// license:BSD-3-Clause // copyright-holders:Aaron Giles, Couriersud /*************************************************************************** Galaxian-derived video hardware **************************************************************************** Video timing: The master clock is an 18.432MHz crystal. It is divided by 3 by a pair of J/K flip-flops to 6.144MHz. This 6MHz signal is used to drive most of the video logic. Note that due to the way the divide-by-3 circuit is implemented, the duty cycle of the 6MHz signal is 66% (i.e., it is high for 2 18MHz clocks and low for 1). This is important for accurate stars rendering. Horizontal timing: H counts from 010000000 (128) to 111111111 (511), giving 384 total H clocks per scanline However, the top bit is inverted to become 256H, so when reading the schematics it's really counting from: 110000000 -> 111111111 (blanking period) and then from: 000000000 -> 011111111 (main portion of screen = 256 pixels) HBLANK is a flip-flop clocked by 2H: * It is held clear when 256H = 0 (main portion of screen) * The D input is connected to !(64H & 32H & 16H & 8H) * It is clocked to 1 when H=130 * It is clocked to 0 when H=250 * This gives 264 total non-blanked pixels: 6 additional pixels on the left (H=250..255) 256 main area pixels (H=256..511) 2 additional pixels on the right (H=128..129) HSYNC is a flip-flop clocked by 16H: * It is held clear when 256H = 0 (main portion of screen) * The D input is connected to !(!64H & 32H) * HSYNC is the /Q output * It is clocked to 1 when H=176 * It is clocked to 0 when H=208 Vertical timing: V counts from 011111000 (248) to 111111111 (511), giving 264 total V clocks per frame IMPORTANT: the V sync chain is clocked by HSYNC. This means that for the first 48 H clocks of the blanking period, the V counter is one behind. This is important to take into account for sprite and missile positioning. VBLANK is a flip-flop clocked by 16V: * The D input is connected to !(128V & 64V & 32V) * It is clocked to 1 when V=496 * It is clocked to 0 when V=272 * This gives 224 total non-blanked pixels VSYNC is set to !256V: * It is set to 1 when V=248 * It is cleared to 0 when V=256 Sprites and missiles: During the HBLANK period, sprites and missiles are processed. Sprites are rendered into the line buffer, which was cleared during the visible portion of the previous scanline. It takes 8 H clocks to set up a sprite, and 16 to render it to the line buffer. The setup clocks are overlapped with the rendering clocks. In theory this would result in enough time to render 128/16 = 8 sprites. However, the setup does not begin until after HBLANK, so there is only enough time to render the first 7 1/2 entries. Interleaved with the setup for sprites is setup for the shell and missile rendering. Shells and missiles are rendered realtime during the visible portion of the frame, and are effectively color-ORed directly into the final RGB output. During the HBLANK setup period, each shell/missile entry is compared against the current V position; if an exact match is found, the H position is loaded into a dedicated 8-bit counter. The counter clocks each pixel during the active video period; when it reaches $FC it enables the output until it hits zero, at which point it shuts itself off. Because there is only one counter for shells and one for missiles, only one shell and one missile can be specified per scanline. The last matching entry found will always win. The difference between shell and missile is that shells populate the first 7 entries and are rendered as white, whereas missiles populate the final entry and are rendered as yellow. Here is the detailed sequence of events for sprite and missile/shell rendering during the first 24 H clocks of HBLANK: H=080: HPOSI=objram[40], /VPL latches V+objram[40] H=081: HPOSI=objram[40] H=082: HPOSI=objram[41], /OBJ DATA L latches picture number, H/V flip H=083: HPOSI=objram[41] H=084: HPOSI=objram[42], /COL L latches low 3 bits as color H=085: HPOSI=objram[42] H=086: HPOSI=objram[43] H=087: HPOSI=objram[43], /CNTR LD latches X position H=088: HPOSI=objram[40], /VPL latches V+objram[40] H=089: HPOSI=objram[40] H=08A: HPOSI=objram[61] H=08B: HPOSI=objram[61], MSLD is latched if Y position matches shell H=08C: HPOSI=objram[42] H=08D: HPOSI=objram[42] H=08E: HPOSI=objram[63] H=08F: HPOSI=objram[63], /SLD fires to latch down shell counter value H=090: HPOSI=objram[44], /VPL latches V+objram[44] H=091: HPOSI=objram[44] H=092: HPOSI=objram[45], /OBJ DATA L latches picture number, H/V flip H=093: HPOSI=objram[45] H=094: HPOSI=objram[46], /COL L latches low 3 bits as color H=095: HPOSI=objram[46] H=096: HPOSI=objram[47] H=097: HPOSI=objram[47], /CNTR LD latches X position From this, you can