bits should be ignored */ /* (there are not output pins for them), and probably taken from the "color" */ /* field to do bank switching. However this applies only to TMNT2, with its */ /* protection mcu creating the sprite table, so we don't know where to fetch */ /* the bits from. */ code = k053245->buffer[offs + 1]; code = ((code & 0xffe1) + ((code & 0x0010) >> 2) + ((code & 0x0008) << 1) + ((code & 0x0004) >> 1) + ((code & 0x0002) << 2)); color = k053245->buffer[offs + 6] & 0x00ff; pri = 0; k053245->callback(device->machine(), &code, &color, &pri); size = (k053245->buffer[offs] & 0x0f00) >> 8; w = 1 << (size & 0x03); h = 1 << ((size >> 2) & 0x03); /* zoom control: 0x40 = normal scale <0x40 enlarge (0x20 = double size) >0x40 reduce (0x80 = half size) */ zoomy = k053245->buffer[offs + 4]; if (zoomy > 0x2000) continue; if (zoomy) zoomy = (0x400000 + zoomy / 2) / zoomy; else zoomy = 2 * 0x400000; if ((k053245->buffer[offs] & 0x4000) == 0) { zoomx = k053245->buffer[offs + 5]; if (zoomx > 0x2000) continue; if (zoomx) zoomx = (0x400000 + zoomx / 2) / zoomx; else zoomx = 2 * 0x400000; // else zoomx = zoomy; /* workaround for TMNT2 */ } else zoomx = zoomy; ox = k053245->buffer[offs+3] + spriteoffsX; oy = k053245->buffer[offs+2]; ox += k053245->dx; oy += k053245->dy; flipx = k053245->buffer[offs] & 0x1000; flipy = k053245->buffer[offs] & 0x2000; mirrorx = k053245->buffer[offs + 6] & 0x0100; if (mirrorx) flipx = 0; // documented and confirmed mirrory = k053245->buffer[offs + 6] & 0x0200; shadow = k053245->buffer[offs + 6] & 0x0080; if (flipscreenX) { ox = 512 - ox; if (!mirrorx) flipx = !flipx; } if (flipscreenY) { oy = -oy; if (!mirrory) flipy = !flipy; } ox = (ox + 0x5d) & 0x3ff; if (ox >= 768) ox -= 1024; oy = (-(oy + spriteoffsY + 0x07)) & 0x3ff; if (oy >= 640) oy -= 1024; /* the coordinates given are for the *center* of the sprite */ ox -= (zoomx * w) >> 13; oy -= (zoomy * h) >> 13; drawmode_table[k053245->gfx->color_granularity - 1] = shadow ? DRAWMODE_SHADOW : DRAWMODE_SOURCE; for (y = 0; y < h; y++) { int sx, sy, zw, zh; sy = oy + ((zoomy * y + (1 << 11)) >> 12); zh = (oy + ((zoomy * (y + 1) + (1 << 11)) >> 12)) - sy; for (x = 0; x < w; x++) { int c, fx, fy; sx = ox + ((zoomx * x + (1 << 11)) >> 12); zw = (ox + ((zoomx * (x+1) + (1 << 11)) >> 12)) - sx; c = code; if (mirrorx) { if ((flipx == 0) ^ (2*x < w)) { /* mirror left/right */ c += (w - x - 1); fx = 1; } else { c += x; fx = 0; } } else { if (flipx) c += w-1-x; else c += x; fx = flipx; } if (mirrory) { if ((flipy == 0) ^ (2*y >= h)) { /* mirror top/bottom */ c += 8 * (h - y - 1); fy = 1; } else { c += 8 * y; fy = 0; } } else { if (flipy) c += 8 * (h - 1 - y); else c += 8 * y; fy = flipy; } /* the sprite can start at any point in the 8x8 grid, but it must stay */ /* in a 64 entries window, wrapping around at the edges. The animation */ /* at the end of the saloon level in Sunset Riders breaks otherwise. */ c = (c & 0x3f) | (code & ~0x3f); if (zoomx == 0x10000 && zoomy == 0x10000) { pdrawgfx_transtable(bitmap,cliprect,k053245->gfx, c, color, fx,fy, sx,sy, machine.priority_bitmap,pri, drawmode_table,machine.shadow_table); } else { pdrawgfxzoom_transtable(bitmap,cliprect,k053245->gfx, c, color, fx,fy, sx,sy, (zw << 16) / 16,(zh << 16) / 16, machine.priority_bitmap,pri, drawmode_table,machine.shadow_table); } } } } #if 0 if (machine.input().code_pressed(KEYCODE_D)) { FILE *fp; fp=fopen("SPRITE.DMP", "w+b"); if (fp) { fwrite(k053245->buffer, 0x800, 1, fp); popmessage("saved"); fclose(fp); } } #endif #undef NUM_SPRITES } /* Lethal Enforcers has 2 of these chips hooked up in parallel to give 6bpp gfx.. lets cheat a bit and make emulating it a little less messy by using a custom function instead */ void k053245_sprites_draw_lethal( device_t *device, bitmap_t *bitmap, const rectangle *cliprect ) { #define NUM_SPRITES 128 k05324x_state *k053245 = k05324x_get_safe_token(device); int offs, pri_code, i; int sortedlist[NUM_SPRITES]; int flipscreenX, flipscreenY, spriteoffsX, spriteoffsY; UINT8 drawmode_table[256]; running_machine &machine = device->machine(); memset(drawmode_table, DRAWMODE_SOURCE, sizeof(drawmode_table)); drawmode_table[0] = DRAWMODE_NONE; flipscreenX = k053245->regs[5] & 0x01; flipscreenY = k053245->regs[5] & 0x02; spriteoffsX = (k053245->regs[0] << 8) | k053245->regs[1]; spriteoffsY = (k053245->regs[2] << 8) | k053245->regs[3]; for (offs = 0; offs < NUM_SPRITES; offs++) sortedlist[offs] = -1; /* prebuild a sorted table */ for (i = k053245->ramsize / 2, offs = 0; offs < i; offs += 8) { pri_code = k053245->buffer[offs]; if (pri_code & 0x8000) { pri_code &= 0x007f; if (offs && pri_code == k053245->z_rejection) continue; if (sortedlist[pri_code] == -1) sortedlist[pri_code] = offs; } } for (pri_code = NUM_SPRITES - 1; pri_code >= 0; pri_code--) { int ox, oy, color, code, size, w, h, x, y, flipx, flipy, mirrorx, mirrory, shadow, zoomx, zoomy, pri; offs = sortedlist[pri_code]; if (offs == -1) continue; /* the following changes the sprite draw order from 0 1 4 5 16 17 20 21 2 3 6 7 18 19 22 23 8 9 12 13 24 25 28 29 10 11 14 15 26 27 30 31 32 33 36 37 48 49 52 53 34 35 38 39 50 51 54 55 40 41 44 45 56 57 60 61 42 43 46 47 58 59 62 63 to 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 */ /* NOTE: from the schematics, it looks like the top 2 bits should be ignored */ /* (there are not output pins for them), and probably taken from the "color" */ /* field to do bank switching. However this applies only to TMNT2, with its */ /* protection mcu creating the sprite table, so we don't know where to fetch */ /* the bits from. */ code = k053245->buffer[offs + 1]; code = ((code & 0xffe1) + ((code & 0x0010) >> 2) + ((code & 0x0008) << 1) + ((code & 0x0004) >> 1) + ((code & 0x0002) << 2)); color = k053245->buffer[offs + 6] & 0x00ff; pri = 0; k053245->callback(device->machine(), &code, &color, &pri); size = (k053245->buffer[offs] & 0x0f00) >> 8; w = 1 << (size & 0x03); h = 1 << ((size >> 2) & 0x03); /* zoom control: 0x40 = normal scale <0x40 enlarge (0x20 = double size) >0x40 reduce (0x80 = half size) */ zoomy = k053245->buffer[offs + 4]; if (zoomy > 0x2000) continue; if (zoomy) zoomy = (0x400000 + zoomy / 2) / zoomy; else zoomy = 2 * 0x400000; if ((k053245->buffer[offs] & 0x4000) == 0) { zoomx = k053245->buffer[offs + 5]; if (zoomx > 0x2000) continue; if (zoomx) zoomx = (0x400000 + zoomx / 2) / zoomx; else zoomx = 2 * 0x400000; // else zoomx = zoomy; /* workaround for TMNT2 */ } else zoomx = zoomy; ox = k053245->buffer[offs + 3] + spriteoffsX; oy = k053245->buffer[offs + 2]; ox += k053245->dx; oy += k053245->dy; flipx = k053245->buffer[offs] & 0x1000; flipy = k053245->buffer[offs] & 0x2000; mirrorx = k053245->buffer[offs + 6] & 0x0100; if (mirrorx) flipx = 0; // documented and confirmed mirrory = k053245->buffer[offs + 6] & 0x0200; shadow = k053245->buffer[offs + 6] & 0x0080; if (flipscreenX) { ox = 512 - ox; if (!mirrorx) flipx = !flipx; } if (flipscreenY) { oy = -oy; if (!mirrory) flipy = !flipy; } ox = (ox + 0x5d) & 0x3ff; if (ox >= 768) ox -= 1024; oy = (-(oy + spriteoffsY + 0x07)) & 0x3ff; if (oy >= 640) oy -= 1024; /* the coordinates given are for the *center* of the sprite */ ox -= (zoomx * w) >> 13; oy -= (zoomy * h) >> 13; drawmode_table[machine.gfx[0]->color_granularity - 1] = shadow ? DRAWMODE_SHADOW : DRAWMODE_SOURCE; for (y = 0; y < h; y++) { int sx, sy, zw, zh; sy = oy + ((zoomy * y + (1<<11)) >> 12); zh = (oy + ((zoomy * (y+1) + (1<<11)) >> 12)) - sy; for (x = 0; x < w; x++) { int c, fx, fy; sx = ox + ((zoomx * x + (1 << 11)) >> 12); zw = (ox + ((zoomx * (x+1) + (1 << 11)) >> 12)) - sx; c = code; if (mirrorx) { if ((flipx == 0) ^ (2 * x < w)) { /* mirror left/right */ c += (w - x - 1); fx = 1; } else { c += x; fx = 0; } } else { if (flipx) c += w-1-x; else c += x; fx = flipx; } if (mirrory) { if ((flipy == 0) ^ (2 * y >= h)) { /* mirror top/bottom */ c += 8 * (h - y - 1); fy = 1; } else { c += 8 * y; fy = 0; } } else { if (flipy) c += 8 * (h - 1 - y); else c += 8 * y; fy = flipy; } /* the sprite can start at any point in the 8x8 grid, but it must stay */ /* in a 64 entries window, wrapping around at the edges. The animation */ /* at the end of the saloon level in Sunset Riders breaks otherwise. */ c = (c & 0x3f) | (code & ~0x3f); if (zoomx == 0x10000 && zoomy == 0x10000) { pdrawgfx_transtable(bitmap,cliprect,machine.gfx[0], /* hardcoded to 0 (decoded 6bpp gfx) for le */ c, color, fx,fy, sx,sy, machine.priority_bitmap,pri, drawmode_table,machine.shadow_table); } else { pdrawgfxzoom_transtable(bitmap,cliprect,machine.gfx[0], /* hardcoded to 0 (decoded 6bpp gfx) for le */ c, color, fx,fy, sx,sy, (zw << 16) / 16,(zh << 16) / 16, machine.priority_bitmap,pri, drawmode_table,machine.shadow_table); } } } } #if 0 if (machine.input().code_pressed(KEYCODE_D)) { FILE *fp; fp=fopen("SPRITE.DMP", "w+b"); if (fp) { fwrite(k053245->buffer, 0x800, 1, fp); popmessage("saved"); fclose(fp); } } #endif #undef NUM_SPRITES } /***************************************************************************** DEVICE INTERFACE *****************************************************************************/ static DEVICE_START( k05324x ) { k05324x_state *k05324x = k05324x_get_safe_token(device); const k05324x_interface *intf = k05324x_get_interface(device); running_machine &machine = device->machine(); UINT32 total; static const gfx_layout spritelayout = { 16,16, 0, 4, { 24, 16, 8, 0 }, { 0, 1, 2, 3, 4, 5, 6, 7, 8*32+0, 8*32+1, 8*32+2, 8*32+3, 8*32+4, 8*32+5, 8*32+6, 8*32+7 }, { 0*32, 1*32, 2*32, 3*32, 4*32, 5*32, 6*32, 7*32, 16*32, 17*32, 18*32, 19*32, 20*32, 21*32, 22*32, 23*32 }, 128*8 }; /* decode the graphics */ switch (intf->plane_order) { case NORMAL_PLANE_ORDER: total = machine.region(intf->gfx_memory_region)->bytes() / 128; decode_gfx(machine, intf->gfx_num, machine.region(intf->gfx_memory_region)->base(), total, &spritelayout, 4); break; default: fatalerror("Unsupported plane_order"); } if (VERBOSE && !(machine.config().m_video_attributes & VIDEO_HAS_SHADOWS)) popmessage("driver should use VIDEO_HAS_SHADOWS"); /* deinterleave the graphics, if needed */ deinterleave_gfx(machine, intf->gfx_memory_region, intf->deinterleave); k05324x->ramsize = 0x800; k05324x->z_rejection = -1; k05324x->memory_region = intf->gfx_memory_region; k05324x->gfx = machine.gfx[intf->gfx_num]; k05324x->dx = intf->dx; k05324x->dy = intf->dy; k05324x->callback = intf->callback; k05324x->ram = auto_alloc_array(machine, UINT16, k05324x->ramsize / 2); k05324x->buffer = auto_alloc_array(machine, UINT16, k05324x->ramsize / 2); device->save_pointer(NAME(k05324x->ram), k05324x->ramsize / 2); device->save_pointer(NAME(k05324x->buffer), k05324x->ramsize / 2); device->save_item(NAME(k05324x->rombank)); device->save_item(NAME(k05324x->z_rejection)); device->save_item(NAME(k05324x->regs)); } static DEVICE_RESET( k05324x ) { k05324x_state *k05324x = k05324x_get_safe_token(device); int i; k05324x->rombank = 0; for (i = 0; i < 0x10; i++) k05324x->regs[i] = 0; } /***************************************************************************/ /* */ /* 053246/053247 */ /* */ /***************************************************************************/ typedef struct _k053247_state k053247_state; struct _k053247_state { UINT16 *ram; gfx_element *gfx; UINT8 kx46_regs[8]; UINT16 kx47_regs[16]; int dx, dy, wraparound; UINT8 objcha_line; int z_rejection; k05324x_callback callback; const char *memory_region; screen_device *screen; }; /***************************************************************************** INLINE FUNCTIONS *****************************************************************************/ INLINE k053247_state *k053247_get_safe_token( device_t *device ) { assert(device != NULL); assert((device->type() == K053246 || device->type() == K053247 || device->type() == K055673)); return (k053247_state *)downcast(device)->token(); } INLINE const k053247_interface *k053247_get_interface( device_t *device ) { assert(device != NULL); assert((device->type() == K053246 || device->type() == K053247 || device->type() == K055673)); return (const k053247_interface *) device->static_config(); } /***************************************************************************** DEVICE HANDLERS *****************************************************************************/ #if 0 void k053247_get_gfx( device_t *device, gfx_element **gfx ) { k053247_state *k053247 = k053247_get_safe_token(device); *gfx = k053247->gfx; } void k053247_get_cb( device_t *device, void (**callback)(int *, int *, int *) ) { k053247_state *k053247 = k053247_get_safe_token(device); *callback = k053247->callback; } #endif void k053247_get_ram( device_t *device, UINT16 **ram ) { k053247_state *k053247 = k053247_get_safe_token(device); *ram = k053247->ram; } int k053247_get_dx( device_t *device ) { k053247_state *k053247 = k053247_get_safe_token(device); return k053247->dx; } int k053247_get_dy( device_t *device ) { k053247_state *k053247 = k053247_get_safe_token(device); return k053247->dy; } int k053246_read_register( device_t *device, int regnum ) { k053247_state *k053247 = k053247_get_safe_token(device); return(k053247->kx46_regs[regnum]); } int k053247_read_register( device_t *device, int regnum ) { k053247_state *k053247 = k053247_get_safe_token(device); return(k053247->kx47_regs[regnum]); } void k053247_set_sprite_offs( device_t *device, int offsx, int offsy ) { k053247_state *k053247 = k053247_get_safe_token(device); k053247->dx = offsx; k053247->dy = offsy; } void k053247_wraparound_enable( device_t *device, int status ) { k053247_state *k053247 = k053247_get_safe_token(device); k053247->wraparound = status; } WRITE16_DEVICE_HANDLER( k053247_reg_word_w ) // write-only OBJSET2 registers (see p.43 table 6.1) { k053247_state *k053247 = k053247_get_safe_token(device); COMBINE_DATA(k053247->kx47_regs + offset); } WRITE32_DEVICE_HANDLER( k053247_reg_long_w ) { k053247_state *k053247 = k053247_get_safe_token(device); offset <<= 1; COMBINE_DATA(k053247->kx47_regs + offset + 1); mem_mask >>= 16; data >>= 16; COMBINE_DATA(k053247->kx47_regs + offset); } READ16_DEVICE_HANDLER( k053247_word_r ) { k053247_state *k053247 = k053247_get_safe_token(device); return k053247->ram[offset]; } WRITE16_DEVICE_HANDLER( k053247_word_w ) { k053247_state *k053247 = k053247_get_safe_token(device); COMBINE_DATA(k053247->ram + offset); } READ32_DEVICE_HANDLER( k053247_long_r ) { k053247_state *k053247 = k053247_get_safe_token(device); return k053247->ram[offset * 2 + 1] | (k053247->ram[offset * 2] << 16); } WRITE32_DEVICE_HANDLER( k053247_long_w ) { k053247_state *k053247 = k053247_get_safe_token(device); offset <<= 1; COMBINE_DATA(k053247->ram + offset + 1); mem_mask >>= 16; data >>= 16; COMBINE_DATA(k053247->ram + offset); } READ8_DEVICE_HANDLER( k053247_r ) { k053247_state *k053247 = k053247_get_safe_token(device); int offs = offset >> 1; if (offset & 1) return(k053247->ram[offs] & 0xff); else return(k053247->ram[offs] >> 8); } WRITE8_DEVICE_HANDLER( k053247_w ) { k053247_state *k053247 = k053247_get_safe_token(device); int offs = offset >> 1; if (offset & 1) k053247->ram[offs] = (k053247->ram[offs] & 0xff00) | data; else k053247->ram[offs] = (k053247->ram[offs] & 0x00ff) | (data << 8); } // Mystic Warriors hardware games support a non-objcha based ROM readback // write the address to the 246 as usual, but there's a completely separate ROM // window that works without needing an objcha line. // in this window, +0 = 32 bits from one set of ROMs, and +8 = 32 bits from another set READ16_DEVICE_HANDLER( k055673_rom_word_r ) // 5bpp { k053247_state *k053246 = k053247_get_safe_token(device); UINT8 *ROM8 = (UINT8 *)device->machine().region(k053246->memory_region)->base(); UINT16 *ROM = (UINT16 *)device->machine().region(k053246->memory_region)->base(); int size4 = (device->machine().region(k053246->memory_region)->bytes() / (1024 * 1024)) / 5; int romofs; size4 *= 4 * 1024 * 1024; // get offset to 5th bit ROM8 += size4; romofs = k053246->kx46_regs[6] << 16 | k053246->kx46_regs[7] << 8 | k053246->kx46_regs[4]; switch (offset) { case 0: // 20k / 36u return ROM[romofs + 2]; case 1: // 17k / 36y return ROM[romofs + 3]; case 2: // 10k / 32y case 3: romofs /= 2; return ROM8[romofs + 1]; case 4: // 22k / 34u return ROM[romofs]; case 5: // 19k / 34y return ROM[romofs + 1]; case 6: // 12k / 29y case 7: romofs /= 2; return ROM8[romofs]; default: LOG(("55673_rom_word_r: Unknown read offset %x\n", offset)); break; } return 0; } READ16_DEVICE_HANDLER( k055673_GX6bpp_rom_word_r ) { k053247_state *k053246 = k053247_get_safe_token(device); UINT16 *ROM = (UINT16 *)device->machine().region(k053246->memory_region)->base(); int romofs; romofs = k053246->kx46_regs[6] << 16 | k053246->kx46_regs[7] << 8 | k053246->kx46_regs[4]; romofs /= 4; // romofs increments 4 at a time romofs *= 12 / 2; // each increment of romofs = 12 new bytes (6 new words) switch (offset) { case 0: return ROM[romofs + 3]; case 1: return ROM[romofs + 4]; case 2: case 3: return ROM[romofs + 5]; case 4: return ROM[romofs]; case 5: return ROM[romofs + 1]; case 6: case 7: return ROM[romofs + 2]; default: // LOG(("55673_rom_word_r: Unknown read offset %x (PC=%x)\n", offset, cpu_get_pc(&space->device()))); break; } return 0; } READ8_DEVICE_HANDLER( k053246_r ) { k053247_state *k053246 = k053247_get_safe_token(device); if (k053246->objcha_line == ASSERT_LINE) { int addr; addr = (k053246->kx46_regs[6] << 17) | (k053246->kx46_regs[7] << 9) | (k053246->kx46_regs[4] << 1) | ((offset & 1) ^ 1); addr &= device->machine().region(k053246->memory_region)->bytes() - 1; // if (VERBOSE) // popmessage("%04x: offset %02x addr %06x", cpu_get_pc(&space->device()), offset, addr); return device->machine().region(k053246->memory_region)->base()[addr]; } else { // LOG(("%04x: read from unknown 053246 address %x\n", cpu_get_pc(&space->device()), offset)); return 0; } } WRITE8_DEVICE_HANDLER( k053246_w ) { k053247_state *k053247 = k053247_get_safe_token(device); k053247->kx46_regs[offset] = data; } READ16_DEVICE_HANDLER( k053246_word_r ) { offset <<= 1; return k053246_r(device, offset + 1) | (k053246_r(device, offset) << 8); } WRITE16_DEVICE_HANDLER( k053246_word_w ) { if (ACCESSING_BITS_8_15) k053246_w(device, offset << 1,(data >> 8) & 0xff); if (ACCESSING_BITS_0_7) k053246_w(device, (offset << 1) + 1,data & 0xff); } READ32_DEVICE_HANDLER( k053246_long_r ) { offset <<= 1; return (k053246_word_r(device, offset + 1, 0xffff) | k053246_word_r(device, offset, 0xffff) << 16); } WRITE32_DEVICE_HANDLER( k053246_long_w ) { offset <<= 1; k053246_word_w(device, offset, data >> 16, mem_mask >> 16); k053246_word_w(device, offset + 1, data, mem_mask); } void k053246_set_objcha_line( device_t *device, int state ) { k053247_state *k053246 = k053247_get_safe_token(device); k053246->objcha_line = state; } int k053246_is_irq_enabled( device_t *device ) { k053247_state *k053247 = k053247_get_safe_token(device); // This bit enables obj DMA rather than obj IRQ even though the two functions usually coincide. return k053247->kx46_regs[5] & 0x10; } /* * Sprite Format * ------------------ * * Word | Bit(s) | Use * -----+-fedcba9876543210-+---------------- * 0 | x--------------- | active (show this sprite) * 0 | -x-------------- | maintain aspect ratio (when set, zoom y acts on both axis) * 0 | --x------------- | flip y * 0 | ---x------------ | flip x * 0 | ----xxxx-------- | sprite size (see below) * 0 | --------xxxxxxxx | zcode * 1 | xxxxxxxxxxxxxxxx | sprite code * 2 | ------xxxxxxxxxx | y position * 3 | ------xxxxxxxxxx | x position * 4 | xxxxxxxxxxxxxxxx | zoom y (0x40 = normal, <0x40 = enlarge, >0x40 = reduce) * 5 | xxxxxxxxxxxxxxxx | zoom x (0x40 = normal, <0x40 = enlarge, >0x40 = reduce) * 6 | x--------------- | mirror y (top half is drawn as mirror image of the bottom) * 6 | -x-------------- | mirror x (right half is drawn as mirror image of the left) * 6 | --xx------------ | reserved (sprites with these two bits set don't seem to be graphics data at all) * 6 | ----xx---------- | shadow code: 0=off, 0x400=preset1, 0x800=preset2, 0xc00=preset3 * 6 | ------xx-------- | effect code: flicker, upper palette, full shadow...etc. (game dependent) * 6 | --------xxxxxxxx | "color", but depends on external connections (implies priority) * 7 | xxxxxxxxxxxxxxxx | game dependent * * shadow enables transparent shadows. Note that it applies to the last sprite pen ONLY. * The rest of the sprite remains normal. */ void k053247_sprites_draw( device_t *device, bitmap_t *bitmap, const rectangle *cliprect ) { #define NUM_SPRITES 256 k053247_state *k053246 = k053247_get_safe_token(device); running_machine &machine = device->machine(); /* sprites can be grouped up to 8x8. The draw order is 0 1 4 5 16 17 20 21 2 3 6 7 18 19 22 23 8 9 12 13 24 25 28 29 10 11 14 15 26 27 30 31 32 33 36 37 48 49 52 53 34 35 38 39 50 51 54 55 40 41 44 45 56 57 60 61 42 43 46 47 58 59 62 63 */ static const int xoffset[8] = { 0, 1, 4, 5, 16, 17, 20, 21 }; static const int yoffset[8] = { 0, 2, 8, 10, 32, 34, 40, 42 }; int sortedlist[NUM_SPRITES]; int offs,zcode; int ox, oy, color, code, size, w, h, x, y, xa, ya, flipx, flipy, mirrorx, mirrory, shadow, zoomx, zoomy, primask; int shdmask, nozoom, count, temp; int flipscreenx = k053246->kx46_regs[5] & 0x01; int flipscreeny = k053246->kx46_regs[5] & 0x02; int offx = (short)((k053246->kx46_regs[0] << 8) | k053246->kx46_regs[1]); int offy = (short)((k053246->kx46_regs[2] << 8) | k053246->kx46_regs[3]); int screen_width = k053246->screen->width(); UINT8 drawmode_table[256]; UINT8 shadowmode_table[256]; UINT8 *whichtable; memset(drawmode_table, DRAWMODE_SOURCE, sizeof(drawmode_table)); drawmode_table[0] = DRAWMODE_NONE; memset(shadowmode_table, DRAWMODE_SHADOW, sizeof(shadowmode_table)); shadowmode_table[0] = DRAWMODE_NONE; /* safeguard older drivers missing any of the following video attributes: VIDEO_HAS_SHADOWS | VIDEO_HAS_HIGHLIGHTS */ if (machine.config().m_video_attributes & VIDEO_HAS_SHADOWS) { if (bitmap->bpp == 32 && (machine.config().m_video_attributes & VIDEO_HAS_HIGHLIGHTS)) shdmask = 3; // enable all shadows and highlights else shdmask = 0; // enable default shadows } else shdmask = -1; // disable everything /* The k053247 does not draw pixels on top of those with equal or smaller Z-values regardless of priority. Embedded shadows inherit Z-values from their host sprites but do not assume host priorities unless explicitly told. In other words shadows can have priorities different from that of normal pens in the same sprite, in addition to the ability of masking themselves from specific layers or pixels on the other sprites. In front-to-back rendering, sprites cannot sandwich between alpha blended layers or the draw code will have to figure out the percentage opacities of what is on top and beneath each sprite pixel and blend the target accordingly. The process is overly demanding for realtime software and is thus another shortcoming of pdrawgfx and pixel based mixers. Even mahjong games with straight forward video subsystems are feeling the impact by which the girls cannot appear under translucent dialogue boxes. These are a small part of the k053247's feature set but many games expect them to be the minimum compliances. The specification will undoubtedly require redesigning the priority system from the ground up. Drawgfx.c and tilemap.c must also undergo heavy facelifts but in the end the changes could hurt simpler games more than they help complex systems; therefore the new engine should remain completely stand alone and self-contained. Implementation details are being hammered down but too early to make propositions. */ // Prebuild a sorted table by descending Z-order. zcode = k053246->z_rejection; offs = count = 0; if (zcode == -1) { for (; offs < 0x800; offs += 8) if (k053246->ram[offs] & 0x8000) sortedlist[count++] = offs; } else { for (; offs < 0x800; offs += 8) if ((k053246->ram[offs] & 0x8000) && ((k053246->ram[offs] & 0xff) != zcode)) sortedlist[count++] = offs; } w = count; count--; h = count; if (!