// license:BSD-3-Clause // copyright-holders:Barry Rodewald /* * Data East Pinball Dot Matrix Display * * Type 1: 128x16 * Z80 @ 4MHz */ #include "emu.h" #include "decodmd1.h" #include "screen.h" DEFINE_DEVICE_TYPE(DECODMD1, decodmd_type1_device, "decodmd1", "Data East Pinball Dot Matrix Display Type 1") READ8_MEMBER( decodmd_type1_device::latch_r ) { return 0; } WRITE8_MEMBER( decodmd_type1_device::data_w ) { m_latch = data; } READ8_MEMBER( decodmd_type1_device::busy_r ) { return m_status; } WRITE8_MEMBER( decodmd_type1_device::ctrl_w ) { if((data | m_ctrl) & 0x01) { m_command = m_latch; set_busy(B_CLK,data & 0x01); } if((m_ctrl & 0x02) && !(data & 0x02)) { m_rombank1->set_entry(0); set_busy(B_SET,0); m_rowselect = 0; m_blank = 0; m_frameswap = false; m_status = 0; m_cpu->pulse_input_line(INPUT_LINE_RESET, attotime::zero); } m_ctrl = data; } READ8_MEMBER( decodmd_type1_device::ctrl_r ) { return m_ctrl; } READ8_MEMBER( decodmd_type1_device::status_r ) { return (m_busy & 0x01) | (m_status << 1); } // Z80 I/O ports not fully decoded. // if bit 7 = 0, then when bit 2 is 0 selects COCLK, and when bit 2 is 1 selects CLATCH READ8_MEMBER( decodmd_type1_device::dmd_port_r ) { if((offset & 0x84) == 0x80) { // IDAT (read only) //m_ctrl &= ~0x01; set_busy(B_CLR,0); set_busy(B_CLR,1); return m_command; } return 0xff; } WRITE8_MEMBER( decodmd_type1_device::dmd_port_w ) { uint8_t bit; switch(offset & 0x84) { case 0x00: // COCLK bit = (data >> ((offset & 0x03)*2)); // selects pair of bits depending on port used (0x00-0x03) m_pxdata1 = (m_pxdata1 >> 1) | ((bit & 0x01) ? 0x80000000 : 0x00000000); m_pxdata2 = (m_pxdata2 >> 1) | ((bit & 0x02) ? 0x80000000 : 0x00000000); break; case 0x04: // CLATCH m_pxdata1_latched = m_pxdata1; m_pxdata2_latched = m_pxdata2; if(m_blank) output_data(); break; case 0x80: // IDAT (ignored) break; case 0x84: bit = data & 0x01; m_bitlatch->write_bit((offset & 0x40) >> 4 | (offset & 0x18) >> 3, bit); break; } } WRITE_LINE_MEMBER(decodmd_type1_device::blank_w) { m_blank = state; if (state) output_data(); } WRITE_LINE_MEMBER(decodmd_type1_device::status_w) { m_status = state; } WRITE_LINE_MEMBER(decodmd_type1_device::rowdata_w) { m_rowdata = state; } WRITE_LINE_MEMBER(decodmd_type1_device::rowclock_w) { if (!state && m_rowclock) // on negative edge m_rowselect = (m_rowselect << 1) | m_rowdata; m_rowclock = state; } WRITE_LINE_MEMBER(decodmd_type1_device::test_w) { set_busy(B_SET, state); } void decodmd_type1_device::output_data() { uint8_t ptr = 0; uint32_t row = m_rowselect; if(row == 0) m_frameswap = !m_frameswap; if(!m_frameswap) ptr = 0x80; while(row != 0) { if(row & 0x01) { m_pixels[ptr] = m_pxdata2_latched; m_pixels[ptr+1] = m_pxdata1_latched; if(m_prevrow != m_rowselect) { m_pixels[ptr+2] = m_pixels[ptr]; m_pixels[ptr+3] = m_pixels[ptr+1]; } } ptr += 4; row >>= 1; } m_prevrow = m_rowselect; } void decodmd_type1_device::set_busy(uint8_t input, uint8_t val) { uint8_t newval = (m_busy_lines & ~input) | (val ? input : 0); if(~newval & m_busy_lines & B_CLR) m_busy = 0; else if (~newval & m_busy_lines & B_SET) m_busy = 1; else if ((newval & (B_CLR|B_SET)) == (B_CLR|B_SET)) { if(newval & ~m_busy_lines & B_CLK) m_busy = 1; } m_busy_lines = newval; m_cpu->set_input_line(INPUT_LINE_IRQ0,m_busy ? ASSERT_LINE : CLEAR_LINE); } TIMER_DEVICE_CALLBACK_MEMBER(decodmd_type1_device::dmd_nmi) { m_cpu->pulse_input_line(INPUT_LINE_NMI, attotime::zero); } void