see the object RAM layout looks like: objram[40] = vertical position of sprite 0 objram[41] = picture number and H/V flip of sprite 0 objram[42] = color of sprite 0 objram[43] = horizontal position of sprite 0 objram[61] = vertical position of shell 0 objram[63] = horizontal count until shell 0 starts rendering A vertical match for a sprite is true if ((V + vpos) & 0xf0) == 0xf0. A vertical match for a shell/missile is if ((V + vpos) & 0xff) == 0xff. Overall, the process for sprites and missiles during HBLANK looks like this: H=080: begin setup sprite 0 H=082: begin HBLANK H=088: begin render sprite 0; begin setup shell 0 H=090: begin setup sprite 1 H=098: begin render sprite 1; begin setup shell 1 H=0A0: begin setup sprite 2 H=0A8: begin render sprite 2; begin setup shell 2 H=0B0: VSYNC increments V counter; subsequent sprites match V+1 H=0B0: begin setup sprite 3 H=0B8: begin render sprite 3; begin setup shell 3 H=0C0: begin setup sprite 4 H=0C8: begin render sprite 4; begin setup shell 4 H=0D0: begin setup sprite 5 H=0D8: begin render sprite 5; begin setup shell 5 H=0E0: begin setup sprite 6 H=0E8: begin render sprite 6; begin setup shell 6 H=0F0: begin setup sprite 7 H=0F8: begin render sprite 7; begin setup missile H=0FA: end HBLANK H=100: finish render sprite 7 (only 1/2 way through) /VPL: H=xxxxxx000 -> latches sum of V+HPOSI for vertical positioning /COL L: H=xxxxxx100 -> latches HPOSI into color register (low 3 bits) /LD: H=xxxxxx111 -> shift register load from ROM /CNTR CLR: H=0xxxx0111 -> resets line buffer counter to 0 /OBJ DATA L: H=1xxxx0010 -> latches HPOSI into picture number latch /CNTR LD: H=1xxxx0111 -> latches HPOSI into line buffer counter (sprite X position) /SLD: H=1xxxx1111 -> latches down counter until shell (except when /MLD) /MLD: H=1x1111111 -> latches down counter until missile VRAM addresses: addr video VRA7 = A9 SUM7 VRA8 = A8 SUM6 VRA6 = A7 SUM5 VRA5 = A6 SUM4 VRA4 = A5 SUM3 VRA3 = A4 128HB VRA0 = A3 64HB VRA1 = A2 32HB VRA2 = A1 16HB VRA9 = A0 8HB OBJRAM addresses: addr 256H=0 256H=1 RA4 = A0 4H 2H RA7 = A1 8HB 4H RA1 = A2 16HB 16HB RA0 = A3 32HB 32HB RA5 = A4 64HB 64HB RA6 = A5 128HB (2H & 8HB) RA3 = A6 256H 256H RA2 = A7 0 0 H=80: 00,00,01,01,02,02,03,03 00,00,21,21,02,02,23,23 H=90: 04,04,05,05,06,06,07,07 04,04,25,25,06,06,27,27 H=A0: 08,08,09,09,0A,0A,0B,0B 08,08,29,29,0A,0A,2B,2B H=B0: 0C,0C,0D,0D,0E,0E,0F,0F 0C,0C,2D,2D,0E,0E,2F,2F ***************************************************************************/ #include "emu.h" #include "video/resnet.h" #include "includes/galaxian.h" /************************************* * * Constants * *************************************/ #define STAR_RNG_PERIOD ((1 << 17) - 1) #define RGB_MAXIMUM 224 /************************************* * * Palette setup * *************************************/ PALETTE_INIT_MEMBER(galaxian_state, galaxian) { const uint8_t *color_prom = memregion("proms")->base(); static const int rgb_resistances[3] = { 1000, 470, 220 }; double rweights[3], gweights[3], bweights[2]; int i, minval, midval, maxval, len; uint8_t starmap[4]; /* Sprite/tilemap colors are mapped through a color PROM as follows: bit 7 -- 220 ohm resistor -- BLUE -- 470 ohm resistor -- BLUE -- 220 ohm resistor -- GREEN -- 470 ohm resistor -- GREEN -- 1 kohm resistor -- GREEN -- 220 ohm resistor -- RED -- 470 ohm resistor -- RED bit 0 -- 1 kohm resistor -- RED Note that not all boards have this configuration. Namco PCBs may have 330 ohm resistors instead of 220, but the default setup has also been used by Namco. In parallel with these resistors are a pair of 150 ohm and 100 ohm resistors on each R,G,B component that are connected to the star generator. And in parallel with the whole mess are a set of 100 ohm resistors on each R,G,B component that are enabled when a shell/missile is enabled. When computing weights, we use RGB_MAXIMUM as the maximum to give headroom for stars and shells/missiles. This is not fully accurate, but if we included all possible sources in parallel, the brightness of the main game would be very low to allow for all the oversaturation of the stars and shells/missiles. */ compute_resistor_weights(0, RGB_MAXIMUM, -1.0, 3, &rgb_resistances[0], rweights, 470, 0, 3, &rgb_resistances[0], gweights, 470, 0, 2, &rgb_resistances[1], bweights, 470, 0); /* decode the palette first */ len = memregion("proms")->bytes(); for (i = 0; i < len; i++) { uint8_t bit0, bit1, bit2, r, g, b; /* red component */ bit0 = BIT(color_prom[i],0); bit1 = BIT(color_prom[i],1); bit2 = BIT(color_prom[i],2); r = combine_3_weights(rweights, bit0, bit1, bit2); /* green component */ bit0 = BIT(color_prom[i],3); bit1 = BIT(color_prom[i],4); bit2 = BIT(color_prom[i],5); g = combine_3_weights(gweights, bit0, bit1, bit2); /* blue