(k053246->kx47_regs[0xc / 2] & 0x10)) { // sort objects in decending order(smaller z closer) when OPSET PRI is clear for (y = 0; y < h; y++) { offs = sortedlist[y]; zcode = k053246->ram[offs] & 0xff; for (x = y + 1; x < w; x++) { temp = sortedlist[x]; code = k053246->ram[temp] & 0xff; if (zcode <= code) { zcode = code; sortedlist[x] = offs; sortedlist[y] = offs = temp; } } } } else { // sort objects in ascending order(bigger z closer) when OPSET PRI is set for (y = 0; y < h; y++) { offs = sortedlist[y]; zcode = k053246->ram[offs] & 0xff; for (x = y + 1; x < w; x++) { temp = sortedlist[x]; code = k053246->ram[temp] & 0xff; if (zcode >= code) { zcode = code; sortedlist[x] = offs; sortedlist[y] = offs = temp; } } } } for (; count >= 0; count--) { offs = sortedlist[count]; code = k053246->ram[offs + 1]; shadow = color = k053246->ram[offs + 6]; primask = 0; k053246->callback(device->machine(), &code, &color, &primask); temp = k053246->ram[offs]; size = (temp & 0x0f00) >> 8; w = 1 << (size & 0x03); h = 1 << ((size >> 2) & 0x03); /* the sprite can start at any point in the 8x8 grid. We have to */ /* adjust the offsets to draw it correctly. Simpsons does this all the time. */ xa = 0; ya = 0; if (code & 0x01) xa += 1; if (code & 0x02) ya += 1; if (code & 0x04) xa += 2; if (code & 0x08) ya += 2; if (code & 0x10) xa += 4; if (code & 0x20) ya += 4; code &= ~0x3f; oy = (short)k053246->ram[offs + 2]; ox = (short)k053246->ram[offs + 3]; if (k053246->wraparound) { offx &= 0x3ff; offy &= 0x3ff; oy &= 0x3ff; ox &= 0x3ff; } /* zoom control: 0x40 = normal scale <0x40 enlarge (0x20 = double size) >0x40 reduce (0x80 = half size) */ y = zoomy = k053246->ram[offs + 4] & 0x3ff; if (zoomy) zoomy = (0x400000 + (zoomy >> 1)) / zoomy; else zoomy = 0x800000; if (!(temp & 0x4000)) { x = zoomx = k053246->ram[offs + 5] & 0x3ff; if (zoomx) zoomx = (0x400000 + (zoomx >> 1)) / zoomx; else zoomx = 0x800000; } else { zoomx = zoomy; x = y; } // ************************************************************************************ // for Escape Kids (GX975) // ************************************************************************************ // Escape Kids use 053246 #5 register's UNKNOWN Bit #5, #3 and #2. // Bit #5, #3, #2 always set "1". // Maybe, Bit #5 or #3 or #2 or combination means "FIX SPRITE WIDTH TO HALF" ????? // Below 7 lines supports this 053246's(???) function. // Don't rely on it, Please. But, Escape Kids works correctly! // ************************************************************************************ if ( k053246->kx46_regs[5] & 0x08 ) // Check only "Bit #3 is '1'?" (NOTE: good guess) { zoomx >>= 1; // Fix sprite width to HALF size ox = (ox >> 1) + 1; // Fix sprite draw position if (flipscreenx) ox += screen_width; nozoom = 0; } else nozoom = (x == 0x40 && y == 0x40); flipx = temp & 0x1000; flipy = temp & 0x2000; mirrorx = shadow & 0x4000; if (mirrorx) flipx = 0; // documented and confirmed mirrory = shadow & 0x8000; whichtable = drawmode_table; if (color == -1) { // drop the entire sprite to shadow unconditionally if (shdmask < 0) continue; color = 0; shadow = -1; whichtable = shadowmode_table; palette_set_shadow_mode(machine, 0); } else { if (shdmask >= 0) { shadow = (color & K053247_CUSTOMSHADOW) ? (color >> K053247_SHDSHIFT) : (shadow >> 10); if (shadow &= 3) palette_set_shadow_mode(machine, (shadow - 1) & shdmask); } else shadow = 0; } color &= 0xffff; // strip attribute flags if (flipscreenx) { ox = -ox; if (!mirrorx) flipx = !flipx; } if (flipscreeny) { oy = -oy; if (!mirrory) flipy = !flipy; } // apply wrapping and global offsets if (k053246->wraparound) { ox = ( ox - offx) & 0x3ff; oy = (-oy - offy) & 0x3ff; if (ox >= 0x300) ox -= 0x400; if (oy >= 0x280) oy -= 0x400; } else { ox = ox - offx; oy = -oy - offy; } ox += k053246->dx; oy -= k053246->dy; // apply global and display window offsets /* the coordinates given are for the *center* of the sprite */ ox -= (zoomx * w) >> 13; oy -= (zoomy * h) >> 13; drawmode_table[k053246->gfx->color_granularity - 1] = shadow ? DRAWMODE_SHADOW : DRAWMODE_SOURCE; for (y = 0; y < h; y++) { int sx, sy, zw, zh; sy = oy + ((zoomy * y + (1 << 11)) >> 12); zh = (oy + ((zoomy * (y + 1) + (1 << 11)) >> 12)) - sy; for (x = 0; x < w; x++) { int c, fx, fy; sx = ox + ((zoomx * x + (1 << 11)) >> 12); zw = (ox + ((zoomx * (x+1) + (1 << 11)) >> 12)) - sx; c = code; if (mirrorx) { if ((flipx == 0) ^ ((x << 1) < w)) { /* mirror left/right */ c += xoffset[(w - 1 - x + xa) & 7]; fx = 1; } else { c += xoffset[(x + xa) & 7]; fx = 0; } } else { if (flipx) c += xoffset[(w - 1 - x + xa) & 7]; else c += xoffset[(x + xa) & 7]; fx = flipx; } if (mirrory) { if ((flipy == 0) ^ ((y<<1) >= h)) { /* mirror top/bottom */ c += yoffset[(h - 1 - y + ya) & 7]; fy = 1; } else { c += yoffset[(y + ya) & 7]; fy = 0; } } else { if (flipy) c += yoffset[(h - 1 - y + ya) & 7]; else c += yoffset[(y + ya) & 7]; fy = flipy; } if (nozoom) { pdrawgfx_transtable(bitmap,cliprect,k053246->gfx, c, color, fx,fy, sx,sy, machine.priority_bitmap,primask, whichtable,machine.shadow_table); } else { pdrawgfxzoom_transtable(bitmap,cliprect,k053246->gfx, c, color, fx,fy, sx,sy, (zw << 16) >> 4,(zh << 16) >> 4, machine.priority_bitmap,primask, whichtable,machine.shadow_table); } if (mirrory && h == 1) /* Simpsons shadows */ { if (nozoom) { pdrawgfx_transtable(bitmap,cliprect,k053246->gfx, c, color, fx,!fy, sx,sy, machine.priority_bitmap,primask, whichtable,machine.shadow_table); } else { pdrawgfxzoom_transtable(bitmap,cliprect,k053246->gfx, c, color, fx,!fy, sx,sy, (zw << 16) >> 4,(zh << 16) >> 4, machine.priority_bitmap,primask, whichtable,machine.shadow_table); } } } // end of X loop } // end of Y loop } // end of sprite-list loop #undef NUM_SPRITES } /***************************************************************************** DEVICE INTERFACE *****************************************************************************/ static DEVICE_START( k053247 ) { k053247_state *k053247 = k053247_get_safe_token(device); const k053247_interface *intf = k053247_get_interface(device); running_machine &machine = device->machine(); UINT32 total; static const gfx_layout spritelayout = { 16,16, 0, 4, { 0, 1, 2, 3 }, { 2*4, 3*4, 0*4, 1*4, 6*4, 7*4, 4*4, 5*4, 10*4, 11*4, 8*4, 9*4, 14*4, 15*4, 12*4, 13*4 }, { 0*64, 1*64, 2*64, 3*64, 4*64, 5*64, 6*64, 7*64, 8*64, 9*64, 10*64, 11*64, 12*64, 13*64, 14*64, 15*64 }, 128*8 }; static const gfx_layout tasman_16x16_layout = { 16,16, RGN_FRAC(1,2), 8, { 0,8,16,24, RGN_FRAC(1,2)+0,RGN_FRAC(1,2)+8,RGN_FRAC(1,2)+16,RGN_FRAC(1,2)+24 }, { 0,1,2,3,4,5,6,7, 32,33,34,35,36,37,38,39 }, { 0*64, 1*64, 2*64, 3*64, 4*64, 5*64, 6*64, 7*64, 8*64, 9*64, 10*64, 11*64, 12*64, 13*64, 14*64, 15*64 }, 16*64 }; k053247->screen = machine.device(intf->screen); /* decode the graphics */ switch (intf->plane_order) { case NORMAL_PLANE_ORDER: total = machine.region(intf->gfx_memory_region)->bytes() / 128; decode_gfx(machine, intf->gfx_num, machine.region(intf->gfx_memory_region)->base(), total, &spritelayout, 4); break; case TASMAN_PLANE_ORDER: total = machine.region(intf->gfx_memory_region)->bytes() / 128; decode_gfx(machine, intf->gfx_num, machine.region(intf->gfx_memory_region)->base(), total, &tasman_16x16_layout, 4); break; default: fatalerror("Unsupported plane_order"); } if (VERBOSE) { if (k053247->screen->format() == BITMAP_FORMAT_RGB32) { if ((machine.config().m_video_attributes & (VIDEO_HAS_SHADOWS|VIDEO_HAS_HIGHLIGHTS)) != VIDEO_HAS_SHADOWS+VIDEO_HAS_HIGHLIGHTS) popmessage("driver missing SHADOWS or HIGHLIGHTS flag"); } else { if (!(machine.config().m_video_attributes & VIDEO_HAS_SHADOWS)) popmessage("driver should use VIDEO_HAS_SHADOWS"); } } /* deinterleave the graphics, if needed */ deinterleave_gfx(machine, intf->gfx_memory_region, intf->deinterleave); k053247->dx = intf->dx; k053247->dy = intf->dy; k053247->memory_region = intf->gfx_memory_region; k053247->gfx = machine.gfx[intf->gfx_num]; k053247->callback = intf->callback; k053247->ram = auto_alloc_array_clear(machine, UINT16, 0x1000 / 2); device->save_pointer(NAME(k053247->ram), 0x1000 / 2); device->save_item(NAME(k053247->kx46_regs)); device->save_item(NAME(k053247->kx47_regs)); device->save_item(NAME(k053247->objcha_line)); device->save_item(NAME(k053247->wraparound)); device->save_item(NAME(k053247->z_rejection)); } /* K055673 used with the 54246 in PreGX/Run and Gun/System GX games */ static DEVICE_START( k055673 ) { k053247_state *k053247 = k053247_get_safe_token(device); const k053247_interface *intf = k053247_get_interface(device); running_machine &machine = device->machine(); UINT32 total; UINT8 *s1, *s2, *d; long i; UINT16 *K055673_rom; int size4; static const gfx_layout spritelayout = /* System GX sprite layout */ { 16,16, 0, 5, { 32, 24, 16, 8, 0 }, { 0, 1, 2, 3, 4, 5, 6, 7, 40, 41, 42, 43, 44, 45, 46, 47 }, { 0, 10*8, 10*8*2, 10*8*3, 10*8*4, 10*8*5, 10*8*6, 10*8*7, 10*8*8, 10*8*9, 10*8*10, 10*8*11, 10*8*12, 10*8*13, 10*8*14, 10*8*15 }, 16*16*5 }; static const gfx_layout spritelayout2 = /* Run and Gun sprite layout */ { 16,16, 0, 4, { 24, 16, 8, 0 }, { 0, 1, 2, 3, 4, 5, 6, 7, 32, 33, 34, 35, 36, 37, 38, 39 }, { 0, 64, 128, 192, 256, 320, 384, 448, 512, 576, 640, 704, 768, 832, 896, 960 }, 16*16*4 }; static const gfx_layout spritelayout3 = /* Lethal Enforcers II sprite layout */ { 16,16, 0, 8, { 8*1,8*0,8*3,8*2,8*5,8*4,8*7,8*6 }, { 0,1,2,3,4,5,6,7,64+0,64+1,64+2,64+3,64+4,64+5,64+6,64+7 }, { 128*0, 128*1, 128*2, 128*3, 128*4, 128*5, 128*6, 128*7, 128*8, 128*9, 128*10, 128*11, 128*12, 128*13, 128*14, 128*15 }, 128*16 }; static const gfx_layout spritelayout4 = /* System GX 6bpp sprite layout */ { 16,16, 0, 6, { 40, 32, 24, 16, 8, 0 }, { 0, 1, 2, 3, 4, 5, 6, 7, 48, 49, 50, 51, 52, 53, 54, 55 }, { 0, 12*8, 12*8*2, 12*8*3, 12*8*4, 12*8*5, 12*8*6, 12*8*7, 12*8*8, 12*8*9, 12*8*10, 12*8*11, 12*8*12, 12*8*13, 12*8*14, 12*8*15 }, 16*16*6 }; k053247->screen = machine.device(intf->screen); K055673_rom = (UINT16 *)machine.region(intf->gfx_memory_region)->base(); /* decode the graphics */ switch (intf->plane_order) /* layout would be more correct than plane_order, but we use k053247_interface */ { case K055673_LAYOUT_GX: size4 = (machine.region(intf->gfx_memory_region)->bytes() / (1024 * 1024)) / 5; size4 *= 4 * 1024 * 1024; /* set the # of tiles based on the 4bpp section */ K055673_rom = auto_alloc_array(machine, UINT16, size4 * 5 / 2); d = (UINT8 *)K055673_rom; // now combine the graphics together to form 5bpp s1 = machine.region(intf->gfx_memory_region)->base(); // 4bpp area s2 = s1 + (size4); // 1bpp area for (i = 0; i < size4; i+= 4) { *d++ = *s1++; *d++ = *s1++; *d++ = *s1++; *d++ = *s1++; *d++ = *s2++; } total = size4 / 128; decode_gfx(machine, intf->gfx_num, (UINT8 *)K055673_rom, total, &spritelayout, 4); break; case K055673_LAYOUT_RNG: total = machine.region(intf->gfx_memory_region)->bytes() / (16 * 16 / 2); decode_gfx(machine, intf->gfx_num, (UINT8 *)K055673_rom, total, &spritelayout2, 4); break; case K055673_LAYOUT_LE2: total = machine.region(intf->gfx_memory_region)->bytes() / (16 * 16); decode_gfx(machine, intf->gfx_num, (UINT8 *)K055673_rom, total, &spritelayout3, 4); break; case K055673_LAYOUT_GX6: total = machine.region(intf->gfx_memory_region)->bytes() / (16 * 16 * 6 / 8); decode_gfx(machine, intf->gfx_num, (UINT8 *)K055673_rom, total, &spritelayout4, 4); break; default: fatalerror("Unsupported layout"); } if (VERBOSE && !(machine.config().m_video_attributes & VIDEO_HAS_SHADOWS)) popmessage("driver should use VIDEO_HAS_SHADOWS"); k053247->dx = intf->dx; k053247->dy = intf->dy; k053247->memory_region = intf->gfx_memory_region; k053247->gfx = machine.gfx[intf->gfx_num]; k053247->callback = intf->callback; k053247->ram = auto_alloc_array(machine, UINT16, 0x1000 / 2); device->save_pointer(NAME(k053247->ram), 0x800); device->save_item(NAME(k053247->kx46_regs)); device->save_item(NAME(k053247->kx47_regs)); device->save_item(NAME(k053247->objcha_line)); device->save_item(NAME(k053247->wraparound)); device->save_item(NAME(k053247->z_rejection)); } static DEVICE_RESET( k053247 ) { k053247_state *k053247 = k053247_get_safe_token(device); k053247->wraparound = 1; k053247->z_rejection = -1; k053247->objcha_line = CLEAR_LINE; memset(k053247->kx46_regs, 0, 8); memset(k053247->kx47_regs, 0, 32); } /* In a K053247+K055555 setup objects with Z-code 0x00 should be ignored when PRFLIP is cleared, while objects with Z-code 0xff should be ignored when PRFLIP is set. These behaviors can also be seen in older K053245(6)+K053251 setups. Bucky'O Hare, The Simpsons and Sunset Riders rely on their implications to prepare and retire sprites. They probably apply to many other Konami games but it's hard to tell because most artifacts have been filtered by exclusion sort. A driver may call K05324x_set_z_rejection() to set which zcode to ignore. Parameter: -1 = accept all(default) 0x00-0xff = zcode to ignore */ void k05324x_set_z_rejection( device_t *device, int zcode ) { k05324x_state *k05324x = k05324x_get_safe_token(device); k05324x->z_rejection = zcode; } void k053247_set_z_rejection( device_t *device, int zcode ) { k053247_state *k053247 = k053247_get_safe_token(device); k053247->z_rejection = zcode; } /***************************************************************************/ /* */ /* 051316 */ /* */ /***************************************************************************/ typedef struct _k051316_state k051316_state; struct _k051316_state { UINT8 *ram; tilemap_t *tmap; int gfxnum, wraparound, bpp; int offset[2]; UINT8 ctrlram[16]; k051316_callback callback; const char *memory_region; }; /***************************************************************************** INLINE FUNCTIONS *****************************************************************************/ INLINE k051316_state *k051316_get_safe_token( device_t *device ) { assert(device != NULL); assert(device->type() == K051316); return (k051316_state *)downcast(device)->token(); } INLINE const k051316_interface *k051316_get_interface( device_t *device ) { assert(device != NULL); assert(device->type() == K051316); return (const k051316_interface *) device->static_config(); } /***************************************************************************** DEVICE HANDLERS *****************************************************************************/ READ8_DEVICE_HANDLER( k051316_r ) { k051316_state *k051316= k051316_get_safe_token(device); return k051316->ram[offset]; } WRITE8_DEVICE_HANDLER( k051316_w ) { k051316_state *k051316= k051316_get_safe_token(device); k051316->ram[offset] = data; tilemap_mark_tile_dirty(k051316->tmap, offset & 0x3ff); } READ8_DEVICE_HANDLER( k051316_rom_r ) { k051316_state *k051316= k051316_get_safe_token(device); if ((k051316->ctrlram[0x0e] & 0x01) == 0) { int addr = offset + (k051316->ctrlram[0x0c] << 11) + (k051316->ctrlram[0x0d] << 19); if (k051316->bpp <= 4) addr /= 2; addr &= device->machine().region(k051316->memory_region)->bytes() - 1; // popmessage("%s: offset %04x addr %04x", device->machine().describe_context(), offset, addr); return device->machine().region(k051316->memory_region)->base()[addr]; } else { //logerror("%s: read 051316 ROM offset %04x but reg 0x0c bit 0 not clear\n", device->machine().describe_context(), offset); return 0; } } WRITE8_DEVICE_HANDLER( k051316_ctrl_w ) { k051316_state *k051316= k051316_get_safe_token(device); k051316->ctrlram[offset] = data; //if (offset >= 0x0c) logerror("%s: write %02x to 051316 reg %x\n", device->machine().describe_context(), data, offset); } // a few games (ajax, rollerg, ultraman, etc.) can enable and disable wraparound after start void k051316_wraparound_enable( device_t *device, int status ) { k051316_state *k051316= k051316_get_safe_token(device); k051316->wraparound = status; } /*************************************************************************** Callbacks for the TileMap code ***************************************************************************/ INLINE void k051316_get_tile_info( device_t *device, tile_data *tileinfo, int tile_index ) { k051316_state *k051316 = k051316_get_safe_token(device); int code = k051316->ram[tile_index]; int color = k051316->ram[tile_index + 0x400]; int flags = 0; k051316->callback(device->machine(), &code, &color, &flags); SET_TILE_INFO_DEVICE( k051316->gfxnum, code, color, flags); } static TILE_GET_INFO_DEVICE( k051316_get_tile_info0 ) { k051316_get_tile_info(device, tileinfo, tile_index); } void k051316_zoom_draw( device_t *device, bitmap_t *bitmap, const rectangle *cliprect, int flags, UINT32 priority ) { k051316_state *k051316= k051316_get_safe_token(device); UINT32 startx, starty; int incxx, incxy, incyx, incyy; startx = 256 * ((INT16)(256 * k051316->ctrlram[0x00] + k051316->ctrlram[0x01])); incxx = (INT16)(256 * k051316->ctrlram[0x02] + k051316->ctrlram[0x03]); incyx = (INT16)(256 * k051316->ctrlram[0x04] + k051316->ctrlram[0x05]); starty = 256 * ((INT16)(256 * k051316->ctrlram[0x06] + k051316->ctrlram[0x07])); incxy = (INT16)(256 * k051316->ctrlram[0x08] + k051316->ctrlram[0x09]); incyy = (INT16)(256 * k051316->ctrlram[0x0a] + k051316->ctrlram[0x0b]); startx -= (16 + k051316->offset[1]) * incyx; starty -= (16 + k051316->offset[1]) * incyy; startx -= (89 + k051316->offset[0]) * incxx; starty -= (89 + k051316->offset[0]) * incxy; tilemap_draw_roz(bitmap,cliprect,k051316->tmap,startx << 5,starty << 5, incxx << 5,incxy << 5,incyx << 5,incyy << 5, k051316->wraparound, flags,priority); #if 0 popmessage("%02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x", k051316->ctrlram[0x00], k051316->ctrlram[0x01], k051316->ctrlram[0x02], k051316->ctrlram[0x03], k051316->ctrlram[0x04], k051316->ctrlram[0x05], k051316->ctrlram[0x06], k051316->ctrlram[0x07], k051316->ctrlram[0x08], k051316->ctrlram[0x09], k051316->ctrlram[0x0a], k051316->ctrlram[0x0b], k051316->ctrlram[0x0c], /* bank for ROM testing */ k051316->ctrlram[0x0d], k051316->ctrlram[0x0e], /* 0 = test ROMs */ k051316->ctrlram[0x0f]); #endif } /***************************************************************************** DEVICE INTERFACE *****************************************************************************/ static DEVICE_START( k051316 ) { k051316_state *k051316 = k051316_get_safe_token(device); const k051316_interface *intf = k051316_get_interface(device); running_machine &machine = device->machine(); int is_tail2nos = 0; UINT32 total; static const gfx_layout charlayout4 = { 16,16, 0, 4, { 0, 1, 2, 3 }, { 0*4, 1*4, 2*4, 3*4, 4*4, 5*4, 6*4, 7*4, 8*4, 9*4, 10*4, 11*4, 12*4, 13*4, 14*4, 15*4 }, { 0*64, 1*64, 2*64, 3*64, 4*64, 5*64, 6*64, 7*64, 8*64, 9*64, 10*64, 11*64, 12*64, 13*64, 14*64, 15*64 }, 128*8 }; static const gfx_layout charlayout7 = { 16,16, 0, 7, { 1,2,3,4,5,6,7 }, { 0*8, 1*8, 2*8, 3*8, 4*8, 5*8, 6*8, 7*8, 8*8, 9*8, 10*8, 11*8, 12*8, 13*8, 14*8, 15*8 }, { 0*128, 1*128, 2*128, 3*128, 4*128, 5*128, 6*128, 7*128, 8*128, 9*128, 10*128, 11*128, 12*128, 13*128, 14*128, 15*128 }, 256*8 }; static const gfx_layout charlayout8 = { 16,16, 0, 8, { 0,1,2,3,4,5,6,7 }, { 0*8, 1*8, 2*8, 3*8, 4*8, 5*8, 6*8, 7*8, 8*8, 9*8, 10*8, 11*8, 12*8, 13*8, 14*8, 15*8 }, { 0*128, 1*128, 2*128, 3*128, 4*128, 5*128, 6*128, 7*128, 8*128, 9*128, 10*128, 11*128, 12*128, 13*128, 14*128, 15*128 }, 256*8 }; static const gfx_layout charlayout_tail2nos = { 16,16, 0, 4, { 0, 1, 2, 3 }, { XOR(0)*4, XOR(1)*4, XOR(2)*4, XOR(3)*4, XOR(4)*4, XOR(5)*4, XOR(6)*4, XOR(7)*4, XOR(8)*4, XOR(9)*4, XOR(10)*4, XOR(11)*4, XOR(12)*4, XOR(13)*4, XOR(14)*4, XOR(15)*4 }, { 0*64, 1*64, 2*64, 3*64, 4*64, 5*64, 6*64, 7*64, 8*64, 9*64, 10*64, 11*64, 12*64, 13*64, 14*64, 15*64 }, 128*8 }; /* decode the graphics */ switch (intf->bpp) { case -4: total = 0x400; is_tail2nos = 1; decode_gfx(machine, intf->gfx_num, machine.region(intf->gfx_memory_region)->base(), total, &charlayout_tail2nos, 4); break; case 4: total = machine.region(intf->gfx_memory_region)->bytes() / 128; decode_gfx(machine, intf->gfx_num, machine.region(intf->gfx_memory_region)->base(), total, &charlayout4, 4); break; case 7: total = machine.region(intf->gfx_memory_region)->bytes() / 256; decode_gfx(machine, intf->gfx_num, machine.region(intf->gfx_memory_region)->base(), total, &charlayout7, 7); break; case 8: total = machine.region(intf->gfx_memory_region)->bytes() / 256; decode_gfx(machine, intf->gfx_num, machine.region(intf->gfx_memory_region)->base(), total, &charlayout8, 8); break; default: fatalerror("Unsupported bpp"); } k051316->memory_region = intf->gfx_memory_region; k051316->gfxnum = intf->gfx_num; k051316->bpp = is_tail2nos ? 