decodmd_type1_device::decodmd1_map(address_map &map) { map(0x0000, 0x3fff).bankr("dmdbank2"); // last 16k of ROM map(0x4000, 0x7fff).bankr("dmdbank1"); map(0x8000, 0x9fff).bankrw("dmdram"); } void decodmd_type1_device::decodmd1_io_map(address_map &map) { map.global_mask(0xff); map(0x00, 0xff).rw(FUNC(decodmd_type1_device::dmd_port_r), FUNC(decodmd_type1_device::dmd_port_w)); } void decodmd_type1_device::device_add_mconfig(machine_config &config) { /* basic machine hardware */ Z80(config, m_cpu, XTAL(8'000'000) / 2); m_cpu->set_addrmap(AS_PROGRAM, &decodmd_type1_device::decodmd1_map); m_cpu->set_addrmap(AS_IO, &decodmd_type1_device::decodmd1_io_map); config.set_maximum_quantum(attotime::from_hz(50)); TIMER(config, "nmi_timer").configure_periodic(FUNC(decodmd_type1_device::dmd_nmi), attotime::from_hz(2000)); // seems a lot screen_device &dmd(SCREEN(config, "dmd", SCREEN_TYPE_LCD)); dmd.set_size(128, 16); dmd.set_visarea(0, 128-1, 0, 16-1); dmd.set_screen_update(FUNC(decodmd_type1_device::screen_update)); dmd.set_refresh_hz(50); RAM(config, RAM_TAG).set_default_size("8K"); HC259(config, m_bitlatch); // U4 m_bitlatch->parallel_out_cb().set_membank(m_rombank1).mask(0x07).invert(); m_bitlatch->q_out_cb<3>().set(FUNC(decodmd_type1_device::blank_w)); m_bitlatch->q_out_cb<4>().set(FUNC(decodmd_type1_device::status_w)); m_bitlatch->q_out_cb<5>().set(FUNC(decodmd_type1_device::rowdata_w)); m_bitlatch->q_out_cb<6>().set(FUNC(decodmd_type1_device::rowclock_w)); m_bitlatch->q_out_cb<7>().set(FUNC(decodmd_type1_device::test_w)); } decodmd_type1_device::decodmd_type1_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock) : device_t(mconfig, DECODMD1, tag, owner, clock) , m_cpu(*this, "dmdcpu") , m_rombank1(*this, "dmdbank1") , m_rombank2(*this, "dmdbank2") , m_ram(*this, RAM_TAG) , m_bitlatch(*this, "bitlatch") , m_rom(*this, finder_base::DUMMY_TAG) {} void decodmd_type1_device::device_start() { save_pointer(m_pixels,"DMD Video data",0x100); } void decodmd_type1_device::device_reset() { uint8_t* RAM = m_ram->pointer(); memset(RAM,0,0x2000); memset(m_pixels,0,0x200*sizeof(uint32_t)); m_rombank1->configure_entries(0, 8, &m_rom[0x0000], 0x4000); m_rombank2->configure_entry(0, &m_rom[0x1c000]); m_rombank1->set_entry(0); m_rombank2->set_entry(0); m_status = 0; m_busy = 0; set_busy(B_CLR|B_SET,0); m_rowselect = 0; m_blank = 0; m_frameswap = false; } uint32_t decodmd_type1_device::screen_update( screen_device &screen, bitmap_rgb32 &bitmap, const rectangle &cliprect ) { uint8_t ptr = 0; uint8_t x,y,dot; uint32_t data1,data2,data3,data4; uint32_t col; if(m_frameswap) ptr = 0x80; for(y=0;y<16;y++) // scanline { for(x=0;x<128;x+=64) { data1 = m_pixels[ptr]; data2 = m_pixels[ptr+1]; data3 = m_pixels[ptr+2]; data4 = m_pixels[ptr+3]; for(dot=0;dot<64;dot+=2) { if((data1 & 0x01) != (data3 & 0x01)) col = rgb_t(0x7f,0x55,0x00); else if (data1 & 0x01) // both are the same, so either high intensity or none at all col = rgb_t(0xff,0xaa,0x00); else col = rgb_t::black(); bitmap.pix32(y,x+dot) = col; if((data2 & 0x01) != (data4 & 0x01)) col = rgb_t(0x7f,0x55,0x00); else if (data2 & 0x01) // both are the same, so either high intensity or none at all col = rgb_t(0xff,0xaa,0x00); else col = rgb_t::black(); bitmap.pix32(y,x+dot+1) = col; data1 >>= 1; data2 >>= 1; data3 >>= 1; data4 >>= 1; } ptr+=4; } } return 0; }