component */ bit0 = BIT(color_prom[i],6); bit1 = BIT(color_prom[i],7); b = combine_2_weights(bweights, bit0, bit1); palette.set_pen_color(i, rgb_t(r,g,b)); } /* The maximum sprite/tilemap resistance is ~130 Ohms with all RGB outputs enabled (1/(1/1000 + 1/470 + 1/220)). Since we normalized to RGB_MAXIMUM, this maps RGB_MAXIMUM -> 130 Ohms. The stars are at 150 Ohms for the LSB, and 100 Ohms for the MSB. This means the 3 potential values are: 150 Ohms -> RGB_MAXIMUM * 130 / 150 100 Ohms -> RGB_MAXIMUM * 130 / 100 60 Ohms -> RGB_MAXIMUM * 130 / 60 Since we can't saturate that high, we instead approximate this by compressing the values proportionally into the 194->255 range. */ minval = RGB_MAXIMUM * 130 / 150; midval = RGB_MAXIMUM * 130 / 100; maxval = RGB_MAXIMUM * 130 / 60; /* compute the values for each of 4 possible star values */ starmap[0] = 0; starmap[1] = minval; starmap[2] = minval + (255 - minval) * (midval - minval) / (maxval - minval); starmap[3] = 255; /* generate the colors for the stars */ for (i = 0; i < 64; i++) { uint8_t bit0, bit1, r, g, b; /* bit 5 = red @ 150 Ohm, bit 4 = red @ 100 Ohm */ bit0 = BIT(i,5); bit1 = BIT(i,4); r = starmap[(bit1 << 1) | bit0]; /* bit 3 = green @ 150 Ohm, bit 2 = green @ 100 Ohm */ bit0 = BIT(i,3); bit1 = BIT(i,2); g = starmap[(bit1 << 1) | bit0]; /* bit 1 = blue @ 150 Ohm, bit 0 = blue @ 100 Ohm */ bit0 = BIT(i,1); bit1 = BIT(i,0); b = starmap[(bit1 << 1) | bit0]; /* set the RGB color */ m_star_color[i] = rgb_t(r, g, b); } /* default bullet colors are white for the first 7, and yellow for the last one */ for (i = 0; i < 7; i++) m_bullet_color[i] = rgb_t(0xff,0xff,0xff); m_bullet_color[7] = rgb_t(0xff,0xff,0x00); } PALETTE_INIT_MEMBER(galaxian_state,moonwar) { PALETTE_INIT_NAME(galaxian)(palette); /* wire mod to connect the bullet blue output to the 220 ohm resistor */ m_bullet_color[7] = rgb_t(0xef,0xef,0x97); } /************************************* * * Common video init * *************************************/ void galaxian_state::video_start() { /* create a tilemap for the background */ if (!m_sfx_tilemap) { /* normal galaxian hardware is row-based and individually scrolling columns */ m_bg_tilemap = &machine().tilemap().create(*m_gfxdecode, tilemap_get_info_delegate(FUNC(galaxian_state::bg_get_tile_info),this), TILEMAP_SCAN_ROWS, GALAXIAN_XSCALE*8,8, 32,32); m_bg_tilemap->set_scroll_cols(32); } else { /* sfx hardware is column-based and individually scrolling rows */ m_bg_tilemap = &machine().tilemap().create(*m_gfxdecode, tilemap_get_info_delegate(FUNC(galaxian_state::bg_get_tile_info),this), TILEMAP_SCAN_COLS, GALAXIAN_XSCALE*8,8, 32,32); m_bg_tilemap->set_scroll_rows(32); } m_bg_tilemap->set_transparent_pen(0); /* initialize globals */ m_flipscreen_x = 0; m_flipscreen_y = 0; m_background_enable = 0; m_background_blue = 0; m_background_red = 0; m_background_green = 0; /* initialize stars */ stars_init(); /* register for save states */ state_save_register(); } void galaxian_state::state_save_register() { save_item(NAME(m_flipscreen_x)); save_item(NAME(m_flipscreen_y)); save_item(NAME(m_background_enable)); save_item(NAME(m_background_red)); save_item(NAME(m_background_green)); save_item(NAME(m_background_blue)); save_item(NAME(m_sprites_base)); save_item(NAME(m_bullets_base)); save_item(NAME(m_gfxbank)); save_item(NAME(m_stars_enabled)); save_item(NAME(m_star_rng_origin)); save_item(NAME(m_star_rng_origin_frame)); save_item(NAME(m_stars_blink_state)); } /************************************* * * Common video update * *************************************/ uint32_t galaxian_state::screen_update_galaxian(screen_device &screen, bitmap_rgb32 &bitmap, const rectangle &cliprect) { /* draw the background layer (including stars) */ (this->*m_draw_background_ptr)(bitmap, cliprect); /* draw the tilemap characters over top */ m_bg_tilemap->draw(screen, bitmap, cliprect, 0, 0); /* render the sprites next. Some custom pcbs (eg. zigzag, fantastc) have more than one sprite generator (ideally, this should be rendered in parallel) */ for (int i = 0; i < m_numspritegens; i++) sprites_draw(bitmap, cliprect, &m_spriteram[m_sprites_base + i * 0x20]); /* if we have bullets to draw, render them following */ if (m_draw_bullet_ptr != nullptr) bullets_draw(bitmap, cliprect, &m_spriteram[m_bullets_base]); return 0; } /************************************* * * Background tilemap * *************************************/ TILE_GET_INFO_MEMBER(galaxian_state::bg_get_tile_info) { uint8_t *videoram = m_videoram; uint8_t x = tile_index & 0x1f; uint16_t code = videoram[tile_index]; uint8_t attrib = m_spriteram[x*2+1]; uint8_t color = attrib & 7; if (m_extend_tile_info_ptr != nullptr) (this->*m_extend_tile_info_ptr)(&code, &color, attrib, x); SET_TILE_INFO_MEMBER(0, code, color, 