4 : intf->bpp; // tail2nos is passed with bpp = -4 to setup the custom charlayout! k051316->callback = intf->callback; k051316->tmap = tilemap_create_device(device, k051316_get_tile_info0, tilemap_scan_rows, 16, 16, 32, 32); k051316->ram = auto_alloc_array(machine, UINT8, 0x800); if (!intf->pen_is_mask) tilemap_set_transparent_pen(k051316->tmap, intf->transparent_pen); else { tilemap_map_pens_to_layer(k051316->tmap, 0, 0, 0, TILEMAP_PIXEL_LAYER1); tilemap_map_pens_to_layer(k051316->tmap, 0, intf->transparent_pen, intf->transparent_pen, TILEMAP_PIXEL_LAYER0); } k051316->wraparound = intf->wrap; k051316->offset[0] = intf->xoffs; k051316->offset[1] = intf->yoffs; device->save_pointer(NAME(k051316->ram), 0x800); device->save_item(NAME(k051316->ctrlram)); device->save_item(NAME(k051316->wraparound)); } static DEVICE_RESET( k051316 ) { k051316_state *k051316 = k051316_get_safe_token(device); memset(k051316->ctrlram, 0, 0x10); } /***************************************************************************/ /* */ /* 053936 */ /* */ /***************************************************************************/ typedef struct _k053936_state k053936_state; struct _k053936_state { UINT16 *ctrl; UINT16 *linectrl; int wraparound; int offset[2]; }; /***************************************************************************** INLINE FUNCTIONS *****************************************************************************/ INLINE k053936_state *k053936_get_safe_token( device_t *device ) { assert(device != NULL); assert(device->type() == K053936); return (k053936_state *)downcast(device)->token(); } INLINE const k053936_interface *k053936_get_interface( device_t *device ) { assert(device != NULL); assert(device->type() == K053936); return (const k053936_interface *) device->static_config(); } /***************************************************************************** DEVICE HANDLERS *****************************************************************************/ WRITE16_DEVICE_HANDLER( k053936_ctrl_w ) { k053936_state *k053936= k053936_get_safe_token(device); COMBINE_DATA(&k053936->ctrl[offset]); } /* FIXME: this is probably unused... check! */ READ16_DEVICE_HANDLER( k053936_ctrl_r ) { k053936_state *k053936= k053936_get_safe_token(device); return k053936->ctrl[offset]; } WRITE16_DEVICE_HANDLER( k053936_linectrl_w ) { k053936_state *k053936= k053936_get_safe_token(device); COMBINE_DATA(&k053936->linectrl[offset]); } READ16_DEVICE_HANDLER( k053936_linectrl_r ) { k053936_state *k053936= k053936_get_safe_token(device); return k053936->linectrl[offset]; } // there is another implementation of this in video/konamigx.c (!) // why? shall they be merged? void k053936_zoom_draw( device_t *device, bitmap_t *bitmap, const rectangle *cliprect, tilemap_t *tmap, int flags, UINT32 priority, int glfgreat_hack ) { k053936_state *k053936= k053936_get_safe_token(device); if (!tmap) return; if (k053936->ctrl[0x07] & 0x0040) { UINT32 startx, starty; int incxx, incxy; rectangle my_clip; int y, maxy; // Racin' Force will get to here if glfgreat_hack is enabled, and it ends // up setting a maximum y value of '13', thus causing nothing to be drawn. // It looks like the roz output should be flipped somehow as it seems to be // displaying the wrong areas of the tilemap and is rendered upside down, // although due to the additional post-processing the voxel renderer performs // it's difficult to know what the output SHOULD be. (hold W in Racin' Force // to see the chip output) if (((k053936->ctrl[0x07] & 0x0002) && k053936->ctrl[0x09]) && (glfgreat_hack)) /* wrong, but fixes glfgreat */ { my_clip.min_x = k053936->ctrl[0x08] + k053936->offset[0] + 2; my_clip.max_x = k053936->ctrl[0x09] + k053936->offset[0] + 2 - 1; if (my_clip.min_x < cliprect->min_x) my_clip.min_x = cliprect->min_x; if (my_clip.max_x > cliprect->max_x) my_clip.max_x = cliprect->max_x; y = k053936->ctrl[0x0a] + k053936->offset[1] - 2; if (y < cliprect->min_y) y = cliprect->min_y; maxy = k053936->ctrl[0x0b] + k053936->offset[1] - 2 - 1; if (maxy > cliprect->max_y) maxy = cliprect->max_y; } else { my_clip.min_x = cliprect->min_x; my_clip.max_x = cliprect->max_x; y = cliprect->min_y; maxy = cliprect->max_y; } while (y <= maxy) { UINT16 *lineaddr = k053936->linectrl + 4 * ((y - k053936->offset[1]) & 0x1ff); my_clip.min_y = my_clip.max_y = y; startx = 256 * (INT16)(lineaddr[0] + k053936->ctrl[0x00]); starty = 256 * (INT16)(lineaddr[1] + k053936->ctrl[0x01]); incxx = (INT16)(lineaddr[2]); incxy = (INT16)(lineaddr[3]); if (k053936->ctrl[0x06] & 0x8000) incxx *= 256; if (k053936->ctrl[0x06] & 0x0080) incxy *= 256; startx -= k053936->offset[0] * incxx; starty -= k053936->offset[0] * incxy; tilemap_draw_roz(bitmap,&my_clip,tmap,startx << 5,starty << 5, incxx << 5,incxy << 5,0,0, k053936->wraparound, flags,priority); y++; } } else /* "simple" mode */ { UINT32 startx, starty; int incxx, incxy, incyx, incyy; startx = 256 * (INT16)(k053936->ctrl[0x00]); starty = 256 * (INT16)(k053936->ctrl[0x01]); incyx = (INT16)(k053936->ctrl[0x02]); incyy = (INT16)(k053936->ctrl[0x03]); incxx = (INT16)(k053936->ctrl[0x04]); incxy = (INT16)(k053936->ctrl[0x05]); if (k053936->ctrl[0x06] & 0x4000) { incyx *= 256; incyy *= 256; } if (k053936->ctrl[0x06] & 0x0040) { incxx *= 256; incxy *= 256; } startx -= k053936->offset[1] * incyx; starty -= k053936->offset[1] * incyy; startx -= k053936->offset[0] * incxx; starty -= k053936->offset[0] * incxy; tilemap_draw_roz(bitmap,cliprect,tmap,startx << 5,starty << 5, incxx << 5,incxy << 5,incyx << 5,incyy << 5, k053936->wraparound, flags,priority); } #if 0 if (machine.input().code_pressed(KEYCODE_D)) popmessage("%04x %04x %04x %04x\n%04x %04x %04x %04x\n%04x %04x %04x %04x\n%04x %04x %04x %04x", k053936->ctrl[0x00], k053936->ctrl[0x01], k053936->ctrl[0x02], k053936->ctrl[0x03], k053936->ctrl[0x04], k053936->ctrl[0x05], k053936->ctrl[0x06], k053936->ctrl[0x07], k053936->ctrl[0x08], k053936->ctrl[0x09], k053936->ctrl[0x0a], k053936->ctrl[0x0b], k053936->ctrl[0x0c], k053936->ctrl[0x0d], k053936->ctrl[0x0e], k053936->ctrl[0x0f]); #endif } /***************************************************************************** DEVICE INTERFACE *****************************************************************************/ static DEVICE_START( k053936 ) { k053936_state *k053936 = k053936_get_safe_token(device); const k053936_interface *intf = k053936_get_interface(device); k053936->ctrl = auto_alloc_array(device->machine(), UINT16, 0x20); k053936->linectrl = auto_alloc_array(device->machine(), UINT16, 0x4000); k053936->wraparound = intf->wrap; k053936->offset[0] = intf->xoff; k053936->offset[1] = intf->yoff; device->save_pointer(NAME(k053936->ctrl), 0x20); device->save_pointer(NAME(k053936->linectrl), 0x4000); } static DEVICE_RESET( k053936 ) { k053936_state *k053936 = k053936_get_safe_token(device); memset(k053936->ctrl, 0, 0x20); } /***************************************************************************/ /* */ /* 053251 */ /* */ /***************************************************************************/ typedef struct _k053251_state k053251_state; struct _k053251_state { int dirty_tmap[5]; UINT8 ram[16]; int tilemaps_set; int palette_index[5]; }; /***************************************************************************** INLINE FUNCTIONS *****************************************************************************/ INLINE k053251_state *k053251_get_safe_token( device_t *device ) { assert(device != NULL); assert(device->type() == K053251); return (k053251_state *)downcast(device)->token(); } /***************************************************************************** DEVICE HANDLERS *****************************************************************************/ WRITE8_DEVICE_HANDLER( k053251_w ) { k053251_state *k053251 = k053251_get_safe_token(device); int i, newind; data &= 0x3f; if (k053251->ram[offset] != data) { k053251->ram[offset] = data; if (offset == 9) { /* palette base index */ for (i = 0; i < 3; i++) { newind = 32 * ((data >> 2 * i) & 0x03); if (k053251->palette_index[i] != newind) { k053251->palette_index[i] = newind; k053251->dirty_tmap[i] = 1; } } if (!k053251->tilemaps_set) tilemap_mark_all_tiles_dirty_all(device->machine()); } else if (offset == 10) { /* palette base index */ for (i = 0; i < 2; i++) { newind = 16 * ((data >> 3 * i) & 0x07); if (k053251->palette_index[3 + i] != newind) { k053251->palette_index[3 + i] = newind; k053251->dirty_tmap[3 + i] = 1; } } if (!k053251->tilemaps_set) tilemap_mark_all_tiles_dirty_all(device->machine()); } } } WRITE16_DEVICE_HANDLER( k053251_lsb_w ) { if (ACCESSING_BITS_0_7) k053251_w(device, offset, data & 0xff); } WRITE16_DEVICE_HANDLER( k053251_msb_w ) { if (ACCESSING_BITS_8_15) k053251_w(device, offset, (data >> 8) & 0xff); } int k053251_get_priority( device_t *device, int ci ) { k053251_state *k053251 = k053251_get_safe_token(device); return k053251->ram[ci]; } int k053251_get_palette_index( device_t *device, int ci ) { k053251_state *k053251 = k053251_get_safe_token(device); return k053251->palette_index[ci]; } int k053251_get_tmap_dirty( device_t *device, int tmap_num ) { k053251_state *k053251 = k053251_get_safe_token(device); assert(tmap_num < 5); return k053251->dirty_tmap[tmap_num]; } void k053251_set_tmap_dirty( device_t *device, int tmap_num, int data ) { k053251_state *k053251 = k053251_get_safe_token(device); assert(tmap_num < 5); k053251->dirty_tmap[tmap_num] = data ? 1 : 0; } static void k053251_reset_indexes(k053251_state *k053251) { k053251->palette_index[0] = 32 * ((k053251->ram[9] >> 0) & 0x03); k053251->palette_index[1] = 32 * ((k053251->ram[9] >> 2) & 0x03); k053251->palette_index[2] = 32 * ((k053251->ram[9] >> 4) & 0x03); k053251->palette_index[3] = 16 * ((k053251->ram[10] >> 0) & 0x07); k053251->palette_index[4] = 16 * ((k053251->ram[10] >> 3) & 0x07); } /***************************************************************************** DEVICE INTERFACE *****************************************************************************/ static DEVICE_START( k053251 ) { k053251_state *k053251 = k053251_get_safe_token(device); device->save_item(NAME(k053251->ram)); device->save_item(NAME(k053251->tilemaps_set)); device->save_item(NAME(k053251->dirty_tmap)); device->machine().save().register_postload(save_prepost_delegate(FUNC(k053251_reset_indexes), k053251)); } static DEVICE_RESET( k053251 ) { k053251_state *k053251 = k053251_get_safe_token(device); int i; k053251->tilemaps_set = 0; for (i = 0; i < 0x10; i++) k053251->ram[i] = 0; for (i = 0; i < 5; i++) k053251->dirty_tmap[i] = 0; } /***************************************************************************/ /* */ /* 054000 */ /* */ /***************************************************************************/ typedef struct _k054000_state k054000_state; struct _k054000_state { UINT8 regs[0x20]; }; /***************************************************************************** INLINE FUNCTIONS *****************************************************************************/ INLINE k054000_state *k054000_get_safe_token( device_t *device ) { assert(device != NULL); assert(device->type() == K054000); return (k054000_state *)downcast(device)->token(); } /***************************************************************************** DEVICE HANDLERS *****************************************************************************/ WRITE8_DEVICE_HANDLER( k054000_w ) { k054000_state *k054000 = k054000_get_safe_token(device); //logerror("%04x: write %02x to 054000 address %02x\n",cpu_get_pc(&space->device()),data,offset); k054000->regs[offset] = data; } READ8_DEVICE_HANDLER( k054000_r ) { k054000_state *k054000 = k054000_get_safe_token(device); int Acx, Acy, Aax, Aay; int Bcx, Bcy, Bax, Bay; //logerror("%04x: read 054000 address %02x\n", cpu_get_pc(&space->device()), offset); if (offset != 0x18) return 0; Acx = (k054000->regs[0x01] << 16) | (k054000->regs[0x02] << 8) | k054000->regs[0x03]; Acy = (k054000->regs[0x09] << 16) | (k054000->regs[0x0a] << 8) | k054000->regs[0x0b]; /* TODO: this is a hack to make thndrx2 pass the startup check. It is certainly wrong. */ if (k054000->regs[0x04] == 0xff) Acx+=3; if (k054000->regs[0x0c] == 0xff) Acy+=3; Aax = k054000->regs[0x06] + 1; Aay = k054000->regs[0x07] + 1; Bcx = (k054000->regs[0x15] << 16) | (k054000->regs[0x16] << 8) | k054000->regs[0x17]; Bcy = (k054000->regs[0x11] << 16) | (k054000->regs[0x12] << 8) | k054000->regs[0x13]; Bax = k054000->regs[0x0e] + 1; Bay = k054000->regs[0x0f] + 1; if (Acx + Aax < Bcx - Bax) return 1; if (Bcx + Bax < Acx - Aax) return 1; if (Acy + Aay < Bcy - Bay) return 1; if (Bcy + Bay < Acy - Aay) return 1; return 0; } READ16_DEVICE_HANDLER( k054000_lsb_r ) { return k054000_r(device, offset); } WRITE16_DEVICE_HANDLER( k054000_lsb_w ) { if (ACCESSING_BITS_0_7) k054000_w(device, offset, data & 0xff); } /***************************************************************************** DEVICE INTERFACE *****************************************************************************/ static DEVICE_START( k054000 ) { k054000_state *k054000 = k054000_get_safe_token(device); device->save_item(NAME(k054000->regs)); } static DEVICE_RESET( k054000 ) { k054000_state *k054000 = k054000_get_safe_token(device); int i; for (i = 0; i < 0x20; i++) k054000->regs[i] = 0; } /***************************************************************************/ /* */ /* 051733 */ /* */ /***************************************************************************/ typedef struct _k051733_state k051733_state; struct _k051733_state { UINT8 ram[0x20]; UINT8 rng; }; /***************************************************************************** INLINE FUNCTIONS *****************************************************************************/ INLINE k051733_state *k051733_get_safe_token( device_t *device ) { assert(device != NULL); assert(device->type() == K051733); return (k051733_state *)downcast(device)->token(); } /***************************************************************************** DEVICE HANDLERS *****************************************************************************/ WRITE8_DEVICE_HANDLER( k051733_w ) { k051733_state *k051733= k051733_get_safe_token(device); //logerror("%04x: write %02x to 051733 address %02x\n", cpu_get_pc(&space->device()), data, offset); k051733->ram[offset] = data; } static int k051733_int_sqrt( UINT32 op ) { UINT32 i = 0x8000; UINT32 step = 0x4000; while (step) { if (i * i == op) return i; else if (i * i > op) i -= step; else i += step; step >>= 1; } return i; } READ8_DEVICE_HANDLER( k051733_r ) { k051733_state *k051733= k051733_get_safe_token(device); int op1 = (k051733->ram[0x00] << 8) | k051733->ram[0x01]; int op2 = (k051733->ram[0x02] << 8) | k051733->ram[0x03]; int op3 = (k051733->ram[0x04] << 8) | k051733->ram[0x05]; int rad = (k051733->ram[0x06] << 8) | k051733->ram[0x07]; int yobj1c = (k051733->ram[0x08] << 8) | k051733->ram[0x09]; int xobj1c = (k051733->ram[0x0a] << 8) | k051733->ram[0x0b]; int yobj2c = (k051733->ram[0x0c] << 8) | k051733->ram[0x0d]; int xobj2c = (k051733->ram[0x0e] << 8) | k051733->ram[0x0f]; switch (offset) { case 0x00: if (op2) return (op1 / op2) >> 8; else return 0xff; case 0x01: if (op2) return (op1 / op2) & 0xff; else return 0xff; /* this is completely unverified */ case 0x02: if (op2) return (op1 % op2) >> 8; else return 0xff; case 0x03: if (op2) return (op1 % op2) & 0xff; else return 0xff; case 0x04: return k051733_int_sqrt(op3 << 16) >> 8; case 0x05: return k051733_int_sqrt(op3 << 16) & 0xff; case 0x06: k051733->rng += k051733->ram[0x13]; return k051733->rng; //RNG read, used by Chequered Flag for differentiate cars, implementation is a raw guess case 0x07:{ /* note: Chequered Flag definitely wants all these bits to be enabled */ if (xobj1c + rad < xobj2c) return 0xff; if (xobj2c + rad < xobj1c) return 0xff; if (yobj1c + rad < yobj2c) return 0xff; if (yobj2c + rad < yobj1c) return 0xff; return 0; } case 0x0e: /* best guess */ return (xobj2c - xobj1c) >> 8; case 0x0f: return (xobj2c - xobj1c) & 0xff; default: return k051733->ram[offset]; } } /***************************************************************************** DEVICE INTERFACE *****************************************************************************/ static DEVICE_START( k051733 ) { k051733_state *k051733 = k051733_get_safe_token(device); device->save_item(NAME(k051733->ram)); device->save_item(NAME(k051733->rng)); } static DEVICE_RESET( k051733 ) { k051733_state *k051733 = k051733_get_safe_token(device); int i; for (i = 0; i < 0x20; i++) k051733->ram[i] = 0; k051733->rng = 0; } /***************************************************************************/ /* */ /* 054157 / 056832 */ /* */ /***************************************************************************/ #define K056832_PAGE_COLS 64 #define K056832_PAGE_ROWS 32 #define K056832_PAGE_HEIGHT (K056832_PAGE_ROWS*8) #define K056832_PAGE_WIDTH (K056832_PAGE_COLS*8) #define K056832_PAGE_COUNT 16 typedef struct _k056832_state k056832_state; struct _k056832_state { tilemap_t *tilemap[K056832_PAGE_COUNT]; bitmap_t *pixmap[K056832_PAGE_COUNT]; UINT16 regs[0x20]; // 157/832 regs group 1 UINT16 regsb[4]; // 157/832 regs group 2, board dependent UINT8 * rombase; // pointer to tile gfx data UINT16 * videoram; int num_gfx_banks; // depends on size of graphics ROMs int cur_gfx_banks; // cached info for K056832_regs[0x1a] int gfxnum; // graphics element index for unpacked tiles const char *memory_region; // memory region for tile gfx data // ROM readback involves reading 2 halves of a word // from the same location in a row. Reading the // RAM window resets this state so you get the first half. int rom_half; // locally cached values int layer_assoc_with_page[K056832_PAGE_COUNT]; int layer_offs[8][2]; int lsram_page[8][2]; INT32 x[8]; // 0..3 left INT32 y[8]; // 0..3 top INT32 w[8]; // 0..3 width -> 1..4 pages INT32 h[8]; // 0..3 height -> 1..4 pages INT32 dx[8]; // scroll INT32 dy[8]; // scroll UINT32 line_dirty[K056832_PAGE_COUNT][8]; UINT8 all_lines_dirty[K056832_PAGE_COUNT]; UINT8 page_tile_mode[K056832_PAGE_COUNT]; int last_colorbase[K056832_PAGE_COUNT]; UINT8 layer_tile_mode[8]; int default_layer_association; int layer_association; int active_layer; int selected_page; int selected_page_x4096; int linemap_enabled; int use_ext_linescroll; int uses_tile_banks, cur_tile_bank; int djmain_hack; k056832_callback callback; device_t *k055555; /* used to choose colorbase */ }; /***************************************************************************** INLINE FUNCTIONS *****************************************************************************/ INLINE k056832_state *k056832_get_safe_token( device_t *device ) { assert(device != NULL); assert(device->type() == K056832); return (k056832_state *)downcast(device)->token(); } INLINE const k056832_interface *k056832_get_interface( device_t *device ) { assert(device != NULL); assert(device->type() == K056832); return (const k056832_interface *) device->static_config(); } /***************************************************************************** DEVICE HANDLERS *****************************************************************************/ #define k056832_mark_line_dirty(P, L) if (L < 0x100) k056832->line_dirty[P][L >> 5] |= 1 << (L & 0x1f) #define k056832_mark_all_lines_dirty(P) k056832->all_lines_dirty[P] = 1 static void k056832_mark_page_dirty( k056832_state *k056832, int page ) { if (k056832->page_tile_mode[page]) tilemap_mark_all_tiles_dirty(k056832->tilemap[page]); else k056832_mark_all_lines_dirty(page); } void k056832_mark_plane_dirty( device_t *device, int layer ) { k056832_state *k056832 = k056832_get_safe_token(device); int tilemode, i; tilemode = k056832->layer_tile_mode[layer]; for (i = 0; i < K056832_PAGE_COUNT; i++) { if (k056832->layer_assoc_with_page[i] == layer) { k056832->page_tile_mode[i] = tilemode; k056832_mark_page_dirty(k056832, i); } } } static void k056832_mark_all_tilemaps_dirty( k056832_state *k056832 ) { int i; for (i = 0; i < K056832_PAGE_COUNT; i++) { if (k056832->layer_assoc_with_page[i] != -1) { k056832->page_tile_mode[i] = k056832->layer_tile_mode[k056832->layer_assoc_with_page[i]]; k056832_mark_page_dirty(k056832, i); } } } /* moo.c needs to call this in its VIDEO_UPDATE */ void k056832_mark_all_tmaps_dirty( device_t *device ) { k056832_state *k056832 = k056832_get_safe_token(device); k056832_mark_all_tilemaps_dirty(k056832); } static void k056832_update_page_layout( k056832_state *k056832 ) { int layer, rowstart, rowspan, colstart, colspan, r, c, page_idx, setlayer; // enable layer association by default k056832->layer_association = k056832->default_layer_association; // disable association if a layer grabs the entire 4x4 map (happens in Twinbee and Dadandarn) for (layer = 0; layer < 4; layer++) { if (!k056832->y[layer] && !k056832->x[layer] && k056832->h[layer] == 3 && k056832->w[layer] == 3) { k056832->layer_association = 0; break; } } // winning spike doesn't like layer association.. if (k056832->djmain_hack == 2) k056832->layer_association = 0; // disable all tilemaps for (page_idx = 0; page_idx < K056832_PAGE_COUNT; page_idx++) { k056832->layer_assoc_with_page[page_idx] = -1; } // enable associated tilemaps for (layer = 0; layer < 4; layer++) { rowstart = k056832->y[layer]; colstart = k056832->x[layer]; rowspan = k056832->h[layer] + 1; colspan = k056832->w[layer] + 1; setlayer = (k056832->layer_association) ? layer : k056832->active_layer; for (r = 0; r < rowspan; r++) { for (c = 0; c < colspan; c++) { page_idx = (((rowstart + r) & 3) << 2) + ((colstart + c) & 3); if (!(k056832->djmain_hack==1) || k056832->layer_assoc_with_page[page_idx] == -1) k056832->layer_assoc_with_page[page_idx] = setlayer; } } } // refresh associated tilemaps k056832_mark_all_tilemaps_dirty(k056832); } int k056832_get_lookup( device_t *device, int bits ) { k056832_state *k056832 = k056832_get_safe_token(device); int res; res = (k056832->regs[0x1c] >> (bits << 2)) & 0x0f; if (k056832->uses_tile_banks) /* Asterix */ res |= k056832->cur_tile_bank << 4; return res; } INLINE void k056832_get_tile_info( device_t *device, tile_data *tileinfo, int tile_index, int pageIndex ) { k056832_state *k056832 = k056832_get_safe_token(device); static const struct K056832_SHIFTMASKS { int flips, palm1, pals2, palm2; } k056832_shiftmasks[4] = {{6, 0x3f, 0, 0x00}, {4, 0x0f, 2, 0x30}, {2, 0x03, 2, 0x3c}, {0, 0x00, 2, 0x3f}}; const struct K056832_SHIFTMASKS *smptr; int layer, flip, fbits, attr, code, color, flags; UINT16 *pMem; pMem = &k056832->videoram[(pageIndex << 12) + (tile_index << 1)]; if (k056832->layer_association) { layer = k056832->layer_assoc_with_page[pageIndex]; if (layer == -1) layer = 0; // use layer 0's palette info for unmapped pages } else layer = k056832->active_layer; fbits = (k056832->regs[3] >> 6) & 3; flip = (k056832->regs[1] >> (layer << 1)) & 0x3; // tile-flip override (see p.20 3.2.2 "REG2") smptr = &k056832_shiftmasks[fbits]; attr = pMem[0]; code = pMem[1]; // normalize the flip/palette flags // see the tables on pages 4 and 10 of the Pt. 2-3 "VRAM" manual // for a description of these bits "FBIT0" and "FBIT1" flip &= attr >> smptr->flips & 3; color = (attr & smptr->palm1) | (attr >> smptr->pals2 & smptr->palm2); flags = TILE_FLIPYX(flip); k056832->callback(device->machine(), layer, &code, &color, &flags); SET_TILE_INFO_DEVICE( k056832->gfxnum, code, color, flags); } static TILE_GET_INFO_DEVICE( k056832_get_tile_info0 ) { k056832_get_tile_info(device, tileinfo, tile_index, 0x0); } static TILE_GET_INFO_DEVICE( k056832_get_tile_info1 ) { k056832_get_tile_info(device, tileinfo, tile_index, 0x1); } static TILE_GET_INFO_DEVICE( k056832_get_tile_info2 ) { k056832_get_tile_info(device, tileinfo, tile_index, 0x2); } static TILE_GET_INFO_DEVICE( k056832_get_tile_info3 ) { k056832_get_tile_info(device, tileinfo, tile_index, 0x3); } static TILE_GET_INFO_DEVICE( k056832_get_tile_info4 ) { k056832_get_tile_info(device, tileinfo, tile_index, 0x4); } static TILE_GET_INFO_DEVICE( k056832_get_tile_info5 ) { k056832_get_tile_info(device, tileinfo, tile_index, 0x5); } static TILE_GET_INFO_DEVICE( k056832_get_tile_info6 ) { k056832_get_tile_info(device, tileinfo, tile_index, 0x6); } static TILE_GET_INFO_DEVICE( k056832_get_tile_info7 ) { k056832_get_tile_info(device, tileinfo, tile_index, 0x7); } static TILE_GET_INFO_DEVICE( k056832_get_tile_info8 ) { k056832_get_tile_info(device, tileinfo, tile_index, 0x8); } static TILE_GET_INFO_DEVICE( k056832_get_tile_info9 ) { k056832_get_tile_info(device, tileinfo, tile_index, 0x9); } static TILE_GET_INFO_DEVICE( k056832_get_tile_infoa ) { k056832_get_tile_info(device, tileinfo, tile_index, 0xa); } static TILE_GET_INFO_DEVICE( k056832_get_tile_infob ) { k056832_get_tile_info(device, tileinfo, tile_index, 0xb); } static TILE_GET_INFO_DEVICE( k056832_get_tile_infoc ) { k056832_get_tile_info(device, tileinfo, tile_index, 0xc); } static TILE_GET_INFO_DEVICE( k056832_get_tile_infod ) { k056832_get_tile_info(device, tileinfo, tile_index, 0xd); } static TILE_GET_INFO_DEVICE( k056832_get_tile_infoe ) { k056832_get_tile_info(device, tileinfo, tile_index, 0xe); } static TILE_GET_INFO_DEVICE( k056832_get_tile_infof ) { k056832_get_tile_info(device, tileinfo, tile_index, 0xf); } static void k056832_change_rambank( k056832_state *k056832 ) { /* ------xx page col * ---xx--- page row */ int bank = k056832->regs[0x19]; if (k056832->regs[0] & 0x02) // external linescroll enable k056832->selected_page = K056832_PAGE_COUNT; else k056832->selected_page = ((bank >> 1) & 0xc) | (bank & 3); k056832->selected_page_x4096 = k056832->selected_page << 12; // refresh associated tilemaps k056832_mark_all_tilemaps_dirty(k056832); } int k056832_get_current_rambank( device_t *device ) { k056832_state *k056832 = k056832_get_safe_token(device); int bank = k056832->regs[0x19]; return ((bank >> 1) & 0xc) | (bank & 3); } static void k056832_change_rombank( k056832_state *k056832 ) { int bank; if (k056832->uses_tile_banks) /* Asterix */ bank = (k056832->regs[0x1a] >> 8) | (k056832->regs[0x1b] << 4) | (k056832->cur_tile_bank << 6); else bank = k056832->regs[0x1a] | (k056832->regs[0x1b] << 16); k056832->cur_gfx_banks = bank % k056832->num_gfx_banks; } void k056832_set_tile_bank( device_t *device, int bank ) { k056832_state *k056832 = k056832_get_safe_token(device); k056832->uses_tile_banks = 1; if (k056832->cur_tile_bank != bank) { k056832->cur_tile_bank = bank; k056832_mark_plane_dirty(device, 0); k056832_mark_plane_dirty(device, 1); k056832_mark_plane_dirty(device, 2); k056832_mark_plane_dirty(device, 3); } k056832_change_rombank(k056832); } /* call if a game uses external linescroll */ void k056832_SetExtLinescroll( device_t *device ) { k056832_state *k056832 = k056832_get_safe_token(device); k056832->use_ext_linescroll = 1; } /* generic helper routine for ROM checksumming */ static int k056832_rom_read_b( device_t *device, int offset, int blksize, int blksize2, int zerosec ) { k056832_state *k056832 = k056832_get_safe_token(device); UINT8 *rombase; int base, ret; rombase = (UINT8 *)device->machine().region(k056832->memory_region)->base(); if ((k056832->rom_half) && (zerosec)) { return 0; } // add in the bank offset offset += (k056832->cur_gfx_banks * 0x2000); // figure out the base of the ROM block base = (offset / blksize) * blksize2; // get the starting offset of the proper word inside the block base += (offset % blksize) * 2; if (k056832->rom_half) { ret = rombase[base + 1]; } else { ret = rombase[base]; k056832->rom_half = 1; } return ret; } READ16_DEVICE_HANDLER( k056832_5bpp_rom_word_r ) { if (mem_mask == 0xff00) return k056832_rom_read_b(device, offset * 2, 4, 5, 0)<<8; else if (mem_mask == 0x00ff) return k056832_rom_read_b(device, offset * 2 + 1, 4, 5, 0)<<16; else { //LOG(("Non-byte read of tilemap ROM, PC=%x (mask=%x)\n", cpu_get_pc(&space->device()), mem_mask)); } return 0; } READ32_DEVICE_HANDLER( k056832_5bpp_rom_long_r ) { if (mem_mask == 0xff000000) return k056832_rom_read_b(device, offset * 4, 4, 5, 0) << 24; else if (mem_mask == 0x00ff0000) return k056832_rom_read_b(device, offset * 4 + 1, 4, 5, 0) << 16; else if (mem_mask == 0x0000ff00) return k056832_rom_read_b(device, offset * 4 + 2, 4, 5, 0) << 8; else if (mem_mask == 0x000000ff) return k056832_rom_read_b(device, offset * 4 + 3, 4, 5, 1); else { //LOG(("Non-byte read of tilemap ROM, PC=%x (mask=%x)\n", cpu_get_pc(&space->device()), mem_mask)); } return 0; } READ32_DEVICE_HANDLER( k056832_6bpp_rom_long_r ) { if (mem_mask == 0xff000000) return k056832_rom_read_b(device, offset * 4, 4, 6, 0) << 24; else if (mem_mask == 0x00ff0000) return k056832_rom_read_b(device, offset * 4 + 1, 4, 6, 0) << 16; else if (mem_mask == 0x0000ff00) return k056832_rom_read_b(device, offset * 4 + 2, 4, 6, 0) << 8; else if (mem_mask == 0x000000ff) return k056832_rom_read_b(device, offset * 4 + 3, 4, 6, 0); else { //LOG(("Non-byte read of tilemap ROM, PC=%x (mask=%x)\n", cpu_get_pc(&space->device()), mem_mask)); } return 0; } READ16_DEVICE_HANDLER( k056832_rom_word_r ) { k056832_state *k056832 = k056832_get_safe_token(device); int addr = 0x2000 * k056832->cur_gfx_banks + 2 * offset; if (!k056832->rombase) k056832->rombase = device->machine().region(k056832->memory_region)->base(); return k056832->rombase[addr + 1] | (k056832->rombase[addr] << 8); } // data is arranged like this: // 0000 1111 22 0000 1111 22 READ16_DEVICE_HANDLER( k056832_mw_rom_word_r ) { k056832_state *k056832 = k056832_get_safe_token(device); int bank = 10240 * k056832->cur_gfx_banks; int addr; if (!k056832->rombase) k056832->rombase = device->machine().region(k056832->memory_region)->base(); if (k056832->regsb[2] & 0x8) { // we want only the 2s int bit; int res, temp; bit = offset % 4; addr = (offset / 4) * 5; temp = k056832->rombase[addr + 4 + bank]; switch (bit) { default: case 0: res = (temp & 0x80) << 5; res |= ((temp & 0x40) >> 2); break; case 1: res = (temp & 0x20) << 7; res |= (temp & 0x10); break; case 2: res = (temp & 0x08) << 9; res |= ((temp & 0x04) << 2); break; case 3: res = (temp & 0x02) << 11; res |= ((temp & 0x01) << 4); break; } return res; } else { // we want only the 0s and 1s. addr = (offset >> 1) * 5; if (offset & 1) { addr += 2; } addr += bank; return k056832->rombase[addr + 1] | (k056832->rombase[addr] << 8); } } READ16_DEVICE_HANDLER( k056832_bishi_rom_word_r ) { k056832_state *k056832 = k056832_get_safe_token(device); int addr = 0x4000 * k056832->cur_gfx_banks + offset; if (!k056832->rombase) k056832->rombase = device->machine().region(k056832->memory_region)->base(); return k056832->rombase[addr + 2] | (k056832->rombase[addr] << 8); } READ16_DEVICE_HANDLER( k056832_rom_word_8000_r ) { k056832_state *k056832 = k056832_get_safe_token(device); int addr = 0x8000 * k056832->cur_gfx_banks + 2 * offset; if (!k056832->rombase) k056832->rombase = device->machine().region(k056832->memory_region)->base(); return k056832->rombase[addr + 2] | (k056832->rombase[addr] << 8); } READ16_DEVICE_HANDLER( k056832_old_rom_word_r ) { k056832_state *k056832 = k056832_get_safe_token(device); int addr = 0x2000 * k056832->cur_gfx_banks + 2 * offset; if (!k056832->rombase) k056832->rombase = device->machine().region(k056832->memory_region)->base(); return k056832->rombase[addr + 1] | (k056832->rombase[addr] << 8); } READ32_DEVICE_HANDLER( k056832_rom_long_r ) { offset <<= 1; return (k056832_rom_word_r(device, offset + 1, 0xffff) | (k056832_rom_word_r(device, offset, 0xffff) << 16)); } /* only one page is mapped to videoram at a time through a window */ READ16_DEVICE_HANDLER( k056832_ram_word_r ) { k056832_state *k056832 = k056832_get_safe_token(device); // reading from tile RAM resets the ROM readback "half" offset k056832->rom_half = 0; return k056832->videoram[k056832->selected_page_x4096 + offset]; } READ16_DEVICE_HANDLER( k056832_ram_half_word_r ) { k056832_state *k056832 = k056832_get_safe_token(device); return k056832->videoram[k056832->selected_page_x4096 + (((offset << 1) & 0xffe) | ((offset >> 11) ^ 1))]; } READ32_DEVICE_HANDLER( k056832_ram_long_r ) { k056832_state *k056832 = k056832_get_safe_token(device); UINT16 *pMem = &k056832->videoram[k056832->selected_page_x4096 + offset * 2]; // reading from tile RAM resets the ROM readback "half" offset k056832->rom_half = 0; return (pMem[0]<<16 | pMem[1]); } READ32_DEVICE_HANDLER( k056832_unpaged_ram_long_r ) { k056832_state *k056832 = k056832_get_safe_token(device); UINT16 *pMem = &k056832->videoram[offset * 2]; // reading from tile RAM resets the ROM readback "half" offset k056832->rom_half = 0; return (pMem[0]<<16 | pMem[1]); } /* special 8-bit handlers for Lethal Enforcers */ READ8_DEVICE_HANDLER( k056832_ram_code_lo_r ) { k056832_state *k056832 = k056832_get_safe_token(device); UINT16 *adr = &k056832->videoram[k056832->selected_page_x4096 + (offset * 2) + 1]; return *adr & 0xff; } READ8_DEVICE_HANDLER( k056832_ram_code_hi_r ) { k056832_state *k056832 = k056832_get_safe_token(device); UINT16 *adr = &k056832->videoram[k056832->selected_page_x4096 + (offset * 2) + 1]; return *adr >> 8; } READ8_DEVICE_HANDLER( k056832_ram_attr_lo_r ) { k056832_state *k056832 = k056832_get_safe_token(device); UINT16 *adr = &k056832->videoram[k056832->selected_page_x4096 + (offset * 2)]; return *adr & 0xff; } READ8_DEVICE_HANDLER( k056832_ram_attr_hi_r ) { k056832_state *k056832 = k056832_get_safe_token(device); UINT16 *adr = &k056832->videoram[k056832->selected_page_x4096 + (offset * 2)]; return *adr >> 8; } WRITE8_DEVICE_HANDLER( k056832_ram_code_lo_w ) { k056832_state *k056832 = k056832_get_safe_token(device); UINT16 *adr = &k056832->videoram[k056832->selected_page_x4096 + (offset * 2) + 1]; *adr &= 0xff00; *adr |= data; if (!(k056832->regs[0] & 0x02)) // external linescroll enable { if (k056832->page_tile_mode[k056832->selected_page]) tilemap_mark_tile_dirty(k056832->tilemap[k056832->selected_page], offset); else k056832_mark_line_dirty(k056832->selected_page, offset); } } WRITE8_DEVICE_HANDLER( k056832_ram_code_hi_w ) { k056832_state *k056832 = k056832_get_safe_token(device); UINT16 *adr = &k056832->videoram[k056832->selected_page_x4096 + (offset * 2) + 1]; *adr &= 0x00ff; *adr |= data << 8; if (!(k056832->regs[0] & 0x02)) // external linescroll enable { if (k056832->page_tile_mode[k056832->selected_page]) tilemap_mark_tile_dirty(k056832->tilemap[k056832->selected_page], offset); else k056832_mark_line_dirty(k056832->selected_page, offset); } } WRITE8_DEVICE_HANDLER( k056832_ram_attr_lo_w ) { k056832_state *k056832 = k056832_get_safe_token(device); UINT16 *adr = &k056832->videoram[k056832->selected_page_x4096 + (offset * 2)]; *adr &= 0xff00; *adr |= data; if (!(k056832->regs[0] & 0x02)) // external linescroll enable { if (k056832->page_tile_mode[k056832->selected_page]) tilemap_mark_tile_dirty(k056832->tilemap[k056832->selected_page], offset); else k056832_mark_line_dirty(k056832->selected_page, offset); } } WRITE8_DEVICE_HANDLER( k056832_ram_attr_hi_w ) { k056832_state *k056832 = k056832_get_safe_token(device); UINT16 *adr = &k056832->videoram[k056832->selected_page_x4096 + (offset * 2)]; *adr &= 0x00ff; *adr |= data << 8; if (!(k056832->regs[0] & 0x02)) // external linescroll enable { if (k056832->page_tile_mode[k056832->selected_page]) tilemap_mark_tile_dirty(k056832->tilemap[k056832->selected_page], offset); else k056832_mark_line_dirty(k056832->selected_page, offset); } } WRITE16_DEVICE_HANDLER( k056832_ram_word_w ) { k056832_state *k056832 = k056832_get_safe_token(device); UINT16 *tile_ptr; UINT16 old_mask, old_data; tile_ptr = &k056832->videoram[k056832->selected_page_x4096 + offset]; old_mask = ~mem_mask; old_data = *tile_ptr; data = (data & mem_mask) | (old_data & old_mask); if(data != old_data) { offset >>= 1; *tile_ptr = data; if (k056832->page_tile_mode[k056832->selected_page]) tilemap_mark_tile_dirty(k056832->tilemap[k056832->selected_page], offset); else k056832_mark_line_dirty(k056832->selected_page, offset); } } WRITE16_DEVICE_HANDLER( k056832_ram_half_word_w ) { k056832_state *k056832 = k056832_get_safe_token(device); UINT16 *adr = &k056832->videoram[k056832->selected_page_x4096 + (((offset << 1) & 0xffe) | 1)]; UINT16 old = *adr; COMBINE_DATA(adr); if(*adr != old) { int dofs = (((offset << 1) & 0xffe) | 1); dofs >>= 1; if (k056832->page_tile_mode[k056832->selected_page]) tilemap_mark_tile_dirty(k056832->tilemap[k056832->selected_page], dofs); else k056832_mark_line_dirty(k056832->selected_page, dofs); } } WRITE32_DEVICE_HANDLER( k056832_ram_long_w ) { k056832_state *k056832 = k056832_get_safe_token(device); UINT16 *tile_ptr; UINT32 old_mask, old_data; tile_ptr = &k056832->videoram[k056832->selected_page_x4096 + offset * 2]; old_mask = ~mem_mask; old_data = (UINT32)tile_ptr[0] << 16 | (UINT32)tile_ptr[1]; data = (data & mem_mask) | (old_data & old_mask); if (data != old_data) { tile_ptr[0] = data >> 16; tile_ptr[1] = data; if (k056832->page_tile_mode[k056832->selected_page]) tilemap_mark_tile_dirty(k056832->tilemap[k056832->selected_page], offset); else k056832_mark_line_dirty(k056832->selected_page, offset); } } WRITE32_DEVICE_HANDLER( k056832_unpaged_ram_long_w ) { k056832_state *k056832 = k056832_get_safe_token(device); UINT16 *tile_ptr; UINT32 old_mask, old_data; tile_ptr = &k056832->videoram[offset * 2]; old_mask = ~mem_mask; old_data = (UINT32)tile_ptr[0] << 16 | (UINT32)tile_ptr[1]; data = (data & mem_mask) | (old_data & old_mask); if (data != old_data) { tile_ptr[0] = data >> 16; tile_ptr[1] = data; if (k056832->page_tile_mode[offset/0x800]) tilemap_mark_tile_dirty(k056832->tilemap[offset/0x800], offset&0x7ff); else k056832_mark_line_dirty(offset/0x800, (offset&0x7ff)); } } WRITE16_DEVICE_HANDLER( k056832_word_w ) { k056832_state *k056832 = k056832_get_safe_token(device); int layer, flip, mask, i; UINT32 old_data, new_data; old_data = k056832->regs[offset]; COMBINE_DATA(&k056832->regs[offset]); new_data = k056832->regs[offset]; if (new_data != old_data) { switch(offset) { /* -x-- ---- dotclock select: 0=8Mhz, 1=6Mhz (not used by GX) * --x- ---- screen flip y * ---x ---- screen flip x * ---- --x- external linescroll RAM page enable */ case 0x00/2: if ((new_data & 0x30) != (old_data & 0x30)) { flip = 0; if (new_data & 0x20) flip |= TILEMAP_FLIPY; if (new_data & 0x10) flip |= TILEMAP_FLIPX; for (i = 0; i < K056832_PAGE_COUNT; i++) { tilemap_set_flip(k056832->tilemap[i], flip); } } if ((new_data & 0x02) != (old_data & 0x02)) { k056832_change_rambank(k056832); } break; /* -------- -----xxx external irqlines enable (not used by GX) * -------- xx------ tilemap attribute config (FBIT0 and FBIT1) */ //case 0x06/2: break; // -------- ----DCBA tile mode: 0=512x1, 1=8x8 // -------- DCBA---- synchronous scroll: 0=off, 1=on case 0x08/2: for (layer = 0; layer < 4; layer++) { mask = 1 << layer; i = new_data & mask; if (i != (old_data & mask)) { k056832->layer_tile_mode[layer] = i; k056832_mark_plane_dirty(device, layer); } } break; /* -------- ------xx layer A linescroll config * -------- ----xx-- layer B linescroll config * -------- --xx---- layer C linescroll config * -------- xx------ layer D linescroll config * * 0: linescroll * 2: rowscroll * 3: xy scroll */ //case 0x0a/2: break; case 0x32/2: k056832_change_rambank(k056832); break; case 0x34/2: /* ROM bank select for checksum */ case 0x36/2: /* secondary ROM bank select for use with tile banking */ k056832_change_rombank(k056832); break; // extended tile address //case 0x38/2: break; // 12 bit (signed) horizontal offset if global HFLIP enabled //case 0x3a/2: break; // 11 bit (signed) vertical offset if global VFLIP enabled //case 0x3c/2: break; default: layer = offset & 3; if (offset >= 0x10/2 && offset <= 0x16/2) { k056832->y[layer] = (new_data & 0x18) >> 3; k056832->h[layer] = (new_data & 0x3); k056832->active_layer = layer; k056832_update_page_layout(k056832); } else if (offset >= 0x18/2 && offset <= 0x1e/2) { k056832->x[layer] = (new_data & 0x18) >> 3; k056832->w[layer] = (new_data & 0x03); k056832->active_layer = layer; k056832_update_page_layout(k056832); } else if (offset >= 0x20/2 && offset <= 0x26/2) { k056832->dy[layer] = (INT16)new_data; } else if (offset >= 0x28/2 && offset <= 0x2e/2) { k056832->dx[layer] = (INT16)new_data; } break; } } } WRITE32_DEVICE_HANDLER( k056832_long_w ) { // GX does access of all 3 widths (8/16/32) so we can't do the // if (ACCESSING_xxx) trick. in particular, 8-bit writes // are used to the tilemap bank register. offset <<= 1; k056832_word_w(device, offset, data >> 16, mem_mask >> 16); k056832_word_w(device, offset + 1, data, mem_mask); } WRITE16_DEVICE_HANDLER( k056832_b_word_w ) { k056832_state *k056832 = k056832_get_safe_token(device); COMBINE_DATA(&k056832->regsb[offset]); } WRITE8_DEVICE_HANDLER( k056832_w ) { if (offset & 1) { k056832_word_w(device, (offset >> 1), data, 0x00ff); } else { k056832_word_w(device, (offset >> 1), data << 8, 0xff00); } } WRITE8_DEVICE_HANDLER( k056832_b_w ) { if (offset & 1) { k056832_b_word_w(device, (offset >> 1), data, 0x00ff); } else { k056832_b_word_w(device, (offset >> 1), data<<8, 0xff00); } } WRITE32_DEVICE_HANDLER( k056832_b_long_w ) { if (ACCESSING_BITS_16_31) { k056832_b_word_w(device, offset << 1, data >> 16, mem_mask >> 16); } if (ACCESSING_BITS_0_15) { k056832_b_word_w(device, (offset << 1) + 1, data, mem_mask); } } static int k056832_update_linemap( device_t *device, bitmap_t *bitmap, int page, int flags ) { k056832_state *k056832 = k056832_get_safe_token(device); if (k056832->page_tile_mode[page]) return(0); if (!k056832->linemap_enabled) return(1); { rectangle zerorect; tilemap_t *tmap; UINT32 *dirty; int all_dirty; bitmap_t* xprmap; UINT8 *xprdata; tmap = k056832->tilemap[page]; xprmap = tilemap_get_flagsmap(tmap); xprdata = tilemap_get_tile_flags(tmap); dirty = k056832->line_dirty[page]; all_dirty = k056832->all_lines_dirty[page]; if (all_dirty) { dirty[7] = dirty[6] = dirty[5] = dirty[4] = dirty[3] = dirty[2] = dirty[1] = dirty[0] = 0; k056832->all_lines_dirty[page] = 0; // force tilemap into a clean, static state // *really ugly but it minimizes alteration to tilemap.c memset(&zerorect, 0, sizeof(rectangle)); // zero dimension tilemap_draw(bitmap, &zerorect, tmap, 0, 0); // dummy call to reset tile_dirty_map bitmap_fill(xprmap, 0, 0); // reset pixel transparency_bitmap; memset(xprdata, TILEMAP_PIXEL_LAYER0, 0x800); // reset tile transparency_data; } else { if (!(dirty[0] | dirty[1] | dirty[2] | dirty[3] | dirty[4] | dirty[5] | dirty[6] | dirty[7])) return 0; } #if 0 /* this code is broken.. really broken .. gijoe uses it for some line/column scroll style effects (lift level of attract mode) we REALLY shouldn't be writing directly back into the pixmap, surely this should be done when rendering instead */ { bitmap_t *pixmap; running_machine &machine = device->machine(); UINT8 code_transparent, code_opaque; const pen_t *pal_ptr; const UINT8 *src_ptr; UINT8 *xpr_ptr; UINT16 *dst_ptr; UINT16 pen, basepen; int count, src_pitch, src_modulo; int dst_pitch; int line; const gfx_element *src_gfx; int offs, mask; #define LINE_WIDTH 512 #define DRAW_PIX(N) \ pen = src_ptr[N]; \ if (pen) \ { pen += basepen; xpr_ptr[count+N] = TILEMAP_PIXEL_LAYER0; dst_ptr[count+N] = pen; } else \ { xpr_ptr[count+N] = 0; } pixmap = k056832->pixmap[page]; pal_ptr = machine.pens; src_gfx = machine.gfx[k056832->gfxnum]; src_pitch = src_gfx->line_modulo; src_modulo = src_gfx->char_modulo; dst_pitch = pixmap->rowpixels; for (line = 0; line < 256; line++) { tile_data tileinfo = {0}; dst_ptr = BITMAP_ADDR16(pixmap, line, 0); xpr_ptr = BITMAP_ADDR8(xprmap, line, 0); if (!all_dirty) { offs = line >> 5; mask = 1 << (line & 0x1f); if (!(dirty[offs] & mask)) continue; dirty[offs] ^= mask; } for (count = 0; count < LINE_WIDTH; count += 8) { k056832_get_tile_info(device, &tileinfo, line, page); basepen = tileinfo.palette_base; code_transparent = tileinfo.category; code_opaque = code_transparent | TILEMAP_PIXEL_LAYER0; src_ptr = tileinfo.pen_data + count * 8;//src_base + ((tileinfo.tile_number & ~7) << 6); DRAW_PIX(0) DRAW_PIX(1) DRAW_PIX(2) DRAW_PIX(3) DRAW_PIX(4) DRAW_PIX(5) DRAW_PIX(6) DRAW_PIX(7) } } #undef LINE_WIDTH #undef DRAW_PIX } #endif } return(0); } void k056832_tilemap_draw( device_t *device, bitmap_t *bitmap, const rectangle *cliprect, int layer, UINT32 flags, UINT32 priority ) { k056832_state *k056832 = k056832_get_safe_token(device); UINT32 last_dx, last_visible, new_colorbase, last_active; int sx, sy, ay, tx, ty, width, height; int clipw, clipx, cliph, clipy, clipmaxy; int line_height, line_endy, line_starty, line_y; int sdat_start, sdat_walk, sdat_adv, sdat_wrapmask, sdat_offs; int pageIndex, flipx, flipy, corr, r, c; int cminy, cmaxy, cminx, cmaxx; int dminy, dmaxy, dminx, dmaxx; rectangle drawrect; tilemap_t *tmap; UINT16 *p_scroll_data; UINT16 ram16[2]; int rowstart = k056832->y[layer]; int colstart = k056832->x[layer]; int rowspan = k056832->h[layer] + 1; int colspan = k056832->w[layer] + 1; int dy = k056832->dy[layer]; int dx = k056832->dx[layer]; int scrollbank = ((k056832->regs[0x18] >> 1) & 0xc) | (k056832->regs[0x18] & 3); int scrollmode = k056832->regs[0x05] >> (k056832->lsram_page[layer][0] << 1) & 3; if (k056832->use_ext_linescroll) { scrollbank = K056832_PAGE_COUNT; } height = rowspan * K056832_PAGE_HEIGHT; width = colspan * K056832_PAGE_WIDTH; cminx = cliprect->min_x; cmaxx = cliprect->max_x; cminy = cliprect->min_y; cmaxy = cliprect->max_y; // flip correction registers flipy = k056832->regs[0] & 0x20; if (flipy) { corr = k056832->regs[0x3c/2]; if (corr & 0x400) corr |= 0xfffff800; } else corr = 0; dy += corr; ay = (unsigned)(dy - k056832->layer_offs[layer][1]) % height; flipx = k056832->regs[0] & 0x10; if (flipx) { corr = k056832->regs[0x3a/2]; if (corr & 0x800) corr |= 0xfffff000; } else corr = 0; corr -= k056832->layer_offs[layer][0]; if (scrollmode == 0 && (flags & K056832_DRAW_FLAG_FORCE_XYSCROLL)) { scrollmode = 3; flags &= ~K056832_DRAW_FLAG_FORCE_XYSCROLL; } switch( scrollmode ) { case 0: // linescroll p_scroll_data = &k056832->videoram[scrollbank<<12] + (k056832->lsram_page[layer][1]>>1); line_height = 1; sdat_wrapmask = 0x3ff; sdat_adv = 2; break; case 2: // rowscroll p_scroll_data = &k056832->videoram[scrollbank << 12] + (k056832->lsram_page[layer][1] >> 1); line_height = 8; sdat_wrapmask = 0x3ff; sdat_adv = 16; break; default: // xyscroll p_scroll_data = ram16; line_height = K056832_PAGE_HEIGHT; sdat_wrapmask = 0; sdat_adv = 0; ram16[0] = 0; ram16[1] = dx; } if (flipy) sdat_adv = -sdat_adv; last_active = k056832->active_layer; new_colorbase = (k056832->k055555 != NULL) ? k055555_get_palette_index(k056832->k055555, layer) : 0; for (r = 0; r < rowspan; r++) { if (rowspan > 1) { sy = ay; ty = r * K056832_PAGE_HEIGHT; if (!flipy) { // handle bottom-edge wraparoundness and cull off-screen tilemaps if ((r == 0) && (sy > height - K056832_PAGE_HEIGHT)) sy -= height; if ((sy + K056832_PAGE_HEIGHT <= ty) || (sy - K056832_PAGE_HEIGHT >= ty)) continue; // switch frame of reference and clip y if ((ty -= sy) >= 0) { cliph = K056832_PAGE_HEIGHT - ty; clipy = line_starty = ty; line_endy = K056832_PAGE_HEIGHT; sdat_start = 0; } else { cliph = K056832_PAGE_HEIGHT + ty; ty = -ty; clipy = line_starty = 0; line_endy = cliph; sdat_start = ty; if (scrollmode == 2) { sdat_start &= ~7; line_starty -= ty & 7; } } } else { ty += K056832_PAGE_HEIGHT; // handle top-edge wraparoundness and cull off-screen tilemaps if ((r == rowspan - 1) && (sy < K056832_PAGE_HEIGHT)) sy += height; if ((sy + K056832_PAGE_HEIGHT <= ty) || (sy - K056832_PAGE_HEIGHT >= ty)) continue; // switch frame of reference and clip y if ((ty -= sy) <= 0) { cliph = K056832_PAGE_HEIGHT + ty; clipy = line_starty = -ty; line_endy = K056832_PAGE_HEIGHT; sdat_start = K056832_PAGE_HEIGHT - 1; if (scrollmode == 2) sdat_start &= ~7; } else { cliph = K056832_PAGE_HEIGHT - ty; clipy = line_starty = 0; line_endy = cliph; sdat_start = cliph - 1; if (scrollmode == 2) { sdat_start &= ~7; line_starty -= ty & 7; } } } } else { cliph = line_endy = K056832_PAGE_HEIGHT; clipy = line_starty = 0; if (!flipy) sdat_start = dy; else /* doesn't work with Metamorphic Force and Martial Champion (software Y-flipped) but LE2U (naturally Y-flipped) seems to expect this condition as an override. sdat_start = K056832_PAGE_HEIGHT-1 -dy; */ sdat_start = K056832_PAGE_HEIGHT - 1; if (scrollmode == 2) { sdat_start &= ~7; line_starty -= dy & 7; } } sdat_start += r * K056832_PAGE_HEIGHT; sdat_start <<= 1; clipmaxy = clipy + cliph - 1; for (c = 0; c < colspan; c++) { pageIndex = (((rowstart + r) & 3) << 2) + ((colstart + c) & 3); if (k056832->layer_association) { if (k056832->layer_assoc_with_page[pageIndex] != layer) continue; } else { if (k056832->layer_assoc_with_page[pageIndex] == -1) continue; k056832->active_layer = layer; } if (k056832->k055555 != NULL) // are we using k055555 palette? { if (k056832->last_colorbase[pageIndex] != new_colorbase) { k056832->last_colorbase[pageIndex] = new_colorbase; k056832_mark_page_dirty(k056832, pageIndex); } } else { if (!pageIndex) k056832->active_layer = 0; } if (k056832_update_linemap(device, bitmap, pageIndex, flags)) continue; tmap = k056832->tilemap[pageIndex]; tilemap_set_scrolly(tmap, 0, ay); last_dx = 0x100000; last_visible = 0; for (sdat_walk = sdat_start, line_y = line_starty; line_y < line_endy; sdat_walk += sdat_adv, line_y += line_height) { dminy = line_y; dmaxy = line_y + line_height - 1; if (dminy < clipy) dminy = clipy; if (dmaxy > clipmaxy) dmaxy = clipmaxy; if (dminy > cmaxy || dmaxy < cminy) continue; sdat_offs = sdat_walk & sdat_wrapmask; drawrect.min_y = (dminy < cminy ) ? cminy : dminy; drawrect.max_y = (dmaxy > cmaxy ) ? cmaxy : dmaxy; dx = ((int)p_scroll_data[sdat_offs]<<16 | (int)p_scroll_data[sdat_offs + 1]) + corr; if (last_dx == dx) { if (last_visible) goto LINE_SHORTCIRCUIT; continue; } last_dx = dx; if (colspan > 1) { //sx = (unsigned)dx % width; sx = (unsigned)dx & (width-1); //tx = c * K056832_PAGE_WIDTH; tx = c << 9; if (!flipx) { // handle right-edge wraparoundness and cull off-screen tilemaps if ((c == 0) && (sx > width - K056832_PAGE_WIDTH)) sx -= width; if ((sx + K056832_PAGE_WIDTH <= tx) || (sx - K056832_PAGE_WIDTH >= tx)) { last_visible = 0; continue; } // switch frame of reference and clip x if ((tx -= sx) <= 0) { clipw = K056832_PAGE_WIDTH + tx; clipx = 0; } else { clipw = K056832_PAGE_WIDTH - tx; clipx = tx; } } else { tx += K056832_PAGE_WIDTH; // handle left-edge wraparoundness and cull off-screen tilemaps if ((c == colspan-1) && (sx < K056832_PAGE_WIDTH)) sx += width; if ((sx + K056832_PAGE_WIDTH <= tx) || (sx - K056832_PAGE_WIDTH >= tx)) { last_visible = 0; continue; } // switch frame of reference and clip y if ((tx -= sx) >= 0) { clipw = K056832_PAGE_WIDTH - tx; clipx = 0; } else { clipw = K056832_PAGE_WIDTH + tx; clipx = -tx; } } } else { clipw = K056832_PAGE_WIDTH; clipx = 0; } last_visible = 1; dminx = clipx; dmaxx = clipx + clipw - 1; drawrect.min_x = (dminx < cminx ) ? cminx : dminx; drawrect.max_x = (dmaxx > cmaxx ) ? cmaxx : dmaxx; // soccer superstars visible area is >512 pixels, this causes problems with the logic because // the tilemaps are 512 pixels across. Assume that if the limits were set as below that we // want the tilemap to be drawn on the right hand side.. this is probably not the correct // logic, but it works. if ((drawrect.min_x>0) && (drawrect.max_x==511)) drawrect.max_x=cliprect->max_x; tilemap_set_scrollx(tmap, 0, dx); LINE_SHORTCIRCUIT: tilemap_draw(bitmap, &drawrect, tmap, flags, priority); } // end of line loop } // end of column loop } // end of row loop k056832->active_layer = last_active; } // end of function void k056832_tilemap_draw_dj( device_t *device, bitmap_t *bitmap, const rectangle *cliprect, int layer, UINT32 flags, UINT32 priority ) { k056832_state *k056832 = k056832_get_safe_token(device); UINT32 last_dx, last_visible, new_colorbase, last_active; int sx, sy, ay, tx, ty, width, height; int clipw, clipx, cliph, clipy, clipmaxy; int line_height, line_endy, line_starty, line_y; int sdat_start, sdat_walk, sdat_adv, sdat_wrapmask, sdat_offs; int pageIndex, flipx, flipy, corr, r, c; int cminy, cmaxy, cminx, cmaxx; int dminy, dmaxy, dminx, dmaxx; rectangle drawrect; tilemap_t *tmap; UINT16 *p_scroll_data; UINT16 ram16[2]; int rowstart = k056832->y[layer]; int colstart = k056832->x[layer]; int rowspan = k056832->h[layer] + 1; int colspan = k056832->w[layer] + 1; int dy = k056832->dy[layer]; int dx = k056832->dx[layer]; int scrollbank = ((k056832->regs[0x18] >> 1) & 0xc) | (k056832->regs[0x18] & 3); int scrollmode = k056832->regs[0x05] >> (k056832->lsram_page[layer][0] << 1) & 3; int need_wrap = -1; height = rowspan * K056832_PAGE_HEIGHT; width = colspan * K056832_PAGE_WIDTH; cminx = cliprect->min_x; cmaxx = cliprect->max_x; cminy = cliprect->min_y; cmaxy = cliprect->max_y; // flip correction registers flipy = k056832->regs[0] & 0x20; if (flipy) { corr = k056832->regs[0x3c/2]; if (corr & 0x400) corr |= 0xfffff800; } else corr = 0; dy += corr; ay = (unsigned)(dy - k056832->layer_offs[layer][1]) % height; flipx = k056832->regs[0] & 0x10; if (flipx) { corr = k056832->regs[0x3a/2]; if (corr & 0x800) corr |= 0xfffff000; } else corr = 0; corr -= k056832->layer_offs[layer][0]; if (scrollmode == 0 && (flags & K056832_DRAW_FLAG_FORCE_XYSCROLL)) { scrollmode = 3; flags &= ~K056832_DRAW_FLAG_FORCE_XYSCROLL; } switch( scrollmode ) { case 0: // linescroll p_scroll_data = &k056832->videoram[scrollbank << 12] + (k056832->lsram_page[layer][1] >> 1); line_height = 1; sdat_wrapmask = 0x3ff; sdat_adv = 2; break; case 2: // rowscroll p_scroll_data = &k056832->videoram[scrollbank << 12] + (k056832->lsram_page[layer][1] >> 1); line_height = 8; sdat_wrapmask = 0x3ff; sdat_adv = 16; break; default: // xyscroll p_scroll_data = ram16; line_height = K056832_PAGE_HEIGHT; sdat_wrapmask = 0; sdat_adv = 0; ram16[0] = 0; ram16[1] = dx; } if (flipy) sdat_adv = -sdat_adv; last_active = k056832->active_layer; new_colorbase = (k056832->k055555 != NULL) ? k055555_get_palette_index(k056832->k055555, layer) : 0; for (r = 0; r <= rowspan; r++) { sy = ay; if (r == rowspan) { if (need_wrap < 0) continue; ty = need_wrap * K056832_PAGE_HEIGHT; } else { ty = r * K056832_PAGE_HEIGHT; } // cull off-screen tilemaps if ((sy + height <= ty) || (sy - height >= ty)) continue; // switch frame of reference ty -= sy; // handle top-edge wraparoundness if (r == rowspan) { cliph = K056832_PAGE_HEIGHT + ty; clipy = line_starty = 0; line_endy = cliph; ty = -ty; sdat_start = ty; if (scrollmode == 2) { sdat_start &= ~7; line_starty -= ty & 7; } } // clip y else { if (ty < 0) ty += height; clipy = ty; cliph = K056832_PAGE_HEIGHT; if (clipy + cliph > height) { cliph = height - clipy; need_wrap =r; } line_starty = ty; line_endy = line_starty + cliph; sdat_start = 0; } if (r == rowspan) sdat_start += need_wrap * K056832_PAGE_HEIGHT; else sdat_start += r * K056832_PAGE_HEIGHT; sdat_start <<= 1; clipmaxy = clipy + cliph - 1; for (c = 0; c < colspan; c++) { if (r == rowspan) pageIndex = (((rowstart + need_wrap) & 3) << 2) + ((colstart + c) & 3); else pageIndex = (((rowstart + r) & 3) << 2) + ((colstart + c) & 3); if (k056832->layer_association) { if (k056832->layer_assoc_with_page[pageIndex] != layer) continue; } else { if (k056832->layer_assoc_with_page[pageIndex] == -1) continue; k056832->active_layer = layer; } if (k056832->k055555 != NULL) // are we using k055555 palette? { if (k056832->last_colorbase[pageIndex] != new_colorbase) { k056832->last_colorbase[pageIndex] = new_colorbase; k056832_mark_page_dirty(k056832, pageIndex); } } else { if (!pageIndex) k056832->active_layer = 0; } if (k056832_update_linemap(device, bitmap, pageIndex, flags)) continue; tmap = k056832->tilemap[pageIndex]; tilemap_set_scrolly(tmap, 0, ay); last_dx = 0x100000; last_visible = 0; for (sdat_walk = sdat_start, line_y = line_starty; line_y < line_endy; sdat_walk += sdat_adv, line_y += line_height) { dminy = line_y; dmaxy = line_y + line_height - 1; if (dminy < clipy) dminy = clipy; if (dmaxy > clipmaxy) dmaxy = clipmaxy; if (dminy > cmaxy || dmaxy < cminy) continue; sdat_offs = sdat_walk & sdat_wrapmask; drawrect.min_y = (dminy < cminy ) ? cminy : dminy; drawrect.max_y = (dmaxy > cmaxy ) ? cmaxy : dmaxy; dx = ((int)p_scroll_data[sdat_offs] << 16 | (int)p_scroll_data[sdat_offs + 1]) + corr; if (last_dx == dx) { if (last_visible) goto LINE_SHORTCIRCUIT; continue; } last_dx = dx; if (colspan > 1) { //sx = (unsigned)dx % width; sx = (unsigned)dx & (width-1); //tx = c * K056832_PAGE_WIDTH; tx = c << 9; if (!flipx) { // handle right-edge wraparoundness and cull off-screen tilemaps if ((c == 0) && (sx > width - K056832_PAGE_WIDTH)) sx -= width; if ((sx + K056832_PAGE_WIDTH <= tx) || (sx - K056832_PAGE_WIDTH >= tx)) { last_visible = 0; continue; } // switch frame of reference and clip x if ((tx -= sx) <= 0) { clipw = K056832_PAGE_WIDTH + tx; clipx = 0; } else { clipw = K056832_PAGE_WIDTH - tx; clipx = tx; } } else { tx += K056832_PAGE_WIDTH; // handle left-edge wraparoundness and cull off-screen tilemaps if ((c == colspan-1) && (sx < K056832_PAGE_WIDTH)) sx += width; if ((sx + K056832_PAGE_WIDTH <= tx) || (sx - K056832_PAGE_WIDTH >= tx)) { last_visible = 0; continue; } // switch frame of reference and clip y if ((tx -= sx) >= 0) { clipw = K056832_PAGE_WIDTH - tx; clipx = 0; } else { clipw = K056832_PAGE_WIDTH + tx; clipx = -tx; } } } else { clipw = K056832_PAGE_WIDTH; clipx = 0; } last_visible = 1; dminx = clipx; dmaxx = clipx + clipw - 1; drawrect.min_x = (dminx < cminx ) ? cminx : dminx; drawrect.max_x = (dmaxx > cmaxx ) ? cmaxx : dmaxx; tilemap_set_scrollx(tmap, 0, dx); LINE_SHORTCIRCUIT: tilemap_draw(bitmap, &drawrect, tmap, flags, priority); } // end of line loop } // end of column loop } // end of row loop k056832->active_layer = last_active; } // end of function void k056832_set_layer_association( device_t *device, int status ) { k056832_state *k056832 = k056832_get_safe_token(device); k056832->default_layer_association = status; } int k056832_get_layer_association( device_t *device ) { k056832_state *k056832 = k056832_get_safe_token(device); return(k056832->layer_association); } void k056832_set_layer_offs( device_t *device, int layer, int offsx, int offsy ) { k056832_state *k056832 = k056832_get_safe_token(device); k056832->layer_offs[layer][0] = offsx; k056832->layer_offs[layer][1] = offsy; } void k056832_set_lsram_page( device_t *device, int logical_page, int physical_page, int physical_offset ) { k056832_state *k056832 = k056832_get_safe_token(device); k056832->lsram_page[logical_page][0] = physical_page; k056832->lsram_page[logical_page][1] = physical_offset; } void k056832_linemap_enable( device_t *device, int enable ) { k056832_state *k056832 = k056832_get_safe_token(device); k056832->linemap_enabled = enable; } int k056832_is_irq_enabled( device_t *device, int irqline ) { k056832_state *k056832 = k056832_get_safe_token(device); return(k056832->regs[0x06/2] & (1 << irqline & 7)); } void k056832_read_avac( device_t *device, int *mode, int *data ) { k056832_state *k056832 = k056832_get_safe_token(device); *mode = k056832->regs[0x04/2] & 7; *data = k056832->regs[0x38/2]; } int k056832_read_register( device_t *device, int regnum ) { k056832_state *k056832 = k056832_get_safe_token(device); return(k056832->regs[regnum]); } static void k056832_postload(k056832_state *k056832) { k056832_update_page_layout(k056832); k056832_change_rambank(k056832); k056832_change_rombank(k056832); } /***************************************************************************** DEVICE INTERFACE *****************************************************************************/ /* TODO: understand which elements MUST be init here (to keep correct layer associations) and which ones can can be init at RESET, if any */ static DEVICE_START( k056832 ) { k056832_state *k056832 = k056832_get_safe_token(device); const k056832_interface *intf = k056832_get_interface(device); running_machine &machine = device->machine(); tilemap_t *tmap; int i; UINT32 total; static const gfx_layout charlayout8 = { 8, 8, 0, 8, { 8*7,8*3,8*5,8*1,8*6,8*2,8*4,8*0 }, { 0, 1, 2, 3, 4, 5, 6, 7 }, { 0, 8*8, 8*8*2, 8*8*3, 8*8*4, 8*8*5, 8*8*6, 8*8*7 }, 8*8*8 }; static const gfx_layout charlayout8le = { 8, 8, 0, 8, // { 0, 1, 2, 3, 0+(0x200000*8), 1+(0x200000*8), 2+(0x200000*8), 3+(0x200000*8) }, { 0+(0x200000*8), 1+(0x200000*8), 2+(0x200000*8), 3+(0x200000*8), 0, 1, 2, 3 }, { 2*4, 3*4, 0*4, 1*4, 6*4, 7*4, 4*4, 5*4 }, { 0*8*4, 1*8*4, 2*8*4, 3*8*4, 4*8*4, 5*8*4, 6*8*4, 7*8*4 }, 8*8*4 }; static const gfx_layout charlayout6 = { 8, 8, 0, 6, { 40, 32, 24, 8, 16, 0 }, { 0, 1, 2, 3, 4, 5, 6, 7 }, { 0, 6*8, 6*8*2, 6*8*3, 6*8*4, 6*8*5, 6*8*6, 6*8*7 }, 8*8*6 }; static const gfx_layout charlayout5 = { 8, 8, 0, 5, { 32, 24, 8, 16, 0 }, { 0, 1, 2, 3, 4, 5, 6, 7 }, { 0, 5*8, 5*8*2, 5*8*3, 5*8*4, 5*8*5, 5*8*6, 5*8*7 }, 8*8*5 }; static const gfx_layout charlayout4 = { 8, 8, 0, 4, { 0, 1, 2, 3 }, { 2*4, 3*4, 0*4, 1*4, 6*4, 7*4, 4*4, 5*4 }, { 0*8*4, 1*8*4, 2*8*4, 3*8*4, 4*8*4, 5*8*4, 6*8*4, 7*8*4 }, 8*8*4 }; static const gfx_layout charlayout4dj = { 8, 8, 0, 4, { 8*3,8*1,8*2,8*0 }, { 0, 1, 2, 3, 4, 5, 6, 7 }, { 0, 8*4, 8*4*2, 8*4*3, 8*4*4, 8*4*5, 8*4*6, 8*4*7 }, 8*8*4 }; static const gfx_layout charlayout8_tasman = { 8,8, RGN_FRAC(1,1), 8, { 0,8,16,24,32,40,48,56 }, { 0,1,2,3,4,5,6,7 }, // bit order probably not exact - note ramp in first 16 tiles { 0*64, 1*64, 2*64, 3*64, 4*64, 5*64, 6*64, 7*64}, 8*64 }; /* handle the various graphics formats */ i = (intf->big) ? 8 : 16; /* decode the graphics */ switch (intf->bpp) { case K056832_BPP_4: total = machine.region(intf->gfx_memory_region)->bytes() / (i * 4); decode_gfx(machine, intf->gfx_num, machine.region(intf->gfx_memory_region)->base(), total, &charlayout4, 4); break; case K056832_BPP_5: total = machine.region(intf->gfx_memory_region)->bytes() / (i * 5); decode_gfx(machine, intf->gfx_num, machine.region(intf->gfx_memory_region)->base(), total, &charlayout5, 4); break; case K056832_BPP_6: total = machine.region(intf->gfx_memory_region)->bytes() / (i * 6); decode_gfx(machine, intf->gfx_num, machine.region(intf->gfx_memory_region)->base(), total, &charlayout6, 4); break; case K056832_BPP_8: total = machine.region(intf->gfx_memory_region)->bytes() / (i * 8); decode_gfx(machine, intf->gfx_num, machine.region(intf->gfx_memory_region)->base(), total, &charlayout8, 4); break; case K056832_BPP_8LE: total = machine.region(intf->gfx_memory_region)->bytes() / (i * 8); decode_gfx(machine, intf->gfx_num, machine.region(intf->gfx_memory_region)->base(), total, &charlayout8le, 4); break; case K056832_BPP_8TASMAN: total = machine.region(intf->gfx_memory_region)->bytes() / (i * 8); decode_gfx(machine, intf->gfx_num, machine.region(intf->gfx_memory_region)->base(), total, &charlayout8_tasman, 4); break; case K056832_BPP_4dj: total = machine.region(intf->gfx_memory_region)->bytes() / (i * 4); decode_gfx(machine, intf->gfx_num, machine.region(intf->gfx_memory_region)->base(), total, &charlayout4dj, 4); break; default: fatalerror("Unsupported bpp"); } machine.gfx[intf->gfx_num]->color_granularity = 16; /* override */ /* deinterleave the graphics, if needed */ deinterleave_gfx(machine, intf->gfx_memory_region, intf->deinterleave); k056832->memory_region = intf->gfx_memory_region; k056832->gfxnum = intf->gfx_num; k056832->callback = intf->callback; k056832->rombase = machine.region(intf->gfx_memory_region)->base(); k056832->num_gfx_banks = machine.region(intf->gfx_memory_region)->bytes() / 0x2000; k056832->djmain_hack = intf->djmain_hack; k056832->cur_gfx_banks = 0; k056832->use_ext_linescroll = 0; k056832->uses_tile_banks = 0; for (i = 0; i < 4; i++) { k056832->layer_offs[i][0] = 0; k056832->layer_offs[i][1] = 0; k056832->lsram_page[i][0] = i; k056832->lsram_page[i][1] = i << 11; k056832->x[i] = 0; k056832->y[i] = 0; k056832->w[i] = 0; k056832->h[i] = 0; k056832->dx[i] = 0; k056832->dy[i] = 0; k056832->layer_tile_mode[i] = 1; } k056832->default_layer_association = 1; k056832->active_layer = 0; k056832->linemap_enabled = 0; k056832->k055555 = device->machine().device(intf->k055555); memset(k056832->line_dirty, 0, sizeof(UINT32) * K056832_PAGE_COUNT * 8); for (i = 0; i < K056832_PAGE_COUNT; i++) { k056832->all_lines_dirty[i] = 0; k056832->page_tile_mode[i] = 1; } k056832->videoram = auto_alloc_array(machine, UINT16, 0x2000 * (K056832_PAGE_COUNT + 1) / 2); k056832->tilemap[0x0] = tilemap_create_device(device, k056832_get_tile_info0, tilemap_scan_rows, 8, 8, 64, 32); k056832->tilemap[0x1] = tilemap_create_device(device, k056832_get_tile_info1, tilemap_scan_rows, 8, 8, 64, 32); k056832->tilemap[0x2] = tilemap_create_device(device, k056832_get_tile_info2, tilemap_scan_rows, 8, 8, 64, 32); k056832->tilemap[0x3] = tilemap_create_device(device, k056832_get_tile_info3, tilemap_scan_rows, 8, 8, 64, 32); k056832->tilemap[0x4] = tilemap_create_device(device, k056832_get_tile_info4, tilemap_scan_rows, 8, 8, 64, 32); k056832->tilemap[0x5] = tilemap_create_device(device, k056832_get_tile_info5, tilemap_scan_rows, 8, 8, 64, 32); k056832->tilemap[0x6] = tilemap_create_device(device, k056832_get_tile_info6, tilemap_scan_rows, 8, 8, 64, 32); k056832->tilemap[0x7] = tilemap_create_device(device, k056832_get_tile_info7, tilemap_scan_rows, 8, 8, 64, 32); k056832->tilemap[0x8] = tilemap_create_device(device, k056832_get_tile_info8, tilemap_scan_rows, 8, 8, 64, 32); k056832->tilemap[0x9] = tilemap_create_device(device, k056832_get_tile_info9, tilemap_scan_rows, 8, 8, 64, 32); k056832->tilemap[0xa] = tilemap_create_device(device, k056832_get_tile_infoa, tilemap_scan_rows, 8, 8, 64, 32); k056832->tilemap[0xb] = tilemap_create_device(device, k056832_get_tile_infob, tilemap_scan_rows, 8, 8, 64, 32); k056832->tilemap[0xc] = tilemap_create_device(device, k056832_get_tile_infoc, tilemap_scan_rows, 8, 8, 64, 32); k056832->tilemap[0xd] = tilemap_create_device(device, k056832_get_tile_infod, tilemap_scan_rows, 8, 8, 64, 32); k056832->tilemap[0xe] = tilemap_create_device(device, k056832_get_tile_infoe, tilemap_scan_rows, 8, 8, 64, 32); k056832->tilemap[0xf] = tilemap_create_device(device, k056832_get_tile_infof, tilemap_scan_rows, 8, 8, 64, 32); for (i = 0; i < K056832_PAGE_COUNT; i++) { tmap = k056832->tilemap[i]; k056832->pixmap[i] = tilemap_get_pixmap(tmap); tilemap_set_transparent_pen(tmap, 0); } memset(k056832->videoram, 0x00, 0x20000); memset(k056832->regs, 0x00, sizeof(k056832->regs) ); memset(k056832->regsb, 0x00, sizeof(k056832->regsb) ); k056832_update_page_layout(k056832); k056832_change_rambank(k056832); k056832_change_rombank(k056832); device->save_pointer(NAME(k056832->videoram), 0x10000); device->save_item(NAME(k056832->regs)); device->save_item(NAME(k056832->regsb)); device->save_item(NAME(k056832->x)); device->save_item(NAME(k056832->y)); device->save_item(NAME(k056832->w)); device->save_item(NAME(k056832->h)); device->save_item(NAME(k056832->dx)); device->save_item(NAME(k056832->dy)); device->save_item(NAME(k056832->layer_tile_mode)); device->save_item(NAME(k056832->default_layer_association)); device->save_item(NAME(k056832->active_layer)); device->save_item(NAME(k056832->linemap_enabled)); device->save_item(NAME(k056832->use_ext_linescroll)); device->save_item(NAME(k056832->uses_tile_banks)); device->save_item(NAME(k056832->cur_tile_bank)); device->save_item(NAME(k056832->rom_half)); device->save_item(NAME(k056832->all_lines_dirty)); device->save_item(NAME(k056832->page_tile_mode)); for (i = 0; i < 8; i++) { device->save_item(NAME(k056832->layer_offs[i]), i); device->save_item(NAME(k056832->lsram_page[i]), i); } for (i = 0; i < K056832_PAGE_COUNT; i++) { device->save_item(NAME(k056832->line_dirty[i]), i); device->save_item(NAME(k056832->all_lines_dirty[i]), i); device->save_item(NAME(k056832->page_tile_mode[i]), i); device->save_item(NAME(k056832->last_colorbase[i]), i); } device->machine().save().register_postload(save_prepost_delegate(FUNC(k056832_postload), k056832)); } /***************************************************************************/ /* */ /* 055555 */ /* */ /***************************************************************************/ /* K055555 5-bit-per-pixel priority encoder */ /* This device has 48 8-bit-wide registers */ typedef struct _k055555_state k055555_state; struct _k055555_state { UINT8 regs[128]; }; /***************************************************************************** INLINE FUNCTIONS *****************************************************************************/ INLINE k055555_state *k055555_get_safe_token( device_t *device ) { assert(device != NULL); assert(device->type() == K055555); return (k055555_state *)downcast(device)->token(); } /***************************************************************************** DEVICE HANDLERS *****************************************************************************/ void k055555_write_reg( device_t *device, UINT8 regnum, UINT8 regdat ) { k055555_state *k055555 = k055555_get_safe_token(device); static const char *const rnames[46] = { "BGC CBLK", "BGC SET", "COLSET0", "COLSET1", "COLSET2", "COLSET3", "COLCHG ON", "A PRI 0", "A PRI 1", "A COLPRI", "B PRI 0", "B PRI 1", "B COLPRI", "C PRI", "D PRI", "OBJ PRI", "SUB1 PRI", "SUB2 PRI", "SUB3 PRI", "OBJ INPRI ON", "S1 INPRI ON", "S2 INPRI ON", "S3 INPRI ON", "A PAL", "B PAL", "C PAL", "D PAL", "OBJ PAL", "SUB1 PAL", "SUB2 PAL", "SUB3 PAL", "SUB2 PAL ON", "SUB3 PAL ON", "V INMIX", "V INMIX ON", "OS INMIX", "OS INMIX ON", "SHD PRI 1", "SHD PRI 2", "SHD PRI 3", "SHD ON", "SHD PRI SEL", "V BRI", "OS INBRI", "OS INBRI ON", "ENABLE" }; if (regdat != k055555->regs[regnum]) { LOG(("5^5: %x to reg %x (%s)\n", regdat, regnum, rnames[regnum])); } k055555->regs[regnum] = regdat; } WRITE32_DEVICE_HANDLER( k055555_long_w ) { UINT8 regnum, regdat; if (ACCESSING_BITS_24_31) { regnum = offset << 1; regdat = data >> 24; } else { if (ACCESSING_BITS_8_15) { regnum = (offset << 1) + 1; regdat = data >> 8; } else { // logerror("5^5: unknown mem_mask %08x\n", mem_mask); return; } } k055555_write_reg(device, regnum, regdat); } WRITE16_DEVICE_HANDLER( k055555_word_w ) { if (mem_mask == 0x00ff) { k055555_write_reg(device, offset, data & 0xff); } else { k055555_write_reg(device, offset, data >> 8); } } int k055555_read_register( device_t *device, int regnum ) { k055555_state *k055555 = k055555_get_safe_token(device); return k055555->regs[regnum]; } int k055555_get_palette_index( device_t *device, int idx ) { k055555_state *k055555 = k055555_get_safe_token(device); return k055555->regs[K55_PALBASE_A + idx]; } /***************************************************************************** DEVICE INTERFACE *****************************************************************************/ static DEVICE_START( k055555 ) { k055555_state *k055555 = k055555_get_safe_token(device); device->save_item(NAME(k055555->regs)); } static DEVICE_RESET( k055555 ) { k055555_state *k055555 = k055555_get_safe_token(device); memset(k055555->regs, 0, 64 * sizeof(UINT8)); } /***************************************************************************/ /* */ /* 054338 */ /* */ /***************************************************************************/ // k054338 alpha blend / final mixer (normally used with the 55555) // because the implementation is video dependant, this is just a // register-handling shell. typedef struct _k054338_state k054338_state; struct _k054338_state { UINT16 regs[32]; int shd_rgb[9]; int alphainverted; screen_device *screen; device_t *k055555; /* used to fill BG color */ }; /***************************************************************************** INLINE FUNCTIONS *****************************************************************************/ INLINE k054338_state *k054338_get_safe_token( device_t *device ) { assert(device != NULL); assert(device->type() == K054338); return (k054338_state *)downcast(device)->token(); } INLINE const k054338_interface *k054338_get_interface( device_t *device ) { assert(device != NULL); assert(device->type() == K054338); return (const k054338_interface *) device->static_config(); } /***************************************************************************** DEVICE HANDLERS *****************************************************************************/ WRITE16_DEVICE_HANDLER( k054338_word_w ) { k054338_state *k054338 = k054338_get_safe_token(device); COMBINE_DATA(k054338->regs + offset); } WRITE32_DEVICE_HANDLER( k054338_long_w ) { offset <<= 1; k054338_word_w(device, offset, data >> 16, mem_mask >> 16); k054338_word_w(device, offset + 1, data, mem_mask); } // returns a 16-bit '338 register int k054338_register_r( device_t *device, int reg ) { k054338_state *k054338 = k054338_get_safe_token(device); return k054338->regs[reg]; } void k054338_update_all_shadows( device_t *device, int rushingheroes_hack ) { k054338_state *k054338 = k054338_get_safe_token(device); running_machine &machine = device->machine(); int i, d; int noclip = k054338->regs[K338_REG_CONTROL] & K338_CTL_CLIPSL; for (i = 0; i < 9; i++) { d = k054338->regs[K338_REG_SHAD1R + i] & 0x1ff; if (d >= 0x100) d -= 0x200; k054338->shd_rgb[i] = d; } if (!rushingheroes_hack) { palette_set_shadow_dRGB32(machine, 0, k054338->shd_rgb[0], k054338->shd_rgb[1], k054338->shd_rgb[2], noclip); palette_set_shadow_dRGB32(machine, 1, k054338->shd_rgb[3], k054338->shd_rgb[4], k054338->shd_rgb[5], noclip); palette_set_shadow_dRGB32(machine, 2, k054338->shd_rgb[6], k054338->shd_rgb[7], k054338->shd_rgb[8], noclip); } else // rushing heroes seems to specify shadows in another format, or it's not being interpreted properly. { palette_set_shadow_dRGB32(machine, 0, -80, -80, -80, 0); palette_set_shadow_dRGB32(machine, 1, -80, -80, -80, 0); palette_set_shadow_dRGB32(machine, 2, -80, -80, -80, 0); } } // k054338 BG color fill void k054338_fill_solid_bg( device_t *device, bitmap_t *bitmap ) { UINT32 bgcolor; UINT32 *pLine; int x, y; bgcolor = (k054338_register_r(device, K338_REG_BGC_R) & 0xff) << 16; bgcolor |= k054338_register_r(device, K338_REG_BGC_GB); /* and fill the screen with it */ for (y = 0; y < bitmap->height; y++) { pLine = (UINT32 *)bitmap->base; pLine += (bitmap->rowpixels * y); for (x = 0; x < bitmap->width; x++) *pLine++ = bgcolor; } } // Unified k054338/K055555 BG color fill void k054338_fill_backcolor( device_t *device, bitmap_t *bitmap, int mode ) // (see p.67) { k054338_state *k054338 = k054338_get_safe_token(device); int clipx, clipy, clipw, cliph, i, dst_pitch; int BGC_CBLK, BGC_SET; UINT32 *dst_ptr, *pal_ptr; int bgcolor; const rectangle &visarea = k054338->screen->visible_area(); clipx = visarea.min_x & ~3; clipy = visarea.min_y; clipw = (visarea.max_x - clipx + 4) & ~3; cliph = visarea.max_y - clipy + 1; dst_ptr = BITMAP_ADDR32(bitmap, clipy, 0); dst_pitch = bitmap->rowpixels; dst_ptr += clipx; BGC_SET = 0; pal_ptr = device->machine().generic.paletteram.u32; if (!mode || k054338->k055555 == NULL) { // single color output from CLTC bgcolor = (int)(k054338->regs[K338_REG_BGC_R] & 0xff) << 16 | (int)k054338->regs[K338_REG_BGC_GB]; } else { BGC_CBLK = k055555_read_register(k054338->k055555, 0); BGC_SET = k055555_read_register(k054338->k055555, 1); pal_ptr += BGC_CBLK << 9; // single color output from PCU2 if (!