0); } WRITE8_MEMBER(galaxian_state::galaxian_videoram_w) { uint8_t *videoram = m_videoram; /* update any video up to the current scanline */ // m_screen->update_now(); m_screen->update_partial(m_screen->vpos()); /* store the data and mark the corresponding tile dirty */ videoram[offset] = data; m_bg_tilemap->mark_tile_dirty(offset); } WRITE8_MEMBER(galaxian_state::galaxian_objram_w) { /* update any video up to the current scanline */ // m_screen->update_now(); m_screen->update_partial(m_screen->vpos()); /* store the data */ m_spriteram[offset] = data; /* the first $40 bytes affect the tilemap */ if (offset < 0x40) { /* even entries control the scroll position */ if ((offset & 0x01) == 0) { /* Frogger: top and bottom 4 bits swapped entering the adder */ if (m_frogger_adjust) data = (data >> 4) | (data << 4); if (!m_sfx_tilemap) m_bg_tilemap->set_scrolly(offset >> 1, data); else m_bg_tilemap->set_scrollx(offset >> 1, GALAXIAN_XSCALE*data); } /* odd entries control the color base for the row */ else { for (offset >>= 1; offset < 0x0400; offset += 32) m_bg_tilemap->mark_tile_dirty(offset); } } } /************************************* * * Sprite rendering * *************************************/ void galaxian_state::sprites_draw(bitmap_rgb32 &bitmap, const rectangle &cliprect, const uint8_t *spritebase) { rectangle clip = cliprect; int sprnum; /* the existence of +1 (sprite vs tile layer) is supported by a LOT of games */ const int hoffset = 1; /* 16 of the 256 pixels of the sprites are hard-clipped at the line buffer */ /* according to the schematics, it should be the first 16 pixels */ clip.min_x = std::max(clip.min_x, (!m_flipscreen_x) * (16 + hoffset) * GALAXIAN_XSCALE); clip.max_x = std::min(clip.max_x, (256 - m_flipscreen_x * (16 + hoffset)) * GALAXIAN_XSCALE - 1); /* The line buffer is only written if it contains a '0' currently; */ /* it is cleared during the visible area, and populated during HBLANK */ /* To simulate this, we render backwards so that lower numbered sprites */ /* have priority over higher numbered sprites. */ for (sprnum = 7; sprnum >= 0; sprnum--) { const uint8_t *base = &spritebase[sprnum * 4]; /* Frogger: top and bottom 4 bits swapped entering the adder */ uint8_t base0 = m_frogger_adjust ? ((base[0] >> 4) | (base[0] << 4)) : base[0]; /* the first three sprites match against y-1 */ uint8_t sy = 240 - (base0 - (sprnum < 3)); uint16_t code = base[1] & 0x3f; uint8_t flipx = base[1] & 0x40; uint8_t flipy = base[1] & 0x80; uint8_t color = base[2] & 7; uint8_t sx = base[3] + hoffset; /* extend the sprite information */ if (m_extend_sprite_info_ptr != nullptr) (this->*m_extend_sprite_info_ptr)(base, &sx, &sy, &flipx, &flipy, &code, &color); /* apply flipscreen in X direction */ if (m_flipscreen_x) { sx = 240 - sx; flipx = !flipx; } /* apply flipscreen in Y direction */ if (m_flipscreen_y) { sy = 240 - sy; flipy = !flipy; } /* draw */ m_gfxdecode->gfx(1)->transpen(bitmap,clip, code, color, flipx, flipy, GALAXIAN_H0START + GALAXIAN_XSCALE * sx, sy, 0); } } /************************************* * * Bullets rendering * *************************************/ void galaxian_state::bullets_draw(bitmap_rgb32 &bitmap, const rectangle &cliprect, const uint8_t *base) { int y; /* iterate over scanlines */ for (y = cliprect.min_y; y <= cliprect.max_y; y++) { uint8_t shell = 0xff, missile = 0xff; uint8_t effy; int which; /* the first 3 entries match Y-1 */ effy = m_flipscreen_y ? ((y - 1) ^ 255) : (y - 1); for (which = 0; which < 3; which++) if ((uint8_t)(base[which*4+1] + effy) == 0xff) shell = which; /* remaining entries match Y */ effy = m_flipscreen_y ? (y ^ 255) : y; for (which = 3; which < 8; which++) if ((uint8_t)(base[which*4+1] + effy) == 0xff) { if (which != 7) shell = which; else missile = which; } /* draw the shell */ if (shell != 0xff) (this->*m_draw_bullet_ptr)(bitmap, cliprect, shell, 255 - base[shell*4+3], y); if (missile != 0xff) (this->*m_draw_bullet_ptr)(bitmap, cliprect, missile, 255 - base[missile*4+3], y); } } /************************************* * * Screen orientation * *************************************/ WRITE8_MEMBER(galaxian_state::galaxian_flip_screen_x_w) { if (m_flipscreen_x != (data & 0x01)) { // m_screen->update_now(); m_screen->update_partial(m_screen->vpos()); /* when the direction changes, we count a different number of clocks */ /* per frame, so we need to reset the origin of the stars to the current */ /* frame before we flip */ stars_update_origin(); m_flipscreen_x = data & 0x01; m_bg_tilemap->set_flip((m_flipscreen_x ? TILEMAP_FLIPX : 0) | (m_flipscreen_y ? TILEMAP_FLIPY : 0)); } } WRITE8_MEMBER(galaxian_state::galaxian_flip_screen_y_w) { if (m_flipscreen_y != (data & 0x01)) { // m_screen->update_now(); m_screen->update_partial(m_screen->vpos()); m_flipscreen_y = data & 0x01; m_bg_tilemap->set_flip((m_flipscreen_x ? TILEMAP_FLIPX : 0) | (m_flipscreen_y ? TILEMAP_FLIPY : 0)); } } WRITE8_MEMBER(galaxian_state::galaxian_flip_screen_xy_w) { galaxian_flip_screen_x_w(space, offset, data); galaxian_flip_screen_y_w(space, offset, data); } /************************************* * * Background controls * *************************************/ WRITE8_MEMBER(galaxian_state::galaxian_stars_enable_w) { if ((m_stars_enabled ^ data) & 0x01) { // m_screen->update_now(); m_screen->update_partial(m_screen->vpos()); } if (!m_stars_enabled && (data & 0x01)) { /* on the rising edge of this, the CLR on the shift registers is released */ /* this resets the "origin" of this frame to 0 minus the number of clocks */ /* we have counted so far */ m_star_rng_origin = STAR_RNG_PERIOD - (m_screen->vpos() * 512 + m_screen->hpos()); m_star_rng_origin_frame = m_screen->frame_number(); } m_stars_enabled = data & 0x01; } WRITE8_MEMBER(galaxian_state::scramble_background_enable_w) { if ((m_background_enable ^ data) & 0x01) { // m_screen->update_now(); m_screen->update_partial(m_screen->vpos()); } m_background_enable = data & 0x01; } WRITE8_MEMBER(galaxian_state::scramble_background_red_w) { if ((m_background_red ^ data) & 0x01) { // m_screen->update_now(); m_screen->update_partial(m_screen->vpos()); } m_background_red = data & 0x01; } WRITE8_MEMBER(galaxian_state::scramble_background_green_w) { if ((m_background_green ^ data) & 0x01) { // m_screen->update_now(); m_screen->update_partial(m_screen->vpos()); } m_background_green = data & 0x01; } WRITE8_MEMBER(galaxian_state::scramble_background_blue_w) { if ((m_background_blue ^ data) & 0x01) { // m_screen->update_now(); m_screen->update_partial(m_screen->vpos()); } m_background_blue = data & 0x01; } /************************************* * * Graphics banking * *************************************/ WRITE8_MEMBER(galaxian_state::galaxian_gfxbank_w) { if (m_gfxbank[offset] != data) { //m_screen->update_now(); m_screen->update_partial(m_screen->vpos()); m_gfxbank[offset] = data; m_bg_tilemap->mark_all_dirty(); } } /************************************* * * Star initialization * *************************************/ void galaxian_state::stars_init() { uint32_t shiftreg; int i; /* reset the blink and enabled states */ m_stars_enabled = false; m_stars_blink_state = 0; /* precalculate the RNG */ m_stars = std::make_unique(STAR_RNG_PERIOD); shiftreg = 0; for (i = 0; i < STAR_RNG_PERIOD; i++) { /* stars are enabled if the upper 8 bits are 1 and the low bit is 0 */ int enabled = ((shiftreg & 0x1fe01) == 0x1fe00); /* color comes from the 6 bits below the top 8 bits */ int color = (~shiftreg & 0x1f8) >> 3; /* store the color value in the low 6 bits and the enable in the upper bit */ m_stars[i] = color | (enabled << 7); /* the LFSR is fed based on the XOR of bit 12 and the inverse of bit 0 */ shiftreg = (shiftreg >> 1) | ((((shiftreg >> 12) ^ ~shiftreg) & 1) << 16); } } /************************************* * * Adjust the origin of stars * *************************************/ void galaxian_state::stars_update_origin() { int curframe = m_screen->frame_number(); /* only update on a different frame */ if (curframe != m_star_rng_origin_frame) { /* The RNG period is 2^17-1; each frame, the shift register is clocked */ /* 512*256 = 2^17 times. This means that we clock one extra time each */ /* frame. However, if we are NOT flipped, there is a pair of D flip-flops */ /* at 6B which delay the count so that we count 512*256-2 = 2^17-2 times. */ /* In this case, we only one time less than the period each frame. Both */ /* of these off-by-one countings produce the horizontal star scrolling. */ int per_frame_delta = m_flipscreen_x ? 1 : -1; int total_delta = per_frame_delta * (curframe - m_star_rng_origin_frame); /* we can't just use % here because mod of a negative number is undefined */ while (total_delta < 0) total_delta += STAR_RNG_PERIOD; /* now that everything is positive, do the mod */ m_star_rng_origin = (m_star_rng_origin + total_delta) % STAR_RNG_PERIOD; m_star_rng_origin_frame = curframe; } } /************************************* * * Star blinking * *************************************/ TIMER_DEVICE_CALLBACK_MEMBER(galaxian_state::scramble_stars_blink_timer) { m_stars_blink_state++; } /************************************* * * Draw a row of stars * *************************************/ void galaxian_state::stars_draw_row(bitmap_rgb32 &bitmap, int maxx, int y, uint32_t star_offs, uint8_t starmask) { int x; /* ensure our star offset is valid */ star_offs %= STAR_RNG_PERIOD; /* iterate over the specified number of 6MHz pixels */ for (x = 