(BGC_SET & 2)) { bgcolor = *pal_ptr; mode = 0; } else bgcolor = 0; } if (!mode) { // single color fill dst_ptr += clipw; i = clipw = -clipw; do { do { dst_ptr[i] = dst_ptr[i+1] = dst_ptr[i+2] = dst_ptr[i+3] = bgcolor; } while (i += 4); dst_ptr += dst_pitch; i = clipw; } while (--cliph); } else { if (!(BGC_SET & 1)) { // vertical gradient fill pal_ptr += clipy; dst_ptr += clipw; bgcolor = *pal_ptr++; i = clipw = -clipw; do { do { dst_ptr[i] = dst_ptr[i+1] = dst_ptr[i+2] = dst_ptr[i+3] = bgcolor; } while (i += 4); dst_ptr += dst_pitch; bgcolor = *pal_ptr++; i = clipw; } while (--cliph); } else { // horizontal gradient fill pal_ptr += clipx; clipw <<= 2; do { memcpy(dst_ptr, pal_ptr, clipw); dst_ptr += dst_pitch; } while (--cliph); } } } // addition blending unimplemented (requires major changes to drawgfx and tilemap.c) int k054338_set_alpha_level( device_t *device, int pblend ) { k054338_state *k054338 = k054338_get_safe_token(device); UINT16 *regs; int ctrl, mixpri, mixset, mixlv; if (pblend <= 0 || pblend > 3) { return (255); } regs = k054338->regs; ctrl = k054338->regs[K338_REG_CONTROL]; mixpri = ctrl & K338_CTL_MIXPRI; mixset = regs[K338_REG_PBLEND + (pblend >> 1 & 1)] >> (~pblend << 3 & 8); mixlv = mixset & 0x1f; if (k054338->alphainverted) mixlv = 0x1f - mixlv; if (!(mixset & 0x20)) { mixlv = (mixlv << 3) | (mixlv >> 2); } else { if (!mixpri) { // source x alpha + target (clipped at 255) } else { // source + target x alpha (clipped at 255) } // DUMMY if (mixlv && mixlv < 0x1f) mixlv = 0x10; mixlv = (mixlv << 3) | (mixlv >> 2); if (VERBOSE) popmessage("MIXSET%1d %s addition mode: %02x", pblend, (mixpri) ? "dst" : "src", mixset & 0x1f); } return mixlv; } void k054338_invert_alpha( device_t *device, int invert ) { k054338_state *k054338 = k054338_get_safe_token(device); k054338->alphainverted = invert; } #if 0 // FIXME void k054338->export_config( device_t *device, int **shd_rgb ) { k054338_state *k054338 = k054338_get_safe_token(device); *shd_rgb = k054338->shd_rgb; } #endif /***************************************************************************** DEVICE INTERFACE *****************************************************************************/ static DEVICE_START( k054338 ) { k054338_state *k054338 = k054338_get_safe_token(device); const k054338_interface *intf = k054338_get_interface(device); k054338->screen = device->machine().device(intf->screen); k054338->k055555 = device->machine().device(intf->k055555); k054338->alphainverted = intf->alpha_inv; device->save_item(NAME(k054338->regs)); device->save_item(NAME(k054338->shd_rgb)); } static DEVICE_RESET( k054338 ) { k054338_state *k054338 = k054338_get_safe_token(device); memset(k054338->regs, 0, sizeof(UINT16)*32); memset(k054338->shd_rgb, 0, sizeof(int)*9); } // Newer Konami devices // from video/gticlub.c /*****************************************************************************/ /* Konami K001006 Custom 3D Texel Renderer chip (KS10081) */ /***************************************************************************/ /* */ /* 001006 */ /* */ /***************************************************************************/ typedef struct _k001006_state k001006_state; struct _k001006_state { screen_device *screen; UINT16 * pal_ram; UINT16 * unknown_ram; UINT32 addr; int device_sel; UINT32 * palette; const char *gfx_region; }; /***************************************************************************** INLINE FUNCTIONS *****************************************************************************/ INLINE k001006_state *k001006_get_safe_token( device_t *device ) { assert(device != NULL); assert(device->type() == K001006); return (k001006_state *)downcast(device)->token(); } INLINE const k001006_interface *k001006_get_interface( device_t *device ) { assert(device != NULL); assert((device->type() == K001006)); return (const k001006_interface *) device->static_config(); } /***************************************************************************** DEVICE HANDLERS *****************************************************************************/ READ32_DEVICE_HANDLER( k001006_r ) { k001006_state *k001006 = k001006_get_safe_token(device); if (offset == 1) { switch (k001006->device_sel) { case 0x0b: // CG Board ROM read { UINT16 *rom = (UINT16*)device->machine().region(k001006->gfx_region)->base(); return rom[k001006->addr / 2] << 16; } case 0x0d: // Palette RAM read { UINT32 addr = k001006->addr; k001006->addr += 2; return k001006->pal_ram[addr >> 1]; } case 0x0f: // Unknown RAM read { return k001006->unknown_ram[k001006->addr++]; } default: { fatalerror("k001006_r, unknown device %02X", k001006->device_sel); } } } return 0; } WRITE32_DEVICE_HANDLER( k001006_w ) { k001006_state *k001006 = k001006_get_safe_token(device); if (offset == 0) { COMBINE_DATA(&k001006->addr); } else if (offset == 1) { switch (k001006->device_sel) { case 0xd: // Palette RAM write { int r, g, b, a; UINT32 index = k001006->addr; k001006->pal_ram[index >> 1] = data & 0xffff; a = (data & 0x8000) ? 0x00 : 0xff; b = ((data >> 10) & 0x1f) << 3; g = ((data >> 5) & 0x1f) << 3; r = ((data >> 0) & 0x1f) << 3; b |= (b >> 5); g |= (g >> 5); r |= (r >> 5); k001006->palette[index >> 1] = MAKE_ARGB(a, r, g, b); k001006->addr += 2; break; } case 0xf: // Unknown RAM write { // mame_printf_debug("Unknown RAM %08X = %04X\n", k001006->addr, data & 0xffff); k001006->unknown_ram[k001006->addr++] = data & 0xffff; break; } default: { mame_printf_debug("k001006_w: device %02X, write %04X to %08X\n", k001006->device_sel, data & 0xffff, k001006->addr++); } } } else if (offset == 2) { if (ACCESSING_BITS_16_31) { k001006->device_sel = (data >> 16) & 0xf; } } } UINT32 k001006_get_palette( device_t *device, int index ) { k001006_state *k001006 = k001006_get_safe_token(device); return k001006->palette[index]; } /***************************************************************************** DEVICE INTERFACE *****************************************************************************/ static DEVICE_START( k001006 ) { k001006_state *k001006 = k001006_get_safe_token(device); const k001006_interface *intf = k001006_get_interface(device); k001006->pal_ram = auto_alloc_array_clear(device->machine(), UINT16, 0x800); k001006->unknown_ram = auto_alloc_array_clear(device->machine(), UINT16, 0x1000); k001006->palette = auto_alloc_array(device->machine(), UINT32, 0x800); k001006->gfx_region = intf->gfx_region; device->save_pointer(NAME(k001006->pal_ram), 0x800*sizeof(UINT16)); device->save_pointer(NAME(k001006->unknown_ram), 0x1000*sizeof(UINT16)); device->save_pointer(NAME(k001006->palette), 0x800*sizeof(UINT32)); device->save_item(NAME(k001006->device_sel)); device->save_item(NAME(k001006->addr)); } static DEVICE_RESET( k001006 ) { k001006_state *k001006 = k001006_get_safe_token(device); k001006->addr = 0; k001006->device_sel = 0; memset(k001006->palette, 0, 0x800*sizeof(UINT32)); } /*****************************************************************************/ /* Konami K001005 Custom 3D Pixel Renderer chip (KS10071) */ /***************************************************************************/ /* */ /* 001005 */ /* */ /***************************************************************************/ #include "video/poly.h" #include "cpu/sharc/sharc.h" typedef struct _poly_extra_data poly_extra_data; struct _poly_extra_data { UINT32 color; int texture_x, texture_y; int texture_page; int texture_palette; int texture_mirror_x; int texture_mirror_y; }; typedef struct _k001005_state k001005_state; struct _k001005_state { screen_device *screen; device_t *cpu; device_t *dsp; device_t *k001006_1; device_t *k001006_2; UINT8 * texture; UINT16 * ram[2]; UINT32 * fifo; UINT32 * _3d_fifo; UINT32 status; bitmap_t *bitmap[2]; bitmap_t *zbuffer; rectangle cliprect; int ram_ptr; int fifo_read_ptr; int fifo_write_ptr; int _3d_fifo_ptr; int tex_mirror_table[4][128]; int bitmap_page; poly_manager *poly; poly_vertex prev_v[4]; int prev_poly_type; UINT8 *gfxrom; }; static const int decode_x_gti[8] = { 0, 16, 2, 18, 4, 20, 6, 22 }; static const int decode_y_gti[16] = { 0, 8, 32, 40, 1, 9, 33, 41, 64, 72, 96, 104, 65, 73, 97, 105 }; static const int decode_x_zr107[8] = { 0, 16, 1, 17, 2, 18, 3, 19 }; static const int decode_y_zr107[16] = { 0, 8, 32, 40, 4, 12, 36, 44, 64, 72, 96, 104, 68, 76, 100, 108 }; /***************************************************************************** INLINE FUNCTIONS *****************************************************************************/ INLINE k001005_state *k001005_get_safe_token( device_t *device ) { assert(device != NULL); assert(device->type() == K001005); return (k001005_state *)downcast(device)->token(); } INLINE const k001005_interface *k001005_get_interface( device_t *device ) { assert(device != NULL); assert((device->type() == K001005)); return (const k001005_interface *) device->static_config(); } /***************************************************************************** DEVICE HANDLERS *****************************************************************************/ static void k001005_render_polygons( device_t *device ); // rearranges the texture data to a more practical order void k001005_preprocess_texture_data( UINT8 *rom, int length, int gticlub ) { int index; int i, x, y; UINT8 temp[0x40000]; const int *decode_x; const int *decode_y; if (gticlub) { decode_x = decode_x_gti; decode_y = decode_y_gti; } else { decode_x = decode_x_zr107; decode_y = decode_y_zr107; } for (index = 0; index < length; index += 0x40000) { int offset = index; memset(temp, 0, 0x40000); for (i = 0; i < 0x800; i++) { int tx = ((i & 0x400) >> 5) | ((i & 0x100) >> 4) | ((i & 0x40) >> 3) | ((i & 0x10) >> 2) | ((i & 0x4) >> 1) | (i & 0x1); int ty = ((i & 0x200) >> 5) | ((i & 0x80) >> 4) | ((i & 0x20) >> 3) | ((i & 0x8) >> 2) | ((i & 0x2) >> 1); tx <<= 3; ty <<= 4; for (y = 0; y < 16; y++) { for (x = 0; x < 8; x++) { UINT8 pixel = rom[offset + decode_y[y] + decode_x[x]]; temp[((ty + y) * 512) + (tx + x)] = pixel; } } offset += 128; } memcpy(&rom[index], temp, 0x40000); } } void k001005_swap_buffers( device_t *device ) { k001005_state *k001005 = k001005_get_safe_token(device); k001005->bitmap_page ^= 1; //if (k001005->status == 2) { bitmap_fill(k001005->bitmap[k001005->bitmap_page], &k001005->cliprect, device->machine().pens[0] & 0x00ffffff); bitmap_fill(k001005->zbuffer, &k001005->cliprect, 0xffffffff); } } READ32_DEVICE_HANDLER( k001005_r ) { k001005_state *k001005 = k001005_get_safe_token(device); switch(offset) { case 0x000: // FIFO read, high 16 bits { UINT16 value = k001005->fifo[k001005->fifo_read_ptr] >> 16; // mame_printf_debug("FIFO_r0: %08X\n", k001005->fifo_ptr); return value; } case 0x001: // FIFO read, low 16 bits { UINT16 value = k001005->fifo[k001005->fifo_read_ptr] & 0xffff; // mame_printf_debug("FIFO_r1: %08X\n", k001005->fifo_ptr); if (k001005->status != 1 && k001005->status != 2) { if (k001005->fifo_read_ptr < 0x3ff) { //device_set_input_line(k001005->dsp, SHARC_INPUT_FLAG1, CLEAR_LINE); sharc_set_flag_input(k001005->dsp, 1, CLEAR_LINE); } else { //device_set_input_line(k001005->dsp, SHARC_INPUT_FLAG1, ASSERT_LINE); sharc_set_flag_input(k001005->dsp, 1, ASSERT_LINE); } } else { //device_set_input_line(k001005->dsp, SHARC_INPUT_FLAG1, ASSERT_LINE); sharc_set_flag_input(k001005->dsp, 1, ASSERT_LINE); } k001005->fifo_read_ptr++; k001005->fifo_read_ptr &= 0x7ff; return value; } case 0x11b: // status ? return 0x8002; case 0x11c: // slave status ? return 0x8000; case 0x11f: if (k001005->ram_ptr >= 0x400000) { return k001005->ram[1][(k001005->ram_ptr++) & 0x3fffff]; } else { return k001005->ram[0][(k001005->ram_ptr++) & 0x3fffff]; } default: //mame_printf_debug("k001005->r: %08X, %08X at %08X\n", offset, mem_mask, cpu_get_pc(&space->device())); break; } return 0; } WRITE32_DEVICE_HANDLER( k001005_w ) { k001005_state *k001005 = k001005_get_safe_token(device); switch (offset) { case 0x000: // FIFO write { if (k001005->status != 1 && k001005->status != 2) { if (k001005->fifo_write_ptr < 0x400) { //device_set_input_line(k001005->dsp, SHARC_INPUT_FLAG1, ASSERT_LINE); sharc_set_flag_input(k001005->dsp, 1, ASSERT_LINE); } else { //device_set_input_line(k001005->dsp, SHARC_INPUT_FLAG1, CLEAR_LINE); sharc_set_flag_input(k001005->dsp, 1, CLEAR_LINE); } } else { //device_set_input_line(k001005->dsp, SHARC_INPUT_FLAG1, ASSERT_LINE); sharc_set_flag_input(k001005->dsp, 1, ASSERT_LINE); } // mame_printf_debug("K001005 FIFO write: %08X at %08X\n", data, cpu_get_pc(&space->device())); k001005->fifo[k001005->fifo_write_ptr] = data; k001005->fifo_write_ptr++; k001005->fifo_write_ptr &= 0x7ff; k001005->_3d_fifo[k001005->_3d_fifo_ptr++] = data; // !!! HACK to get past the FIFO B test (GTI Club & Thunder Hurricane) !!! if (cpu_get_pc(k001005->cpu) == 0x201ee) { // This is used to make the SHARC timeout device_spin_until_trigger(k001005->cpu, 10000); } // !!! HACK to get past the FIFO B test (Winding Heat & Midnight Run) !!! if (cpu_get_pc(k001005->cpu) == 0x201e6) { // This is used to make the SHARC timeout device_spin_until_trigger(k001005->cpu, 10000); } break; } case 0x100: break; // case 0x10a: poly_r = data & 0xff; break; // case 0x10b: poly_g = data & 0xff; break; // case 0x10c: poly_b = data & 0xff; break; case 0x11a: k001005->status = data; k001005->fifo_write_ptr = 0; k001005->fifo_read_ptr = 0; if (data == 2 && k001005->_3d_fifo_ptr > 0) { k001005_swap_buffers(device); k001005_render_polygons(device); poly_wait(k001005->poly, "render_polygons"); k001005->_3d_fifo_ptr = 0; } break; case 0x11d: k001005->fifo_write_ptr = 0; k001005->fifo_read_ptr = 0; break; case 0x11e: k001005->ram_ptr = data; break; case 0x11f: if (k001005->ram_ptr >= 0x400000) { k001005->ram[1][(k001005->ram_ptr++) & 0x3fffff] = data & 0xffff; } else { k001005->ram[0][(k001005->ram_ptr++) & 0x3fffff] = data & 0xffff; } break; default: //mame_printf_debug("k001005->w: %08X, %08X, %08X at %08X\n", data, offset, mem_mask, cpu_get_pc(&space->device())); break; } } /* emu/video/poly.c cannot handle atm callbacks passing a device parameter */ #define POLY_DEVICE 0 #if POLY_DEVICE static void draw_scanline( device_t *device, void *dest, INT32 scanline, const poly_extent *extent, const void *extradata, int threadid ) { k001005_state *k001005 = k001005_get_safe_token(device); const poly_extra_data *extra = (const poly_extra_data *)extradata; bitmap_t *destmap = (bitmap_t *)dest; float z = extent->param[0].start; float dz = extent->param[0].dpdx; UINT32 *fb = BITMAP_ADDR32(destmap, scanline, 0); UINT32 *zb = BITMAP_ADDR32(k001005->zbuffer, scanline, 0); UINT32 color = extra->color; int x; for (x = extent->startx; x < extent->stopx; x++) { UINT32 iz = (UINT32)z >> 16; if (iz <= zb[x]) { if (color & 0xff000000) { fb[x] = color; zb[x] = iz; } } z += dz; } } #endif #if POLY_DEVICE static void draw_scanline_tex( device_t *device, void *dest, INT32 scanline, const poly_extent *extent, const void *extradata, int threadid ) { k001005_state *k001005 = k001005_get_safe_token(device); const poly_extra_data *extra = (const poly_extra_data *)extradata; bitmap_t *destmap = (bitmap_t *)dest; UINT8 *texrom = k001005->gfxrom + (extra->texture_page * 0x40000); device_t *pal_device = (extra->texture_palette & 0x8) ? k001005->k001006_2 : k001005->k001006_1; int palette_index = (extra->texture_palette & 0x7) * 256; float z = extent->param[0].start; float u = extent->param[1].start; float v = extent->param[2].start; float w = extent->param[3].start; float dz = extent->param[0].dpdx; float du = extent->param[1].dpdx; float dv = extent->param[2].dpdx; float dw = extent->param[3].dpdx; int texture_mirror_x = extra->texture_mirror_x; int texture_mirror_y = extra->texture_mirror_y; int texture_x = extra->texture_x; int texture_y = extra->texture_y; int x; UINT32 *fb = BITMAP_ADDR32(destmap, scanline, 0); UINT32 *zb = BITMAP_ADDR32(k001005->zbuffer, scanline, 0); for (x = extent->startx; x < extent->stopx; x++) { UINT32 iz = (UINT32)z >> 16; //int iu = u >> 16; //int iv = v >> 16; if (iz < zb[x]) { float oow = 1.0f / w; UINT32 color; int iu, iv; int iiv, iiu, texel; iu = u * oow; iv = v * oow; iiu = texture_x + k001005->tex_mirror_table[texture_mirror_x][(iu >> 4) & 0x7f]; iiv = texture_y + k001005->tex_mirror_table[texture_mirror_y][(iv >> 4) & 0x7f]; texel = texrom[((iiv & 0x1ff) * 512) + (iiu & 0x1ff)]; color = k001006_get_palette(pal_device, palette_index + texel); if (color & 0xff000000) { fb[x] = color; zb[x] = iz; } } u += du; v += dv; z += dz; w += dw; } } #endif static void k001005_render_polygons( device_t *device ) { k001005_state *k001005 = k001005_get_safe_token(device); int i, j; #if POLY_DEVICE const rectangle &visarea = k001005->screen->visible_area(); #endif // mame_printf_debug("k001005->fifo_ptr = %08X\n", k001005->_3d_fifo_ptr); for (i = 0; i < k001005->_3d_fifo_ptr; i++) { if (k001005->_3d_fifo[i] == 0x80000003) { poly_extra_data *extra = (poly_extra_data *)poly_get_extra_data(k001005->poly); // poly_vertex v[4]; int r, g, b, a; UINT32 color; int index = i; ++index; for (j = 0; j < 4; j++) { int x, y; x = ((k001005->_3d_fifo[index] >> 0) & 0x3fff); y = ((k001005->_3d_fifo[index] >> 16) & 0x1fff); x |= ((x & 0x2000) ? 0xffffc000 : 0); y |= ((y & 0x1000) ? 0xffffe000 : 0); ++index; #if POLY_DEVICE v[j].x = ((float)(x) / 16.0f) + 256.0f; v[j].y = ((float)(-y) / 16.0f) + 192.0f; v[j].p[0] = 0; /* ??? */ #endif } ++index; r = (k001005->_3d_fifo[index] >> 0) & 0xff; g = (k001005->_3d_fifo[index] >> 8) & 0xff; b = (k001005->_3d_fifo[index] >> 16) & 0xff; a = (k001005->_3d_fifo[index] >> 24) & 0xff; color = (a << 24) | (r << 16) | (g << 8) | (b); ++index; extra->color = color; #if POLY_DEVICE poly_render_triangle(k001005->poly, k001005->bitmap[k001005->bitmap_page], &visarea, draw_scanline, 1, &v[0], &v[1], &v[2]); poly_render_triangle(k001005->poly, k001005->bitmap[k001005->bitmap_page], &visarea, draw_scanline, 1, &v[0], &v[2], &v[3]); // poly_render_polygon(k001005->poly, k001005->bitmap[k001005->bitmap_page], &visarea, draw_scanline, 1, 4, v); #endif i = index - 1; } else if (k001005->_3d_fifo[i] == 0x800000ae || k001005->_3d_fifo[i] == 0x8000008e || k001005->_3d_fifo[i] == 0x80000096 || k001005->_3d_fifo[i] == 0x800000b6 || k001005->_3d_fifo[i] == 0x8000002e || k001005->_3d_fifo[i] == 0x8000000e || k001005->_3d_fifo[i] == 0x80000016 || k001005->_3d_fifo[i] == 0x80000036 || k001005->_3d_fifo[i] == 0x800000aa || k001005->_3d_fifo[i] == 0x800000a8 || k001005->_3d_fifo[i] == 0x800000b2) { // 0x00: xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx Command // // 0x01: xxxx---- -------- -------- -------- Texture palette // 0x01: -------- -------x xxxx---- -------- Texture page // 0x01: -------- -------- ----x-x- x-x-x-x- Texture X / 8 // 0x01: -------- -------- -----x-x -x-x-x-x Texture Y / 8 poly_extra_data *extra = (poly_extra_data *)poly_get_extra_data(k001005->poly); poly_vertex v[4]; int tx, ty; UINT32 color = 0; UINT32 header; UINT32 command; int num_verts = 0; int index = i; int poly_type = 0; command = k001005->_3d_fifo[index++]; header = k001005->_3d_fifo[index++]; for (j = 0; j < 4; j++) { INT16 u2, v2; int x, y, z; int end = 0; x = ((k001005->_3d_fifo[index] >> 0) & 0x3fff); y = ((k001005->_3d_fifo[index] >> 16) & 0x1fff); x |= ((x & 0x2000) ? 0xffffc000 : 0); y |= ((y & 0x1000) ? 0xffffe000 : 0); poly_type = k001005->_3d_fifo[index] & 0x4000; end = k001005->_3d_fifo[index] & 0x8000; ++index; z = k001005->_3d_fifo[index]; ++index; if (end) { color = k001005->_3d_fifo[index]; ++index; u2 = (k001005->_3d_fifo[index] >> 16) & 0xffff; v2 = (k001005->_3d_fifo[index] >> 0) & 0xffff; ++index; } else { u2 = (k001005->_3d_fifo[index] >> 16) & 0xffff; v2 = (k001005->_3d_fifo[index] >> 0) & 0xffff; ++index; } v[j].x = ((float)(x) / 16.0f) + 256.0f; v[j].y = ((float)(-y) / 16.0f) + 192.0f; v[j].p[0] = *(float*)(&z); v[j].p[3] = 1.0f / v[j].p[0]; v[j].p[1] = u2 * v[j].p[3]; v[j].p[2] = v2 * v[j].p[3]; ++num_verts; if (end) break; } ty = ((header & 0x400) >> 5) | ((header & 0x100) >> 4) | ((header & 0x040) >> 3) | ((header & 0x010) >> 2) | ((header & 0x004) >> 1) | ((header & 0x001) >> 0); tx = ((header & 0x800) >> 6) | ((header & 0x200) >> 5) | ((header & 0x080) >> 4) | ((header & 0x020) >> 3) | ((header & 0x008) >> 2) | ((header & 0x002) >> 1); extra->texture_x = tx * 8; extra->texture_y = ty * 8; extra->texture_page = (header >> 12) & 0x1f; extra->texture_palette = (header >> 28) & 0xf; extra->texture_mirror_x = ((command & 0x10) ? 0x2 : 0) | ((header & 0x00400000) ? 0x1 : 0); extra->texture_mirror_y = ((command & 0x10) ? 0x2 : 0) | ((header & 0x00400000) ? 0x1 : 0); extra->color = color; if (num_verts < 3) { #if POLY_DEVICE poly_render_triangle(k001005->poly, k001005->bitmap[k001005->bitmap_page], &visarea, draw_scanline_tex, 4, &k001005->prev_v[2], &v[0], &v[1]); if (k001005->prev_poly_type) poly_render_triangle(k001005->poly, k001005->bitmap[k001005->bitmap_page], &visarea, draw_scanline_tex, 4, &k001005->prev_v[2], &k001005->prev_v[3], &v[0]); // if (k001005->prev_poly_type) // poly_render_quad(k001005->poly, k001005->bitmap[k001005->bitmap_page], &visarea, draw_scanline_tex, 4, &k001005->prev_v[2], &k001005->prev_v[3], &v[0], &v[1]); // else // poly_render_triangle(k001005->poly, k001005->bitmap[k001005->bitmap_page], &visarea, draw_scanline_tex, 4, &k001005->prev_v[2], &v[0], &v[1]); #endif memcpy(&k001005->prev_v[0], &k001005->prev_v[2], sizeof(poly_vertex)); memcpy(&k001005->prev_v[1], &k001005->prev_v[3], sizeof(poly_vertex)); memcpy(&k001005->prev_v[2], &v[0], sizeof(poly_vertex)); memcpy(&k001005->prev_v[3], &v[1], sizeof(poly_vertex)); } else { #if POLY_DEVICE poly_render_triangle(k001005->poly, k001005->bitmap[k001005->bitmap_page], &visarea, draw_scanline_tex, 4, &v[0], &v[1], &v[2]); if (num_verts > 3) poly_render_triangle(k001005->poly, k001005->bitmap[k001005->bitmap_page], &visarea, draw_scanline_tex, 4, &v[2], &v[3], &v[0]); // poly_render_polygon(k001005->poly, k001005->bitmap[k001005->bitmap_page], &visarea, draw_scanline_tex, 4, num_verts, v); #endif memcpy(k001005->prev_v, v, sizeof(poly_vertex) * 4); } k001005->prev_poly_type = poly_type; while ((k001005->_3d_fifo[index] & 0xffffff00) != 0x80000000 && index < k001005->_3d_fifo_ptr) { poly_extra_data *extra = (poly_extra_data *)poly_get_extra_data(k001005->poly); #if POLY_DEVICE int new_verts = 0; #endif if (poly_type) { memcpy(&v[0], &k001005->prev_v[2], sizeof(poly_vertex)); memcpy(&v[1], &k001005->prev_v[3], sizeof(poly_vertex)); } else { memcpy(&v[0], &k001005->prev_v[1], sizeof(poly_vertex)); memcpy(&v[1], &k001005->prev_v[2], sizeof(poly_vertex)); } for (j = 2; j < 4; j++) { INT16 u2, v2; int x, y, z; int end = 0; x = ((k001005->_3d_fifo[index] >> 0) & 0x3fff); y = ((k001005->_3d_fifo[index] >> 16) & 0x1fff); x |= ((x & 0x2000) ? 0xffffc000 : 0); y |= ((y & 0x1000) ? 