0; x < maxx; x++) { /* stars are suppressed unless V1 ^ H8 == 1 */ int enable_star = (y ^ (x >> 3)) & 1; uint8_t star; /* The RNG clock is the master clock (18MHz) ANDed with the pixel clock (6MHz). The divide-by-3 circuit that produces the pixel clock generates a square wave with a 2/3 duty cycle, so the result of the AND generates a clock like this: _ _ _ _ _ _ _ _ MASTER: _| |_| |_| |_| |_| |_| |_| |_| | _______ _______ ______ PIXEL: _| |___| |___| _ _ _ _ _ _ RNG: _| |_| |_____| |_| |_____| |_| | Thus for each pixel, there are 3 master clocks and 2 RNG clocks, and the RNG is clocked asymmetrically. To simulate this, we expand the horizontal screen size by 3 and handle the first RNG clock with one pixel and the second RNG clock with two pixels. */ /* first RNG clock: one pixel */ star = m_stars[star_offs++]; if (star_offs >= STAR_RNG_PERIOD) star_offs = 0; if (enable_star && (star & 0x80) != 0 && (star & starmask) != 0) bitmap.pix32(y, GALAXIAN_XSCALE*x + 0) = m_star_color[star & 0x3f]; /* second RNG clock: two pixels */ star = m_stars[star_offs++]; if (star_offs >= STAR_RNG_PERIOD) star_offs = 0; if (enable_star && (star & 0x80) != 0 && (star & starmask) != 0) { bitmap.pix32(y, GALAXIAN_XSCALE*x + 1) = m_star_color[star & 0x3f]; bitmap.pix32(y, GALAXIAN_XSCALE*x + 2) = m_star_color[star & 0x3f]; } } } /************************************* * * Background rendering * *************************************/ void galaxian_state::galaxian_draw_background(bitmap_rgb32 &bitmap, const rectangle &cliprect) { /* erase the background to black first */ bitmap.fill(rgb_t::black(), cliprect); /* update the star origin to the current frame */ stars_update_origin(); /* render stars if enabled */ if (m_stars_enabled) { int y; /* iterate over scanlines */ for (y = cliprect.min_y; y <= cliprect.max_y; y++) { uint32_t star_offs = m_star_rng_origin + y * 512; stars_draw_row(bitmap, 256, y, star_offs, 0xff); } } } void galaxian_state::background_draw_colorsplit(bitmap_rgb32 &bitmap, const rectangle &cliprect, rgb_t color, int split, int split_flipped) { /* horizontal bgcolor split */ if (m_flipscreen_x) { rectangle draw = cliprect; draw.max_x = std::min(draw.max_x, split_flipped * GALAXIAN_XSCALE - 1); if (draw.min_x <= draw.max_x) bitmap.fill(rgb_t::black(), draw); draw = cliprect; draw.min_x = std::max(draw.min_x, split_flipped * GALAXIAN_XSCALE); if (draw.min_x <= draw.max_x) bitmap.fill(color, draw); } else { rectangle draw = cliprect; draw.max_x = std::min(draw.max_x, split * GALAXIAN_XSCALE - 1); if (draw.min_x <= draw.max_x) bitmap.fill(color, draw); draw = cliprect; draw.min_x = std::max(draw.min_x, split * GALAXIAN_XSCALE); if (draw.min_x <= draw.max_x) bitmap.fill(rgb_t::black(), draw); } } void galaxian_state::scramble_draw_stars(bitmap_rgb32 &bitmap, const rectangle &cliprect, int maxx) { /* update the star origin to the current frame */ stars_update_origin(); /* render stars if enabled */ if (m_stars_enabled) { int blink_state = m_stars_blink_state & 3; int y; /* iterate over scanlines */ for (y = cliprect.min_y; y <= cliprect.max_y; y++) { /* blink state 2 suppressed stars when 2V == 0 */ if (blink_state != 2 || (y & 2) != 0) { /* blink states 0 and 1 suppress stars when certain bits of the color == 0 */ static const uint8_t colormask_table[4] = { 0x20, 0x08, 0xff, 0xff }; stars_draw_row(bitmap, maxx, y, y * 512, colormask_table[blink_state]); } } } } void galaxian_state::scramble_draw_background(bitmap_rgb32 &bitmap, const rectangle &cliprect) { /* blue background - 390 ohm resistor */ bitmap.fill(m_background_enable ? rgb_t(0,0,0x56) : rgb_t::black(), cliprect); scramble_draw_stars(bitmap, cliprect, 256); } void galaxian_state::anteater_draw_background(bitmap_rgb32 &bitmap, const rectangle &cliprect) { /* blue background, horizontal split as seen on flyer and real cabinet */ background_draw_colorsplit(bitmap, cliprect, m_background_enable ? rgb_t(0,0,0x56) : rgb_t::black(), 56, 256-56); scramble_draw_stars(bitmap, cliprect, 256); } void galaxian_state::jumpbug_draw_background(bitmap_rgb32 &bitmap, const rectangle &cliprect) { /* blue background - 390 ohm resistor */ bitmap.fill(m_background_enable ? rgb_t(0,0,0x56) : rgb_t::black(), cliprect); /* render stars same as galaxian but nothing in the status area */ /* update the star origin to the current frame */ stars_update_origin(); /* render stars if enabled */ if (m_stars_enabled) { int y; /* iterate over scanlines */ for (y = cliprect.min_y; y <= cliprect.max_y; y++) { uint32_t star_offs = m_star_rng_origin + y * 512; stars_draw_row(bitmap, 240, y, star_offs, 0xff); } } } void galaxian_state::turtles_draw_background(bitmap_rgb32 &bitmap, const rectangle &cliprect) { /* The background color generator is connected this way: RED - 390 ohm resistor GREEN - 470 ohm resistor BLUE - 390 ohm resistor */ bitmap.fill(rgb_t(m_background_red * 0x55, m_background_green * 0x47, m_background_blue * 0x55), cliprect); } void galaxian_state::frogger_draw_background(bitmap_rgb32 &bitmap, const rectangle &cliprect) { /* according to schematics it is at 128+8; but it has been verified different on real machine. Video proof: http://www.youtube.com/watch?v=ssr69mQf224 */ background_draw_colorsplit(bitmap, cliprect, rgb_t(0,0,0x47), 128, 128); } void galaxian_state::quaak_draw_background(bitmap_rgb32 &bitmap, const rectangle &cliprect) { /* color split point verified on real machine */ background_draw_colorsplit(bitmap, cliprect, rgb_t(0,0,0x47), 128, 128); } #ifdef UNUSED_FUNCTION int galaxian_state::flip_and_clip(rectangle &draw, int xstart, int xend, const rectangle &cliprect) { draw = cliprect; if (!m_flipscreen_x) { draw.min_x = xstart * GALAXIAN_XSCALE; draw.max_x = xend * GALAXIAN_XSCALE + (GALAXIAN_XSCALE - 1); } else { draw.min_x = (xend ^ 255) * GALAXIAN_XSCALE; draw.max_x = (xstart ^ 255) * GALAXIAN_XSCALE + (GALAXIAN_XSCALE - 1); } draw &= cliprect; return (draw.min_x <= draw.max_x); } void galaxian_state::amidar_draw_background(bitmap_rgb32 &bitmap, const rectangle &cliprect) { const uint8_t *prom = memregion("user1")->base(); rectangle draw; int x; for (x = 0; x < 32; x++) if (flip_and_clip(&draw, x * 8, x * 8 + 7, cliprect)) { /* The background PROM is connected the following way: bit 0 = 0 enables the blue gun if BCB is asserted bit 1 = 0 enables the red gun if BCR is asserted and the green gun if BCG is asserted bits 2-7 are unconnected The background color generator is connected this way: RED - 270 ohm resistor GREEN - 560 ohm resistor BLUE - 470 ohm resistor */ uint8_t red = ((~prom[x] & 0x02) && m_background_red) ? 0x7c : 0x00; uint8_t green = ((~prom[x] & 0x02) && m_background_green) ? 0x3c : 0x00; uint8_t blue = ((~prom[x] & 0x01) && m_background_blue) ? 0x47 : 0x00; bitmap.fill(rgb_t(red, green, blue, draw)); } } #endif /************************************* * * Bullet rendering * *************************************/ inline void galaxian_state::galaxian_draw_pixel(bitmap_rgb32 &bitmap, const rectangle &cliprect, int y, int x, rgb_t color) { if (y >= cliprect.min_y && y <= cliprect.max_y) { x *= GALAXIAN_XSCALE; x += GALAXIAN_H0START; if (x >= cliprect.min_x && x <= cliprect.max_x) bitmap.pix32(y, x) = color; x++; if (x >= cliprect.min_x && x <= cliprect.max_x) bitmap.pix32(y, x) = color; x++; if (x >= cliprect.min_x && x <= cliprect.max_x) bitmap.pix32(y, x) = color; } } void galaxian_state::galaxian_draw_bullet(bitmap_rgb32 &bitmap, const rectangle &cliprect, int offs, int x, int y) { /* Both "shells" and "missiles" begin displaying when the horizontal counter reaches $FC, and they stop displaying when it reaches $00, resulting in 4-pixel-long shots. The first 7 entries are called "shells" and render as white; the final entry is called a "missile" and renders as yellow. */ x -= 4; galaxian_draw_pixel(bitmap, cliprect, y, x++, m_bullet_color[offs]); galaxian_draw_pixel(bitmap, cliprect, y, x++, m_bullet_color[offs]); galaxian_draw_pixel(bitmap, cliprect, y, x++, m_bullet_color[offs]); galaxian_draw_pixel(bitmap, cliprect, y, x++, m_bullet_color[offs]); } void galaxian_state::mshuttle_draw_bullet(bitmap_rgb32 &bitmap, const rectangle &cliprect, int offs, int x, int y) { /* verified by schematics: * both "W" and "Y" bullets are 4 pixels long * "W" bullets are enabled when H6 == 0, and are always purple * "Y" bullets are enabled when H6 == 1, and vary in color based on H4,H3,H2 */ static const rgb_t colors[8] = { rgb_t(0xff,0xff,0xff), rgb_t(0xff,0xff,0x00), rgb_t(0x00,0xff,0xff), rgb_t(0x00,0xff,0x00), rgb_t(0xff,0x00,0xff), rgb_t(0xff,0x00,0x00), rgb_t(0x00,0x00,0xff), rgb_t(0x00,0x00,0x00) }; --x; galaxian_draw_pixel(bitmap, cliprect, y, x, ((x & 0x40) == 0) ? colors[(x >> 2) & 7] : rgb_t(0xff,0x00,0xff)); --x; galaxian_draw_pixel(bitmap, cliprect, y, x, ((x & 0x40) == 0) ? colors[(x >> 2) & 7] : rgb_t(0xff,0x00,0xff)); --x; galaxian_draw_pixel(bitmap, cliprect, y, x, ((x & 0x40) == 0) ? colors[(x >> 2) & 7] : rgb_t(0xff,0x00,0xff)); --x; galaxian_draw_pixel(bitmap, cliprect, y, x, ((x & 0x40) == 0) ? colors[(x >> 2) & 7] : rgb_t(0xff,0x00,0xff)); } void galaxian_state::scramble_draw_bullet(bitmap_rgb32 &bitmap, const rectangle &cliprect, int offs, int x, int y) { /* Scramble only has "shells", which begin displaying when the counter reaches $FA, and stop displaying one pixel clock layer. All shells are rendered as yellow. */ x -= 6; galaxian_draw_pixel(bitmap, cliprect, y, x, rgb_t(0xff,0xff,0x00)); } void galaxian_state::theend_draw_bullet(bitmap_rgb32 &bitmap, const rectangle &cliprect, int offs, int x, int y) { /* Same as galaxian except blue/green are swapped */ x -= 4; galaxian_draw_pixel(bitmap, cliprect, y, x++, rgb_t(m_bullet_color[offs].r(), m_bullet_color[offs].b(), m_bullet_color[offs].g())); galaxian_draw_pixel(bitmap, cliprect, y, x++, rgb_t(m_bullet_color[offs].r(), m_bullet_color[offs].b(), m_bullet_color[offs].g())); galaxian_draw_pixel(bitmap, cliprect, y, x++, rgb_t(m_bullet_color[offs].r(), m_bullet_color[offs].b(), m_bullet_color[offs].g())); galaxian_draw_pixel(bitmap, cliprect, y, x++, rgb_t(m_bullet_color[offs].r(), m_bullet_color[offs].b(), m_bullet_color[offs].g())); } /************************************* * * Video extensions * *************************************/ /*** generic ***/ void galaxian_state::upper_extend_tile_info(uint16_t *code, uint8_t *color, uint8_t attrib, uint8_t x) { /* tiles are in the upper half of a larger ROM */ *code += 0x100; } void galaxian_state::upper_extend_sprite_info(const uint8_t *base, uint8_t *sx, uint8_t *sy, uint8_t *flipx, uint8_t *flipy, uint16_t *code, uint8_t *color) { /* sprites are in the upper half of a larger ROM */ *code += 0x40; } /*** Frogger ***/ void galaxian_state::frogger_extend_tile_info(uint16_t *code, uint8_t *color, uint8_t attrib, uint8_t x) { *color = ((*color >> 1) & 0x03) | ((*color << 2) & 0x04); } void galaxian_state::frogger_extend_sprite_info(const uint8_t *base, uint8_t *sx, uint8_t *sy, uint8_t *flipx, uint8_t *flipy, uint16_t *code, uint8_t *color) { *color = ((*color >> 1) & 0x03) | ((*color << 2) & 0x04); } /*** Ghostmuncher Galaxian ***/ void galaxian_state::gmgalax_extend_tile_info(uint16_t *code, uint8_t *color, uint8_t attrib, uint8_t x) { *code |= m_gfxbank[0] << 9; // *color |= m_gfxbank[0] << 3; } void galaxian_state::gmgalax_extend_sprite_info(const uint8_t *base, uint8_t *sx, uint8_t *sy, uint8_t *flipx, uint8_t *flipy, uint16_t *code, uint8_t *color) { *code |= (m_gfxbank[0] << 7) | 0x40; *color |= m_gfxbank[0] << 3; } /*** Pisces ***/ void galaxian_state::pisces_extend_tile_info(uint16_t *code, uint8_t *color, uint8_t attrib, uint8_t x) { *code |= m_gfxbank[0] << 8; } void galaxian_state::pisces_extend_sprite_info(const uint8_t *base, uint8_t *sx, uint8_t *sy, uint8_t *flipx, uint8_t *flipy, uint16_t *code, uint8_t *color) { *code |= m_gfxbank[0] << 6; } /*** Batman Part 2 ***/ void galaxian_state::batman2_extend_tile_info(uint16_t *code, uint8_t *color, uint8_t attrib, uint8_t x) { if (*code & 0x80) *code |= m_gfxbank[0] << 8; } /*** Moon Cresta ***/ void galaxian_state::mooncrst_extend_tile_info(uint16_t *code, uint8_t *color, uint8_t attrib, uint8_t x) { if (m_gfxbank[2] && (*code & 0xc0) == 0x80) *code = (*code & 0x3f) | (m_gfxbank[0] << 6) | (m_gfxbank[1] << 7) | 0x0100; } void galaxian_state::mooncrst_extend_sprite_info(const uint8_t *base, uint8_t *sx, uint8_t *sy, uint8_t *flipx, uint8_t *flipy, uint16_t *code, uint8_t *color) { if (m_gfxbank[2] && (*code & 0x30) == 0x20) *code = (*code & 0x0f) | (m_gfxbank[0] << 4) | (m_gfxbank[1] << 5) | 0x40; } /*** Moon Quasar ***/ void galaxian_state::moonqsr_extend_tile_info(uint16_t *code, uint8_t *color, uint8_t attrib, uint8_t x) { *code |= (attrib & 0x20) << 3; } void galaxian_state::moonqsr_extend_sprite_info(const uint8_t *base, uint8_t *sx, uint8_t *sy, uint8_t *flipx, uint8_t *flipy, uint16_t *code, uint8_t *color) { *code |= (base[2] & 0x20) << 1; } /*** Moon Shuttle ***/ void galaxian_state::mshuttle_extend_tile_info(uint16_t *code, uint8_t *color, uint8_t attrib, uint8_t x) { *code |= (attrib & 0x30) << 4; } void galaxian_state::mshuttle_extend_sprite_info(const uint8_t *base, uint8_t *sx, uint8_t *sy, uint8_t *flipx, uint8_t *flipy, uint16_t *code, uint8_t *color) { *code |= (base[2] & 0x30) << 2; } /*** Calipso ***/ void galaxian_state::calipso_extend_sprite_info(const uint8_t *base, uint8_t *sx, uint8_t *sy, uint8_t *flipx, uint8_t *flipy, uint16_t *code, uint8_t *color) { /* same as the others, but no sprite flipping, but instead the bits are used as extra sprite code bits, giving 256 sprite images */ /* No flips */ *code = base[1]; *flipx = 0; *flipy = 0; } /*** Jumpbug ***/ void galaxian_state::jumpbug_extend_tile_info(uint16_t *code, uint8_t *color, uint8_t attrib, uint8_t x) { if ((*code & 0xc0) == 0x80 && (m_gfxbank[2] & 0x01)) *code += 128 + (( m_gfxbank[0] & 0x01) << 6) + (( m_gfxbank[1] & 0x01) << 7) + ((~m_gfxbank[4] & 0x01) << 8); } void galaxian_state::jumpbug_extend_sprite_info(const uint8_t *base, uint8_t *sx, uint8_t *sy, uint8_t *flipx, uint8_t *flipy, uint16_t *code, uint8_t *color) { if ((*code & 0x30) == 0x20 && (m_gfxbank[2] & 0x01) != 0) { *code += 32 + (( m_gfxbank[0] & 0x01) << 4) + (( m_gfxbank[1] & 0x01) << 5) + ((~m_gfxbank[4] & 0x01) << 6); } }