0xffffe000 : 0); poly_type = k001005->_3d_fifo[index] & 0x4000; end = k001005->_3d_fifo[index] & 0x8000; ++index; z = k001005->_3d_fifo[index]; ++index; if (end) { color = k001005->_3d_fifo[index]; ++index; u2 = (k001005->_3d_fifo[index] >> 16) & 0xffff; v2 = (k001005->_3d_fifo[index] >> 0) & 0xffff; ++index; } else { u2 = (k001005->_3d_fifo[index] >> 16) & 0xffff; v2 = (k001005->_3d_fifo[index] >> 0) & 0xffff; ++index; } v[j].x = ((float)(x) / 16.0f) + 256.0f; v[j].y = ((float)(-y) / 16.0f) + 192.0f; v[j].p[0] = *(float*)(&z); v[j].p[3] = 1.0f / v[j].p[0]; v[j].p[1] = u2 * v[j].p[3]; v[j].p[2] = v2 * v[j].p[3]; #if POLY_DEVICE ++new_verts; #endif if (end) break; } extra->texture_x = tx * 8; extra->texture_y = ty * 8; extra->texture_page = (header >> 12) & 0x1f; extra->texture_palette = (header >> 28) & 0xf; extra->texture_mirror_x = ((command & 0x10) ? 0x2 : 0) | ((header & 0x00400000) ? 0x1 : 0); extra->texture_mirror_y = ((command & 0x10) ? 0x2 : 0) | ((header & 0x00400000) ? 0x1 : 0); extra->color = color; #if POLY_DEVICE poly_render_triangle(k001005->poly, k001005->bitmap[k001005->bitmap_page], &visarea, draw_scanline_tex, 4, &v[0], &v[1], &v[2]); if (new_verts > 1) poly_render_triangle(k001005->poly, k001005->bitmap[k001005->bitmap_page], &visarea, draw_scanline_tex, 4, &v[2], &v[3], &v[0]); // poly_render_polygon(k001005->poly, k001005->bitmap[k001005->bitmap_page], &visarea, draw_scanline_tex, 4, new_verts + 2, v); #endif memcpy(k001005->prev_v, v, sizeof(poly_vertex) * 4); }; i = index - 1; } else if (k001005->_3d_fifo[i] == 0x80000006 || k001005->_3d_fifo[i] == 0x80000026 || k001005->_3d_fifo[i] == 0x80000020 || k001005->_3d_fifo[i] == 0x80000022) { poly_extra_data *extra = (poly_extra_data *)poly_get_extra_data(k001005->poly); poly_vertex v[4]; int r, g, b, a; UINT32 color; int num_verts = 0; int index = i; int poly_type = 0; ++index; for (j = 0; j < 4; j++) { int x, y, z; int end = 0; x = ((k001005->_3d_fifo[index] >> 0) & 0x3fff); y = ((k001005->_3d_fifo[index] >> 16) & 0x1fff); x |= ((x & 0x2000) ? 0xffffc000 : 0); y |= ((y & 0x1000) ? 0xffffe000 : 0); poly_type = k001005->_3d_fifo[index] & 0x4000; end = k001005->_3d_fifo[index] & 0x8000; ++index; z = k001005->_3d_fifo[index]; ++index; v[j].x = ((float)(x) / 16.0f) + 256.0f; v[j].y = ((float)(-y) / 16.0f) + 192.0f; v[j].p[0] = *(float*)(&z); ++num_verts; if (end) break; } r = (k001005->_3d_fifo[index] >> 0) & 0xff; g = (k001005->_3d_fifo[index] >> 8) & 0xff; b = (k001005->_3d_fifo[index] >> 16) & 0xff; a = (k001005->_3d_fifo[index] >> 24) & 0xff; color = (a << 24) | (r << 16) | (g << 8) | (b); index++; extra->color = color; #if POLY_DEVICE poly_render_triangle(k001005->poly, k001005->bitmap[k001005->bitmap_page], &visarea, draw_scanline, 1, &v[0], &v[1], &v[2]); if (num_verts > 3) poly_render_triangle(k001005->poly, k001005->bitmap[k001005->bitmap_page], &visarea, draw_scanline, 1, &v[2], &v[3], &v[0]); // poly_render_polygon(k001005->poly, k001005->bitmap[k001005->bitmap_page], &visarea, draw_scanline, 1, num_verts, v); #endif memcpy(k001005->prev_v, v, sizeof(poly_vertex) * 4); while ((k001005->_3d_fifo[index] & 0xffffff00) != 0x80000000 && index < k001005->_3d_fifo_ptr) { poly_extra_data *extra = (poly_extra_data *)poly_get_extra_data(k001005->poly); int new_verts = 0; if (poly_type) { memcpy(&v[0], &k001005->prev_v[2], sizeof(poly_vertex)); memcpy(&v[1], &k001005->prev_v[3], sizeof(poly_vertex)); } else { memcpy(&v[0], &k001005->prev_v[1], sizeof(poly_vertex)); memcpy(&v[1], &k001005->prev_v[2], sizeof(poly_vertex)); } for (j = 2; j < 4; j++) { int x, y, z; int end = 0; x = ((k001005->_3d_fifo[index] >> 0) & 0x3fff); y = ((k001005->_3d_fifo[index] >> 16) & 0x1fff); x |= ((x & 0x2000) ? 0xffffc000 : 0); y |= ((y & 0x1000) ? 0xffffe000 : 0); poly_type = k001005->_3d_fifo[index] & 0x4000; end = k001005->_3d_fifo[index] & 0x8000; ++index; z = k001005->_3d_fifo[index]; ++index; v[j].x = ((float)(x) / 16.0f) + 256.0f; v[j].y = ((float)(-y) / 16.0f) + 192.0f; v[j].p[0] = *(float*)(&z); ++new_verts; if (end) break; } r = (k001005->_3d_fifo[index] >> 0) & 0xff; g = (k001005->_3d_fifo[index] >> 8) & 0xff; b = (k001005->_3d_fifo[index] >> 16) & 0xff; a = (k001005->_3d_fifo[index] >> 24) & 0xff; color = (a << 24) | (r << 16) | (g << 8) | (b); index++; extra->color = color; #if POLY_DEVICE poly_render_triangle(k001005->poly, k001005->bitmap[k001005->bitmap_page], &visarea, draw_scanline, 1, &v[0], &v[1], &v[2]); if (new_verts > 1) poly_render_triangle(k001005->poly, k001005->bitmap[k001005->bitmap_page], &visarea, draw_scanline, 1, &v[0], &v[2], &v[3]); // poly_render_polygon(k001005->poly, k001005->bitmap[k001005->bitmap_page], &visarea, draw_scanline, 1, new_verts + 2, v); #endif memcpy(k001005->prev_v, v, sizeof(poly_vertex) * 4); }; i = index - 1; } else if (k001005->_3d_fifo[i] == 0x80000000) { } else if ((k001005->_3d_fifo[i] & 0xffffff00) == 0x80000000) { /* mame_printf_debug("Unknown polygon type %08X:\n", k001005->_3d_fifo[i]); for (j = 0; j < 0x20; j++) { mame_printf_debug(" %02X: %08X\n", j, k001005->_3d_fifo[i + 1 + j]); } mame_printf_debug("\n"); */ } } } void k001005_draw( device_t *device, bitmap_t *bitmap, const rectangle *cliprect ) { k001005_state *k001005 = k001005_get_safe_token(device); int i, j; memcpy(&k001005->cliprect, cliprect, sizeof(rectangle)); for (j = cliprect->min_y; j <= cliprect->max_y; j++) { UINT32 *bmp = BITMAP_ADDR32(bitmap, j, 0); UINT32 *src = BITMAP_ADDR32(k001005->bitmap[k001005->bitmap_page ^ 1], j, 0); for (i = cliprect->min_x; i <= cliprect->max_x; i++) { if (src[i] & 0xff000000) { bmp[i] = src[i]; } } } } /***************************************************************************** DEVICE INTERFACE *****************************************************************************/ static DEVICE_START( k001005 ) { k001005_state *k001005 = k001005_get_safe_token(device); const k001005_interface *intf = k001005_get_interface(device); int i, width, height; k001005->cpu = device->machine().device(intf->cpu); k001005->dsp = device->machine().device(intf->dsp); k001005->k001006_1 = device->machine().device(intf->k001006_1); k001005->k001006_2 = device->machine().device(intf->k001006_2); k001005->screen = device->machine().device(intf->screen); width = k001005->screen->width(); height = k001005->screen->height(); k001005->zbuffer = auto_bitmap_alloc(device->machine(), width, height, BITMAP_FORMAT_INDEXED32); k001005->gfxrom = device->machine().region(intf->gfx_memory_region)->base(); k001005->bitmap[0] = k001005->screen->alloc_compatible_bitmap(); k001005->bitmap[1] = k001005->screen->alloc_compatible_bitmap(); k001005->texture = auto_alloc_array(device->machine(), UINT8, 0x800000); k001005->ram[0] = auto_alloc_array(device->machine(), UINT16, 0x140000); k001005->ram[1] = auto_alloc_array(device->machine(), UINT16, 0x140000); k001005->fifo = auto_alloc_array(device->machine(), UINT32, 0x800); k001005->_3d_fifo = auto_alloc_array(device->machine(), UINT32, 0x10000); k001005->poly = poly_alloc(device->machine(), 4000, sizeof(poly_extra_data), POLYFLAG_ALLOW_QUADS); for (i = 0; i < 128; i++) { k001005->tex_mirror_table[0][i] = i & 0x3f; k001005->tex_mirror_table[1][i] = i & 0x3f; k001005->tex_mirror_table[2][i] = ((i & 0x3f) >= 0x20) ? (0x1f - (i & 0x1f)) : i & 0x1f; k001005->tex_mirror_table[3][i] = ((i & 0x7f) >= 0x40) ? (0x3f - (i & 0x3f)) : i & 0x3f; } device->save_pointer(NAME(k001005->texture), 0x800000); device->save_pointer(NAME(k001005->ram[0]), 0x140000); device->save_pointer(NAME(k001005->ram[1]), 0x140000); device->save_pointer(NAME(k001005->fifo), 0x800); device->save_pointer(NAME(k001005->_3d_fifo), 0x10000); device->save_item(NAME(k001005->status)); device->save_item(NAME(k001005->ram_ptr)); device->save_item(NAME(k001005->fifo_read_ptr)); device->save_item(NAME(k001005->fifo_write_ptr)); device->save_item(NAME(k001005->_3d_fifo_ptr)); device->save_item(NAME(k001005->bitmap_page)); device->save_item(NAME(k001005->prev_poly_type)); device->save_item(NAME(*k001005->bitmap[0])); device->save_item(NAME(*k001005->bitmap[1])); device->save_item(NAME(*k001005->zbuffer)); // FIXME: shall we save poly as well? } static DEVICE_RESET( k001005 ) { k001005_state *k001005 = k001005_get_safe_token(device); k001005->status = 0; k001005->ram_ptr = 0; k001005->fifo_read_ptr = 0; k001005->fifo_write_ptr = 0; k001005->_3d_fifo_ptr = 0; k001005->bitmap_page = 0; memset(k001005->prev_v, 0, sizeof(k001005->prev_v)); k001005->prev_poly_type = 0; } static DEVICE_STOP( k001005 ) { k001005_state *k001005 = k001005_get_safe_token(device); poly_free(k001005->poly); } /***************************************************************************/ /* */ /* 001604 */ /* */ /***************************************************************************/ typedef struct _k001604_state k001604_state; struct _k001604_state { screen_device *screen; tilemap_t *layer_8x8[2]; tilemap_t *layer_roz[2]; int gfx_index[2]; UINT32 * tile_ram; UINT32 * char_ram; UINT32 * reg; int layer_size; int roz_size; }; #define K001604_NUM_TILES_LAYER0 16384 #define K001604_NUM_TILES_LAYER1 4096 /***************************************************************************** INLINE FUNCTIONS *****************************************************************************/ INLINE k001604_state *k001604_get_safe_token( device_t *device ) { assert(device != NULL); assert(device->type() == K001604); return (k001604_state *)downcast(device)->token(); } INLINE const k001604_interface *k001604_get_interface( device_t *device ) { assert(device != NULL); assert((device->type() == K001604)); return (const k001604_interface *) device->static_config(); } /***************************************************************************** DEVICE HANDLERS *****************************************************************************/ static const gfx_layout k001604_char_layout_layer_8x8 = { 8, 8, K001604_NUM_TILES_LAYER0, 8, { 8,9,10,11,12,13,14,15 }, { 1*16, 0*16, 3*16, 2*16, 5*16, 4*16, 7*16, 6*16 }, { 0*128, 1*128, 2*128, 3*128, 4*128, 5*128, 6*128, 7*128 }, 8*128 }; static const gfx_layout k001604_char_layout_layer_16x16 = { 16, 16, K001604_NUM_TILES_LAYER1, 8, { 8,9,10,11,12,13,14,15 }, { 1*16, 0*16, 3*16, 2*16, 5*16, 4*16, 7*16, 6*16, 9*16, 8*16, 11*16, 10*16, 13*16, 12*16, 15*16, 14*16 }, { 0*256, 1*256, 2*256, 3*256, 4*256, 5*256, 6*256, 7*256, 8*256, 9*256, 10*256, 11*256, 12*256, 13*256, 14*256, 15*256 }, 16*256 }; /* FIXME: The TILEMAP_MAPPER below depends on parameters passed by the device interface (being game dependent). we might simplify the code, by passing the whole TILEMAP_MAPPER as a callback in the interface, but is it really worth? */ static TILEMAP_MAPPER( k001604_scan_layer_8x8_0_size0 ) { /* logical (col,row) -> memory offset */ return (row * 128) + col; } static TILEMAP_MAPPER( k001604_scan_layer_8x8_0_size1 ) { /* logical (col,row) -> memory offset */ return (row * 256) + col; } static TILEMAP_MAPPER( k001604_scan_layer_8x8_1_size0 ) { /* logical (col,row) -> memory offset */ return (row * 128) + col + 64; } static TILEMAP_MAPPER( k001604_scan_layer_8x8_1_size1 ) { /* logical (col,row) -> memory offset */ return (row * 256) + col + 64; } static TILEMAP_MAPPER( slrasslt_scan_layer_8x8_0_size0 ) { /* logical (col,row) -> memory offset */ return (row * 128) + col + 16384; } static TILEMAP_MAPPER( slrasslt_scan_layer_8x8_1_size0 ) { /* logical (col,row) -> memory offset */ return (row * 128) + col + 64 + 16384; } static TILEMAP_MAPPER( k001604_scan_layer_roz_0_size0 ) { /* logical (col,row) -> memory offset */ return (row * 128) + col; } static TILEMAP_MAPPER( k001604_scan_layer_roz_0_size1 ) { /* logical (col,row) -> memory offset */ return (row * 256) + col + 128; } static TILEMAP_MAPPER( k001604_scan_layer_roz_1_size0 ) { /* logical (col,row) -> memory offset */ return (row * 128) + col + 64; } static TILEMAP_MAPPER( k001604_scan_layer_roz_1_size1 ) { /* logical (col,row) -> memory offset */ return (row * 256) + col + 128 + 64; } static TILE_GET_INFO_DEVICE( k001604_tile_info_layer_8x8 ) { k001604_state *k001604 = k001604_get_safe_token(device); UINT32 val = k001604->tile_ram[tile_index]; int color = (val >> 17) & 0x1f; int tile = (val & 0x7fff); int flags = 0; if (val & 0x400000) flags |= TILE_FLIPX; if (val & 0x800000) flags |= TILE_FLIPY; SET_TILE_INFO_DEVICE(k001604->gfx_index[0], tile, color, flags); } static TILE_GET_INFO_DEVICE( k001604_tile_info_layer_roz ) { k001604_state *k001604 = k001604_get_safe_token(device); UINT32 val = k001604->tile_ram[tile_index]; int flags = 0; int color = (val >> 17) & 0x1f; int tile = val & 0x7ff; if (val & 0x400000) flags |= TILE_FLIPX; if (val & 0x800000) flags |= TILE_FLIPY; tile += k001604->roz_size ? 0x800 : 0x2000; SET_TILE_INFO_DEVICE(k001604->gfx_index[k001604->roz_size], tile, color, flags); } void k001604_draw_back_layer( device_t *device, bitmap_t *bitmap, const rectangle *cliprect ) { k001604_state *k001604 = k001604_get_safe_token(device); int layer; int num_layers; bitmap_fill(bitmap, cliprect, 0); num_layers = k001604->layer_size ? 2 : 1; for (layer = 0; layer < num_layers; layer++) { int reg = 0x08; INT32 x = (INT16)((k001604->reg[reg + 0] >> 16) & 0xffff); INT32 y = (INT16)((k001604->reg[reg + 0] >> 0) & 0xffff); INT32 xx = (INT16)((k001604->reg[reg + 1] >> 0) & 0xffff); INT32 xy = (INT16)((k001604->reg[reg + 1] >> 16) & 0xffff); INT32 yx = (INT16)((k001604->reg[reg + 2] >> 0) & 0xffff); INT32 yy = (INT16)((k001604->reg[reg + 2] >> 16) & 0xffff); x = (x + 320) * 256; y = (y + 208) * 256; xx = (xx); xy = (-xy); yx = (-yx); yy = (yy); if ((k001604->reg[0x6c / 4] & (0x08 >> layer)) != 0) { tilemap_draw_roz(bitmap, cliprect, k001604->layer_roz[layer], x << 5, y << 5, xx << 5, xy << 5, yx << 5, yy << 5, 1, 0, 0); } } } void k001604_draw_front_layer( device_t *device, bitmap_t *bitmap, const rectangle *cliprect ) { k001604_state *k001604 = k001604_get_safe_token(device); //tilemap_draw(bitmap, cliprect, k001604->layer_8x8[1], 0,0); tilemap_draw(bitmap, cliprect, k001604->layer_8x8[0], 0,0); } READ32_DEVICE_HANDLER( k001604_tile_r ) { k001604_state *k001604 = k001604_get_safe_token(device); return k001604->tile_ram[offset]; } READ32_DEVICE_HANDLER( k001604_char_r ) { k001604_state *k001604 = k001604_get_safe_token(device); int set, bank; UINT32 addr; set = (k001604->reg[0x60 / 4] & 0x1000000) ? 0x100000 : 0; if (set) bank = (k001604->reg[0x60 / 4] >> 8) & 0x3; else bank = (k001604->reg[0x60 / 4] & 0x3); addr = offset + ((set + (bank * 0x40000)) / 4); return k001604->char_ram[addr]; } READ32_DEVICE_HANDLER( k001604_reg_r ) { k001604_state *k001604 = k001604_get_safe_token(device); switch (offset) { case 0x54/4: return device->machine().rand() << 16; break; case 0x5c/4: return device->machine().rand() << 16 | device->machine().rand(); break; } return k001604->reg[offset]; } WRITE32_DEVICE_HANDLER( k001604_tile_w ) { k001604_state *k001604 = k001604_get_safe_token(device); int x/*, y*/; COMBINE_DATA(k001604->tile_ram + offset); if (k001604->layer_size) { x = offset & 0xff; /*y = offset / 256;*/ } else { x = offset & 0x7f; /*y = offset / 128;*/ } if (k001604->layer_size) { if (x < 64) { tilemap_mark_tile_dirty(k001604->layer_8x8[0], offset); } else if (x < 128) { tilemap_mark_tile_dirty(k001604->layer_8x8[1], offset); } else if (x < 192) { tilemap_mark_tile_dirty(k001604->layer_roz[0], offset); } else { tilemap_mark_tile_dirty(k001604->layer_roz[1], offset); } } else { if (x < 64) { tilemap_mark_tile_dirty(k001604->layer_8x8[0], offset); tilemap_mark_tile_dirty(k001604->layer_roz[0], offset); } else { tilemap_mark_tile_dirty(k001604->layer_8x8[1], offset); tilemap_mark_tile_dirty(k001604->layer_roz[1], offset); } } } WRITE32_DEVICE_HANDLER( k001604_char_w ) { k001604_state *k001604 = k001604_get_safe_token(device); int set, bank; UINT32 addr; set = (k001604->reg[0x60/4] & 0x1000000) ? 0x100000 : 0; if (set) bank = (k001604->reg[0x60 / 4] >> 8) & 0x3; else bank = (k001604->reg[0x60 / 4] & 0x3); addr = offset + ((set + (bank * 0x40000)) / 4); COMBINE_DATA(k001604->char_ram + addr); gfx_element_mark_dirty(device->machine().gfx[k001604->gfx_index[0]], addr / 32); gfx_element_mark_dirty(device->machine().gfx[k001604->gfx_index[1]], addr / 128); } WRITE32_DEVICE_HANDLER( k001604_reg_w ) { k001604_state *k001604 = k001604_get_safe_token(device); COMBINE_DATA(k001604->reg + offset); switch (offset) { case 0x8: case 0x9: case 0xa: //printf("K001604_reg_w %02X, %08X, %08X\n", offset, data, mem_mask); break; } if (offset != 0x08 && offset != 0x09 && offset != 0x0a /*&& offset != 0x17 && offset != 0x18*/) { //printf("K001604_reg_w (%d), %02X, %08X, %08X at %08X\n", chip, offset, data, mem_mask, cpu_get_pc(&space->device())); } } /***************************************************************************** DEVICE INTERFACE *****************************************************************************/ static DEVICE_START( k001604 ) { k001604_state *k001604 = k001604_get_safe_token(device); const k001604_interface *intf = k001604_get_interface(device); int roz_tile_size; k001604->layer_size = intf->layer_size; // 0 -> width = 128 tiles, 1 -> width = 256 tiles k001604->roz_size = intf->roz_size; // 0 -> 8x8, 1 -> 16x16 k001604->gfx_index[0] = intf->gfx_index_1; k001604->gfx_index[1] = intf->gfx_index_2; k001604->char_ram = auto_alloc_array(device->machine(), UINT32, 0x200000 / 4); k001604->tile_ram = auto_alloc_array(device->machine(), UINT32, 0x20000 / 4); k001604->reg = auto_alloc_array(device->machine(), UINT32, 0x400 / 4); /* create tilemaps */ roz_tile_size = k001604->roz_size ? 16 : 8; if (!intf->is_slrasslt) { if (k001604->layer_size) { k001604->layer_8x8[0] = tilemap_create_device(device, k001604_tile_info_layer_8x8, k001604_scan_layer_8x8_0_size1, 8, 8, 64, 64); k001604->layer_8x8[1] = tilemap_create_device(device, k001604_tile_info_layer_8x8, k001604_scan_layer_8x8_1_size1, 8, 8, 64, 64); k001604->layer_roz[0] = tilemap_create_device(device, k001604_tile_info_layer_roz, k001604_scan_layer_roz_0_size1, roz_tile_size, roz_tile_size, 64, 64); k001604->layer_roz[1] = tilemap_create_device(device, k001604_tile_info_layer_roz, k001604_scan_layer_roz_1_size1, roz_tile_size, roz_tile_size, 64, 64); } else { k001604->layer_8x8[0] = tilemap_create_device(device, k001604_tile_info_layer_8x8, k001604_scan_layer_8x8_0_size0, 8, 8, 64, 64); k001604->layer_8x8[1] = tilemap_create_device(device, k001604_tile_info_layer_8x8, k001604_scan_layer_8x8_1_size0, 8, 8, 64, 64); k001604->layer_roz[0] = tilemap_create_device(device, k001604_tile_info_layer_roz, k001604_scan_layer_roz_0_size0, roz_tile_size, roz_tile_size, 128, 64); k001604->layer_roz[1] = tilemap_create_device(device, k001604_tile_info_layer_roz, k001604_scan_layer_roz_1_size0, roz_tile_size, roz_tile_size, 64, 64); } } else /* slrasslt has shifted tilemaps (but only has k001604->layer_size = 0) */ { k001604->layer_8x8[0] = tilemap_create_device(device, k001604_tile_info_layer_8x8, slrasslt_scan_layer_8x8_0_size0, 8, 8, 64, 64); k001604->layer_8x8[1] = tilemap_create_device(device, k001604_tile_info_layer_8x8, slrasslt_scan_layer_8x8_1_size0, 8, 8, 64, 64); k001604->layer_roz[0] = tilemap_create_device(device, k001604_tile_info_layer_roz, k001604_scan_layer_roz_0_size0, roz_tile_size, roz_tile_size, 128, 64); k001604->layer_roz[1] = tilemap_create_device(device, k001604_tile_info_layer_roz, k001604_scan_layer_roz_1_size0, roz_tile_size, roz_tile_size, 64, 64); } tilemap_set_transparent_pen(k001604->layer_8x8[0], 0); tilemap_set_transparent_pen(k001604->layer_8x8[1], 0); device->machine().gfx[k001604->gfx_index[0]] = gfx_element_alloc(device->machine(), &k001604_char_layout_layer_8x8, (UINT8*)&k001604->char_ram[0], device->machine().total_colors() / 16, 0); device->machine().gfx[k001604->gfx_index[1]] = gfx_element_alloc(device->machine(), &k001604_char_layout_layer_16x16, (UINT8*)&k001604->char_ram[0], device->machine().total_colors() / 16, 0); device->save_pointer(NAME(k001604->reg), 0x400 / 4); device->save_pointer(NAME(k001604->char_ram), 0x200000 / 4); device->save_pointer(NAME(k001604->tile_ram), 0x20000 / 4); } static DEVICE_RESET( k001604 ) { k001604_state *k001604 = k001604_get_safe_token(device); memset(k001604->char_ram, 0, 0x200000); memset(k001604->tile_ram, 0, 0x10000); memset(k001604->reg, 0, 0x400); } // from drivers/hornet.c /***************************************************************************/ /* */ /* 037122 */ /* */ /***************************************************************************/ typedef struct _k037122_state k037122_state; struct _k037122_state { screen_device *screen; tilemap_t *layer[2]; int gfx_index; UINT32 * tile_ram; UINT32 * char_ram; UINT32 * reg; }; #define K037122_NUM_TILES 16384 /***************************************************************************** INLINE FUNCTIONS *****************************************************************************/ INLINE k037122_state *k037122_get_safe_token( device_t *device ) { assert(device != NULL); assert(device->type() == K037122); return (k037122_state *)downcast(device)->token(); } INLINE const k037122_interface *k037122_get_interface( device_t *device ) { assert(device != NULL); assert((device->type() == K037122)); return (const k037122_interface *) device->static_config(); } /***************************************************************************** DEVICE HANDLERS *****************************************************************************/ static const gfx_layout k037122_char_layout = { 8, 8, K037122_NUM_TILES, 8, { 0,1,2,3,4,5,6,7 }, { 1*16, 0*16, 3*16, 2*16, 5*16, 4*16, 7*16, 6*16 }, { 0*128, 1*128, 2*128, 3*128, 4*128, 5*128, 6*128, 7*128 }, 8*128 }; static TILE_GET_INFO_DEVICE( k037122_tile_info_layer0 ) { k037122_state *k037122 = k037122_get_safe_token(device); UINT32 val = k037122->tile_ram[tile_index + (0x8000/4)]; int color = (val >> 17) & 0x1f; int tile = val & 0x3fff; int flags = 0; if (val & 0x400000) flags |= TILE_FLIPX; if (val & 0x800000) flags |= TILE_FLIPY; SET_TILE_INFO_DEVICE(k037122->gfx_index, tile, color, flags); } static TILE_GET_INFO_DEVICE( k037122_tile_info_layer1 ) { k037122_state *k037122 = k037122_get_safe_token(device); UINT32 val = k037122->tile_ram[tile_index]; int color = (val >> 17) & 0x1f; int tile = val & 0x3fff; int flags = 0; if (val & 0x400000) flags |= TILE_FLIPX; if (val & 0x800000) flags |= TILE_FLIPY; SET_TILE_INFO_DEVICE(k037122->gfx_index, tile, color, flags); } void k037122_tile_draw( device_t *device, bitmap_t *bitmap, const rectangle *cliprect ) { k037122_state *k037122 = k037122_get_safe_token(device); const rectangle &visarea = k037122->screen->visible_area(); if (k037122->reg[0xc] & 0x10000) { tilemap_set_scrolldx(k037122->layer[1], visarea.min_x, visarea.min_x); tilemap_set_scrolldy(k037122->layer[1], visarea.min_y, visarea.min_y); tilemap_draw(bitmap, cliprect, k037122->layer[1], 0, 0); } else { tilemap_set_scrolldx(k037122->layer[0], visarea.min_x, visarea.min_x); tilemap_set_scrolldy(k037122->layer[0], visarea.min_y, visarea.min_y); tilemap_draw(bitmap, cliprect, k037122->layer[0], 0, 0); } } static void update_palette_color( device_t *device, UINT32 palette_base, int color ) { k037122_state *k037122 = k037122_get_safe_token(device); UINT32 data = k037122->tile_ram[(palette_base / 4) + color]; palette_set_color_rgb(device->machine(), color, pal5bit(data >> 6), pal6bit(data >> 0), pal5bit(data >> 11)); } READ32_DEVICE_HANDLER( k037122_sram_r ) { k037122_state *k037122 = k037122_get_safe_token(device); return k037122->tile_ram[offset]; } WRITE32_DEVICE_HANDLER( k037122_sram_w ) { k037122_state *k037122 = k037122_get_safe_token(device); COMBINE_DATA(k037122->tile_ram + offset); if (k037122->reg[0xc] & 0x10000) { if (offset < 0x8000 / 4) { tilemap_mark_tile_dirty(k037122->layer[1], offset); } else if (offset >= 0x8000 / 4 && offset < 0x18000 / 4) { tilemap_mark_tile_dirty(k037122->layer[0], offset - (0x8000 / 4)); } else if (offset >= 0x18000 / 4) { update_palette_color(device, 0x18000, offset - (0x18000 / 4)); } } else { if (offset < 0x8000 / 4) { update_palette_color(device, 0, offset); } else if (offset >= 0x8000 / 4 && offset < 0x18000 / 4) { tilemap_mark_tile_dirty(k037122->layer[0], offset - (0x8000 / 4)); } else if (offset >= 0x18000 / 4) { tilemap_mark_tile_dirty(k037122->layer[1], offset - (0x18000 / 4)); } } } READ32_DEVICE_HANDLER( k037122_char_r ) { k037122_state *k037122 = k037122_get_safe_token(device); int bank = k037122->reg[0x30 / 4] & 0x7; return k037122->char_ram[offset + (bank * (0x40000 / 4))]; } WRITE32_DEVICE_HANDLER( k037122_char_w ) { k037122_state *k037122 = k037122_get_safe_token(device); int bank = k037122->reg[0x30 / 4] & 0x7; UINT32 addr = offset + (bank * (0x40000/4)); COMBINE_DATA(k037122->char_ram + addr); gfx_element_mark_dirty(device->machine().gfx[k037122->gfx_index], addr / 32); } READ32_DEVICE_HANDLER( k037122_reg_r ) { k037122_state *k037122 = k037122_get_safe_token(device); switch (offset) { case 0x14/4: { return 0x000003fa; } } return k037122->reg[offset]; } WRITE32_DEVICE_HANDLER( k037122_reg_w ) { k037122_state *k037122 = k037122_get_safe_token(device); COMBINE_DATA(k037122->reg + offset); } /***************************************************************************** DEVICE INTERFACE *****************************************************************************/ static DEVICE_START( k037122 ) { k037122_state *k037122 = k037122_get_safe_token(device); const k037122_interface *intf = k037122_get_interface(device); k037122->screen = device->machine().device(intf->screen); k037122->gfx_index = intf->gfx_index; k037122->char_ram = auto_alloc_array(device->machine(), UINT32, 0x200000 / 4); k037122->tile_ram = auto_alloc_array(device->machine(), UINT32, 0x20000 / 4); k037122->reg = auto_alloc_array(device->machine(), UINT32, 0x400 / 4); k037122->layer[0] = tilemap_create_device(device, k037122_tile_info_layer0, tilemap_scan_rows, 8, 8, 256, 64); k037122->layer[1] = tilemap_create_device(device, k037122_tile_info_layer1, tilemap_scan_rows, 8, 8, 128, 64); tilemap_set_transparent_pen(k037122->layer[0], 0); tilemap_set_transparent_pen(k037122->layer[1], 0); device->machine().gfx[k037122->gfx_index] = gfx_element_alloc(device->machine(), &k037122_char_layout, (UINT8*)k037122->char_ram, device->machine().total_colors() / 16, 0); device->save_pointer(NAME(k037122->reg), 0x400 / 4); device->save_pointer(NAME(k037122->char_ram), 0x200000 / 4); device->save_pointer(NAME(k037122->tile_ram), 0x20000 / 4); } static DEVICE_RESET( k037122 ) { k037122_state *k037122 = k037122_get_safe_token(device); memset(k037122->char_ram, 0, 0x200000); memset(k037122->tile_ram, 0, 0x20000); memset(k037122->reg, 0, 0x400); } /***************************************************************************/ /* */ /* misc debug handlers */ /* */ /***************************************************************************/ READ16_DEVICE_HANDLER( k056832_word_r ) { k056832_state *k056832 = k056832_get_safe_token(device); return (k056832->regs[offset]); } // VACSET READ16_DEVICE_HANDLER( k056832_b_word_r ) { k056832_state *k056832 = k056832_get_safe_token(device); return (k056832->regsb[offset]); } // VSCCS (board dependent) READ16_DEVICE_HANDLER( k053246_reg_word_r ) { k053247_state *k053247 = k053247_get_safe_token(device); return(k053247->kx46_regs[offset * 2] << 8 | k053247->kx46_regs[offset * 2 + 1]); } // OBJSET1 READ16_DEVICE_HANDLER( k053247_reg_word_r ) { k053247_state *k053247 = k053247_get_safe_token(device); return(k053247->kx47_regs[offset]); } // OBJSET2 READ16_DEVICE_HANDLER( k054338_word_r ) { k054338_state *k054338 = k054338_get_safe_token(device); return(k054338->regs[offset]); } // CLTC READ16_DEVICE_HANDLER( k053251_lsb_r ) { k053251_state *k053251 = k053251_get_safe_token(device); return(k053251->ram[offset]); } // PCU1 READ16_DEVICE_HANDLER( k053251_msb_r ) { k053251_state *k053251 = k053251_get_safe_token(device); return(k053251->ram[offset] << 8); } // PCU1 READ16_DEVICE_HANDLER( k055555_word_r ) { k055555_state *k055555 = k055555_get_safe_token(device); return(k055555->regs[offset] << 8); } // PCU2 READ32_DEVICE_HANDLER( k056832_long_r ) { offset <<= 1; return (k056832_word_r(device, offset + 1, 0xffff) | k056832_word_r(device, offset, 0xffff) << 16); } READ32_DEVICE_HANDLER( k053247_reg_long_r ) { offset <<= 1; return (k053247_reg_word_r(device, offset + 1, 0xffff) | k053247_reg_word_r(device, offset, 0xffff) << 16); } READ32_DEVICE_HANDLER( k055555_long_r ) { offset <<= 1; return (k055555_word_r(device, offset + 1, 0xffff) | k055555_word_r(device, offset, 0xffff) << 16); } READ16_DEVICE_HANDLER( k053244_reg_word_r ) { k05324x_state *k053244 = k05324x_get_safe_token(device); return(k053244->regs[offset * 2] << 8 | k053244->regs[offset * 2 + 1]); } /***************************************************************************/ /* */ /* DEVICE_GET_INFOs */ /* */ /***************************************************************************/ DEVICE_GET_INFO( k007121 ) { switch (state) { /* --- the following bits of info are returned as 64-bit signed integers --- */ case DEVINFO_INT_TOKEN_BYTES: info->i = sizeof(k007121_state); break; /* --- the following bits of info are returned as pointers to data or functions --- */ case DEVINFO_FCT_START: info->start = DEVICE_START_NAME(k007121); break; case DEVINFO_FCT_STOP: /* Nothing */ break; case DEVINFO_FCT_RESET: info->reset = DEVICE_RESET_NAME(k007121); break; /* --- the following bits of info are returned as NULL-terminated strings --- */ case DEVINFO_STR_NAME: strcpy(info->s, "Konami 007121"); break; case DEVINFO_STR_FAMILY: strcpy(info->s, "Konami Video IC"); break; case DEVINFO_STR_VERSION: strcpy(info->s, "1.0"); break; case DEVINFO_STR_SOURCE_FILE: strcpy(info->s, __FILE__); break; case DEVINFO_STR_CREDITS: strcpy(info->s, "Copyright MAME Team"); break; } } DEVICE_GET_INFO( k007342 ) { switch (state) { /* --- the following bits of info are returned as 64-bit signed integers --- */ case DEVINFO_INT_TOKEN_BYTES: info->i = sizeof(k007342_state); break; /* --- the following bits of info are returned as pointers to data or functions --- */ case DEVINFO_FCT_START: info->start = DEVICE_START_NAME(k007342); break; case DEVINFO_FCT_STOP: /* Nothing */ break; case DEVINFO_FCT_RESET: info->reset = DEVICE_RESET_NAME(k007342); break; /* --- the following bits of info are returned as NULL-terminated strings --- */ case DEVINFO_STR_NAME: strcpy(info->s, "Konami 007342"); break; case DEVINFO_STR_FAMILY: strcpy(info->s, "Konami Video IC"); break; case DEVINFO_STR_VERSION: strcpy(info->s, "1.0"); break; case DEVINFO_STR_SOURCE_FILE: strcpy(info->s, __FILE__); break; case DEVINFO_STR_CREDITS: strcpy(info->s, "Copyright MAME Team"); break; } } DEVICE_GET_INFO( k007420 ) { switch (state) { /* --- the following bits of info are returned as 64-bit signed integers --- */ case DEVINFO_INT_TOKEN_BYTES: info->i = sizeof(k007420_state); break; /* --- the following bits of info are returned as pointers to data or functions --- */ case DEVINFO_FCT_START: info->start = DEVICE_START_NAME(k007420); break; case DEVINFO_FCT_STOP: /* Nothing */ break; case DEVINFO_FCT_RESET: info->reset = DEVICE_RESET_NAME(k007420); break; /* --- the following bits of info are returned as NULL-terminated strings --- */ case DEVINFO_STR_NAME: strcpy(info->s, "Konami 007420"); break; case DEVINFO_STR_FAMILY: strcpy(info->s, "Konami Video IC"); break; case DEVINFO_STR_VERSION: strcpy(info->s, "1.0"); break; case DEVINFO_STR_SOURCE_FILE: strcpy(info->s, __FILE__); break; case DEVINFO_STR_CREDITS: strcpy(info->s, "Copyright MAME Team"); break; } } DEVICE_GET_INFO( k052109 ) { switch (state) { /* --- the following bits of info are returned as 64-bit signed integers --- */ case DEVINFO_INT_TOKEN_BYTES: info->i = sizeof(k052109_state); break; /* --- the following bits of info are returned as pointers to data or functions --- */ case DEVINFO_FCT_START: info->start = DEVICE_START_NAME(k052109); break; case DEVINFO_FCT_STOP: /* Nothing */ break; case DEVINFO_FCT_RESET: info->reset = DEVICE_RESET_NAME(k052109); break; /* --- the following bits of info are returned as NULL-terminated strings --- */ case DEVINFO_STR_NAME: strcpy(info->s, "Konami 052109"); break; case DEVINFO_STR_FAMILY: strcpy(info->s, "Konami Video IC"); break; case DEVINFO_STR_VERSION: strcpy(info->s, "1.0"); break; case DEVINFO_STR_SOURCE_FILE: strcpy(info->s, __FILE__); break; case DEVINFO_STR_CREDITS: strcpy(info->s, "Copyright MAME Team"); break; } } DEVICE_GET_INFO( k051960 ) { switch (state) { /* --- the following bits of info are returned as 64-bit signed integers --- */ case DEVINFO_INT_TOKEN_BYTES: info->i = sizeof(k051960_state); break; /* --- the following bits of info are returned as pointers to data or functions --- */ case DEVINFO_FCT_START: info->start = DEVICE_START_NAME(k051960); break; case DEVINFO_FCT_STOP: /* Nothing */ break; case DEVINFO_FCT_RESET: info->reset = DEVICE_RESET_NAME(k051960); break; /* --- the following bits of info are returned as NULL-terminated strings --- */ case DEVINFO_STR_NAME: strcpy(info->s, "Konami 051960"); break; case DEVINFO_STR_FAMILY: strcpy(info->s, "Konami Video IC"); break; case DEVINFO_STR_VERSION: strcpy(info->s, "1.0"); break; case DEVINFO_STR_SOURCE_FILE: strcpy(info->s, __FILE__); break; case DEVINFO_STR_CREDITS: strcpy(info->s, "Copyright MAME Team"); break; } } DEVICE_GET_INFO( k05324x ) { switch (state) { /* --- the following bits of info are returned as 64-bit signed integers --- */ case DEVINFO_INT_TOKEN_BYTES: info->i = sizeof(k05324x_state); break; /* --- the following bits of info are returned as pointers to data or functions --- */ case DEVINFO_FCT_START: info->start = DEVICE_START_NAME(k05324x); break; case DEVINFO_FCT_STOP: /* Nothing */ break; case DEVINFO_FCT_RESET: info->reset = DEVICE_RESET_NAME(k05324x); break; /* --- the following bits of info are returned as NULL-terminated strings --- */ case DEVINFO_STR_NAME: strcpy(info->s, "Konami 053244 & 053245"); break; case DEVINFO_STR_FAMILY: strcpy(info->s, "Konami Video IC"); break; case DEVINFO_STR_VERSION: strcpy(info->s, "1.0"); break; case DEVINFO_STR_SOURCE_FILE: strcpy(info->s, __FILE__); break; case DEVINFO_STR_CREDITS: strcpy(info->s, "Copyright MAME Team"); break; } } DEVICE_GET_INFO( k053247 ) { switch (state) { /* --- the following bits of info are returned as 64-bit signed integers --- */ case DEVINFO_INT_TOKEN_BYTES: info->i = sizeof(k053247_state); break; /* --- the following bits of info are returned as pointers to data or functions --- */ case DEVINFO_FCT_START: info->start = DEVICE_START_NAME(k053247); break; case DEVINFO_FCT_STOP: /* Nothing */ break; case DEVINFO_FCT_RESET: info->reset = DEVICE_RESET_NAME(k053247); break; /* --- the following bits of info are returned as NULL-terminated strings --- */ case DEVINFO_STR_NAME: strcpy(info->s, "Konami 053246 & 053247"); break; case DEVINFO_STR_FAMILY: strcpy(info->s, "Konami Video IC"); break; case DEVINFO_STR_VERSION: strcpy(info->s, "1.0"); break; case DEVINFO_STR_SOURCE_FILE: strcpy(info->s, __FILE__); break; case DEVINFO_STR_CREDITS: strcpy(info->s, "Copyright MAME Team"); break; } } DEVICE_GET_INFO( k055673 ) { switch (state) { /* --- the following bits of info are returned as 64-bit signed integers --- */ case DEVINFO_INT_TOKEN_BYTES: info->i = sizeof(k053247_state); break; /* --- the following bits of info are returned as pointers to data or functions --- */ case DEVINFO_FCT_START: info->start = DEVICE_START_NAME(k055673); break; case DEVINFO_FCT_STOP: /* Nothing */ break; case DEVINFO_FCT_RESET: info->reset = DEVICE_RESET_NAME(k053247); break; /* --- the following bits of info are returned as NULL-terminated strings --- */ case DEVINFO_STR_NAME: strcpy(info->s, "Konami 055673"); break; case DEVINFO_STR_FAMILY: strcpy(info->s, "Konami Video IC"); break; case DEVINFO_STR_VERSION: strcpy(info->s, "1.0"); break; case DEVINFO_STR_SOURCE_FILE: strcpy(info->s, __FILE__); break; case DEVINFO_STR_CREDITS: strcpy(info->s, "Copyright MAME Team"); break; } } DEVICE_GET_INFO( k051316 ) { switch (state) { /* --- the following bits of info are returned as 64-bit signed integers --- */ case DEVINFO_INT_TOKEN_BYTES: info->i = sizeof(k051316_state); break; /* --- the following bits of info are returned as pointers to data or functions --- */ case DEVINFO_FCT_START: info->start = DEVICE_START_NAME(k051316); break; case DEVINFO_FCT_STOP: /* Nothing */ break; case DEVINFO_FCT_RESET: info->reset = DEVICE_RESET_NAME(k051316); break; /* --- the following bits of info are returned as NULL-terminated strings --- */ case DEVINFO_STR_NAME: strcpy(info->s, "Konami 051316"); break; case DEVINFO_STR_FAMILY: strcpy(info->s, "Konami Video IC"); break; case DEVINFO_STR_VERSION: strcpy(info->s, "1.0"); break; case DEVINFO_STR_SOURCE_FILE: strcpy(info->s, __FILE__); break; case DEVINFO_STR_CREDITS: strcpy(info->s, "Copyright MAME Team"); break; } } DEVICE_GET_INFO( k053936 ) { switch (state) { /* --- the following bits of info are returned as 64-bit signed integers --- */ case DEVINFO_INT_TOKEN_BYTES: info->i = sizeof(k053936_state); break; /* --- the following bits of info are returned as pointers to data or functions --- */ case DEVINFO_FCT_START: info->start = DEVICE_START_NAME(k053936); break; case DEVINFO_FCT_STOP: /* Nothing */ break; case DEVINFO_FCT_RESET: info->reset = DEVICE_RESET_NAME(k053936); break; /* --- the following bits of info are returned as NULL-terminated strings --- */ case DEVINFO_STR_NAME: strcpy(info->s, "Konami 053936"); break; case DEVINFO_STR_FAMILY: strcpy(info->s, "Konami Video IC"); break; case DEVINFO_STR_VERSION: strcpy(info->s, "1.0"); break; case DEVINFO_STR_SOURCE_FILE: strcpy(info->s, __FILE__); break; case DEVINFO_STR_CREDITS: strcpy(info->s, "Copyright MAME Team"); break; } } DEVICE_GET_INFO( k053251 ) { switch (state) { /* --- the following bits of info are returned as 64-bit signed integers --- */ case DEVINFO_INT_TOKEN_BYTES: info->i = sizeof(k053251_state); break; /* --- the following bits of info are returned as pointers to data or functions --- */ case DEVINFO_FCT_START: info->start = DEVICE_START_NAME(k053251); break; case DEVINFO_FCT_STOP: /* Nothing */ break; case DEVINFO_FCT_RESET: info->reset = DEVICE_RESET_NAME(k053251); break; /* --- the following bits of info are returned as NULL-terminated strings --- */ case DEVINFO_STR_NAME: strcpy(info->s, "Konami 053251"); break; case DEVINFO_STR_FAMILY: strcpy(info->s, "Konami Video IC"); break; case DEVINFO_STR_VERSION: strcpy(info->s, "1.0"); break; case DEVINFO_STR_SOURCE_FILE: strcpy(info->s, __FILE__); break; case DEVINFO_STR_CREDITS: strcpy(info->s, "Copyright MAME Team"); break; } } DEVICE_GET_INFO( k054000 ) { switch (state) { /* --- the following bits of info are returned as 64-bit signed integers --- */ case DEVINFO_INT_TOKEN_BYTES: info->i = sizeof(k054000_state); break; /* --- the following bits of info are returned as pointers to data or functions --- */ case DEVINFO_FCT_START: info->start = DEVICE_START_NAME(k054000); break; case DEVINFO_FCT_STOP: /* Nothing */ break; case DEVINFO_FCT_RESET: info->reset = DEVICE_RESET_NAME(k054000); break; /* --- the following bits of info are returned as NULL-terminated strings --- */ case DEVINFO_STR_NAME: strcpy(info->s, "Konami 054000"); break; case DEVINFO_STR_FAMILY: strcpy(info->s, "Konami Video IC"); break; case DEVINFO_STR_VERSION: strcpy(info->s, "1.0"); break; case DEVINFO_STR_SOURCE_FILE: strcpy(info->s, __FILE__); break; case DEVINFO_STR_CREDITS: strcpy(info->s, "Copyright MAME Team"); break; } } DEVICE_GET_INFO( k051733 ) { switch (state) { /* --- the following bits of info are returned as 64-bit signed integers --- */ case DEVINFO_INT_TOKEN_BYTES: info->i = sizeof(k051733_state); break; /* --- the following bits of info are returned as pointers to data or functions --- */ case DEVINFO_FCT_START: info->start = DEVICE_START_NAME(k051733); break; case DEVINFO_FCT_STOP: /* Nothing */ break; case DEVINFO_FCT_RESET: info->reset = DEVICE_RESET_NAME(k051733); break; /* --- the following bits of info are returned as NULL-terminated strings --- */ case DEVINFO_STR_NAME: strcpy(info->s, "Konami 051733"); break; case DEVINFO_STR_FAMILY: strcpy(info->s, "Konami Video IC"); break; case DEVINFO_STR_VERSION: strcpy(info->s, "1.0"); break; case DEVINFO_STR_SOURCE_FILE: strcpy(info->s, __FILE__); break; case DEVINFO_STR_CREDITS: strcpy(info->s, "Copyright MAME Team"); break; } } DEVICE_GET_INFO( k056832 ) { switch (state) { /* --- the following bits of info are returned as 64-bit signed integers --- */ case DEVINFO_INT_TOKEN_BYTES: info->i = sizeof(k056832_state); break; /* --- the following bits of info are returned as pointers to data or functions --- */ case DEVINFO_FCT_START: info->start = DEVICE_START_NAME(k056832); break; case DEVINFO_FCT_STOP: /* Nothing */ break; case DEVINFO_FCT_RESET: /* Nothing */ break; /* --- the following bits of info are returned as NULL-terminated strings --- */ case DEVINFO_STR_NAME: strcpy(info->s, "Konami 056832"); break; case DEVINFO_STR_FAMILY: strcpy(info->s, "Konami Video IC"); break; case DEVINFO_STR_VERSION: strcpy(info->s, "1.0"); break; case DEVINFO_STR_SOURCE_FILE: strcpy(info->s, __FILE__); break; case DEVINFO_STR_CREDITS: strcpy(info->s, "Copyright MAME Team"); break; } } DEVICE_GET_INFO( k055555 ) { switch (state) { /* --- the following bits of info are returned as 64-bit signed integers --- */ case DEVINFO_INT_TOKEN_BYTES: info->i = sizeof(k055555_state); break; /* --- the following bits of info are returned as pointers to data or functions --- */ case DEVINFO_FCT_START: info->start = DEVICE_START_NAME(k055555); break; case DEVINFO_FCT_STOP: /* Nothing */ break; case DEVINFO_FCT_RESET: info->reset = DEVICE_RESET_NAME(k055555); break; /* --- the following bits of info are returned as NULL-terminated strings --- */ case DEVINFO_STR_NAME: strcpy(info->s, "Konami 055555"); break; case DEVINFO_STR_FAMILY: strcpy(info->s, "Konami Video IC"); break; case DEVINFO_STR_VERSION: strcpy(info->s, "1.0"); break; case DEVINFO_STR_SOURCE_FILE: strcpy(info->s, __FILE__); break; case DEVINFO_STR_CREDITS: strcpy(info->s, "Copyright MAME Team"); break; } } DEVICE_GET_INFO( k054338 ) { switch (state) { /* --- the following bits of info are returned as 64-bit signed integers --- */ case DEVINFO_INT_TOKEN_BYTES: info->i = sizeof(k054338_state); break; /* --- the following bits of info are returned as pointers to data or functions --- */ case DEVINFO_FCT_START: info->start = DEVICE_START_NAME(k054338); break; case DEVINFO_FCT_STOP: /* Nothing */ break; case DEVINFO_FCT_RESET: info->reset = DEVICE_RESET_NAME(k054338); break; /* --- the following bits of info are returned as NULL-terminated strings --- */ case DEVINFO_STR_NAME: strcpy(info->s, "Konami 054338"); break; case DEVINFO_STR_FAMILY: strcpy(info->s, "Konami Video IC"); break; case DEVINFO_STR_VERSION: strcpy(info->s, "1.0"); break; case DEVINFO_STR_SOURCE_FILE: strcpy(info->s, __FILE__); break; case DEVINFO_STR_CREDITS: strcpy(info->s, "Copyright MAME Team"); break; } } DEVICE_GET_INFO( k001006 ) { switch (state) { /* --- the following bits of info are returned as 64-bit signed integers --- */ case DEVINFO_INT_TOKEN_BYTES: info->i = sizeof(k001006_state); break; /* --- the following bits of info are returned as pointers to data or functions --- */ case DEVINFO_FCT_START: info->start = DEVICE_START_NAME(k001006); break; case DEVINFO_FCT_STOP: /* Nothing */ break; case DEVINFO_FCT_RESET: info->reset = DEVICE_RESET_NAME(k001006); break; /* --- the following bits of info are returned as NULL-terminated strings --- */ case DEVINFO_STR_NAME: strcpy(info->s, "Konami 001006"); break; case DEVINFO_STR_FAMILY: strcpy(info->s, "Konami Video IC"); break; case DEVINFO_STR_VERSION: strcpy(info->s, "1.0"); break; case DEVINFO_STR_SOURCE_FILE: strcpy(info->s, __FILE__); break; case DEVINFO_STR_CREDITS: strcpy(info->s, "Copyright MAME Team"); break; } } DEVICE_GET_INFO( k001005 ) { switch (state) { /* --- the following bits of info are returned as 64-bit signed integers --- */ case DEVINFO_INT_TOKEN_BYTES: info->i = sizeof(k001005_state); break; /* --- the following bits of info are returned as pointers to data or functions --- */ case DEVINFO_FCT_START: info->start = DEVICE_START_NAME(k001005); break; case DEVINFO_FCT_STOP: info->stop = DEVICE_STOP_NAME(k001005); break; case DEVINFO_FCT_RESET: info->reset = DEVICE_RESET_NAME(k001005); break; /* --- the following bits of info are returned as NULL-terminated strings --- */ case DEVINFO_STR_NAME: strcpy(info->s, "Konami 001005"); break; case DEVINFO_STR_FAMILY: strcpy(info->s, "Konami Video IC"); break; case DEVINFO_STR_VERSION: strcpy(info->s, "1.0"); break; case DEVINFO_STR_SOURCE_FILE: strcpy(info->s, __FILE__); break; case DEVINFO_STR_CREDITS: strcpy(info->s, "Copyright MAME Team"); break; } } DEVICE_GET_INFO( k001604 ) { switch (state) { /* --- the following bits of info are returned as 64-bit signed integers --- */ case DEVINFO_INT_TOKEN_BYTES: info->i = sizeof(k001604_state); break; /* --- the following bits of info are returned as pointers to data or functions --- */ case DEVINFO_FCT_START: info->start = DEVICE_START_NAME(k001604); break; case DEVINFO_FCT_STOP: /* Nothing */ break; case DEVINFO_FCT_RESET: info->reset = DEVICE_RESET_NAME(k001604); break; /* --- the following bits of info are returned as NULL-terminated strings --- */ case DEVINFO_STR_NAME: strcpy(info->s, "Konami 001604"); break; case DEVINFO_STR_FAMILY: strcpy(info->s, "Konami Video IC"); break; case DEVINFO_STR_VERSION: strcpy(info->s, "1.0"); break; case DEVINFO_STR_SOURCE_FILE: strcpy(info->s, __FILE__); break; case DEVINFO_STR_CREDITS: strcpy(info->s, "Copyright MAME Team"); break; } } DEVICE_GET_INFO( k037122 ) { switch (state) { /* --- the following bits of info are returned as 64-bit signed integers --- */ case DEVINFO_INT_TOKEN_BYTES: info->i = sizeof(k037122_state); break; /* --- the following bits of info are returned as pointers to data or functions --- */ case DEVINFO_FCT_START: info->start = DEVICE_START_NAME(k037122); break; case DEVINFO_FCT_STOP: /* Nothing */ break; case DEVINFO_FCT_RESET: info->reset = DEVICE_RESET_NAME(k037122); break; /* --- the following bits of info are returned as NULL-terminated strings --- */ case DEVINFO_STR_NAME: strcpy(info->s, "Konami 0371222"); break; case DEVINFO_STR_FAMILY: strcpy(info->s, "Konami Video IC"); break; case DEVINFO_STR_VERSION: strcpy(info->s, "1.0"); break; case DEVINFO_STR_SOURCE_FILE: strcpy(info->s, __FILE__); break; case DEVINFO_STR_CREDITS: strcpy(info->s, "Copyright MAME Team"); break; } } DEFINE_LEGACY_DEVICE(K007121, k007121); DEFINE_LEGACY_DEVICE(K007342, k007342); DEFINE_LEGACY_DEVICE(K007420, k007420); DEFINE_LEGACY_DEVICE(K052109, k052109); DEFINE_LEGACY_DEVICE(K051960, k051960); DEFINE_LEGACY_DEVICE(K053244, k05324x); DEFINE_LEGACY_DEVICE(K053246, k053247); DEFINE_LEGACY_DEVICE(K055673, k055673); DEFINE_LEGACY_DEVICE(K051316, k051316); DEFINE_LEGACY_DEVICE(K053936, k053936); DEFINE_LEGACY_DEVICE(K053251, k053251); DEFINE_LEGACY_DEVICE(K054000, k054000); DEFINE_LEGACY_DEVICE(K051733, k051733); DEFINE_LEGACY_DEVICE(K056832, k056832); DEFINE_LEGACY_DEVICE(K055555, k055555); DEFINE_LEGACY_DEVICE(K054338, k054338); DEFINE_LEGACY_DEVICE(K001006, k001006); DEFINE_LEGACY_DEVICE(K001005, k001005); DEFINE_LEGACY_DEVICE(K001604, k001604); DEFINE_LEGACY_DEVICE(K037122, k037122);