// license:BSD-3-Clause // copyright-holders:Ryan Holtz /****************************************************************************** CD-i Mono-I CDIC MCU simulation ------------------- written by Ryan Holtz ******************************************************************************* STATUS: - Just enough for the Mono-I CD-i board to work somewhat properly. TODO: - Decapping and proper emulation. *******************************************************************************/ #include "emu.h" #include "cpu/m68000/m68000.h" #include "cdrom.h" #include "machine/cdicdic.h" #include "includes/cdi.h" #include "sound/cdda.h" #include "imagedev/chd_cd.h" // device type definition const device_type MACHINE_CDICDIC = &device_creator; #if ENABLE_VERBOSE_LOG INLINE void ATTR_PRINTF(3,4) verboselog(running_machine &machine, int n_level, const char *s_fmt, ...) { if( VERBOSE_LEVEL >= n_level ) { va_list v; char buf[ 32768 ]; va_start( v, s_fmt ); vsprintf( buf, s_fmt, v ); va_end( v ); logerror( "%08x: %s", machine.device("maincpu")->safe_pc(), buf ); } } #else #define verboselog(x,y,z, ...) #endif #define CDIC_SECTOR_SYNC 0 #define CDIC_SECTOR_HEADER 12 #define CDIC_SECTOR_MODE 15 #define CDIC_SECTOR_FILE1 16 #define CDIC_SECTOR_CHAN1 17 #define CDIC_SECTOR_SUBMODE1 18 #define CDIC_SECTOR_CODING1 19 #define CDIC_SECTOR_FILE2 20 #define CDIC_SECTOR_CHAN2 21 #define CDIC_SECTOR_SUBMODE2 22 #define CDIC_SECTOR_CODING2 23 #define CDIC_SECTOR_DATA 24 #define CDIC_SECTOR_SIZE 2352 #define CDIC_SECTOR_DATASIZE 2048 #define CDIC_SECTOR_AUDIOSIZE 2304 #define CDIC_SECTOR_VIDEOSIZE 2324 #define CDIC_SUBMODE_EOF 0x80 #define CDIC_SUBMODE_RT 0x40 #define CDIC_SUBMODE_FORM 0x20 #define CDIC_SUBMODE_TRIG 0x10 #define CDIC_SUBMODE_DATA 0x08 #define CDIC_SUBMODE_AUDIO 0x04 #define CDIC_SUBMODE_VIDEO 0x02 #define CDIC_SUBMODE_EOR 0x01 //************************************************************************** // GLOBAL VARIABLES //************************************************************************** const INT32 cdicdic_device::s_cdic_adpcm_filter_coef[5][2] = { { 0,0 }, { 60,0 }, { 115,-52 }, { 98,-55 }, { 122,-60 }, }; //************************************************************************** // INLINES //************************************************************************** INLINE int CDIC_IS_VALID_SAMPLE_BUF(UINT16 *cdram, UINT16 addr) { UINT8 *cdram8 = ((UINT8*)cdram) + addr + 8; if(cdram8[2] != 0xff) { return 1; } return 0; } INLINE double CDIC_SAMPLE_BUF_FREQ(UINT16 *cdram, UINT16 addr) { UINT8 *cdram8 = ((UINT8*)cdram) + addr + 8; switch(cdram8[2] & 0x3f) { case 0: case 1: case 16: case 17: return 37800.0f; case 4: case 5: return 18900.0f; default: return 18900.0f; } } INLINE int CDIC_SAMPLE_BUF_SIZE(UINT16 *cdram, UINT16 addr) { UINT8 *cdram8 = ((UINT8*)cdram) + addr + 8; switch(cdram8[2] & 0x3f) { case 0: case 4: return 4; case 1: case 5: case 16: return 2; case 17: return 1; default: return 2; } } INLINE INT16 clamp(INT16 in) { return in; } //************************************************************************** // MEMBER FUNCTIONS //************************************************************************** UINT32 cdicdic_device::increment_cdda_frame_bcd(UINT32 bcd) { UINT8 nybbles[6] = { bcd & 0x0000000f, (bcd & 0x000000f0) >> 4, (bcd & 0x00000f00) >> 8, (bcd & 0x0000f000) >> 12, (bcd & 0x000f0000) >> 16, (bcd & 0x00f00000) >> 20 }; nybbles[0]++; if(nybbles[0] == 5 && nybbles[1] == 7) { nybbles[0] = 0; nybbles[1] = 0; nybbles[2]++; } else if(nybbles[0] == 10) { nybbles[1]++; } if(nybbles[2] == 10) { nybbles[3]++; nybbles[2] = 0; } if(nybbles[3] == 6) { nybbles[4]++; nybbles[3] = 0; } if(nybbles[4] == 10) { nybbles[5]++; nybbles[4] = 0; } return (nybbles[5] << 20) | (nybbles[4] << 16) | (nybbles[3] << 12) | (nybbles[2] << 8) | (nybbles[1] << 4) | nybbles[0]; } UINT32 cdicdic_device::increment_cdda_sector_bcd(UINT32 bcd) { UINT8 nybbles[6] = { bcd & 0x0000000f, (bcd & 0x000000f0) >> 4, (bcd & 0x00000f00) >> 8, (bcd & 0x0000f000) >> 12, (bcd & 0x000f0000) >> 16, (bcd & 0x00f00000) >> 20 }; nybbles[2]++; if(nybbles[2] == 10) { nybbles[3]++; nybbles[2] = 0; } if(nybbles[3] == 6) { nybbles[4]++; nybbles[3] = 0; } if(nybbles[4] == 10) { nybbles[5]++; nybbles[4] = 0; } return (nybbles[5] << 20) | (nybbles[4] << 16) | (nybbles[3] << 12) | (nybbles[2] << 8) | (nybbles[1] << 4) | nybbles[0]; } void cdicdic_device::decode_xa_mono(INT32 *cdic_xa_last, const UINT8 *xa, INT16 *dp) { INT32 l0 = cdic_xa_last[0]; INT32 l1 = cdic_xa_last[1]; for(INT32 b = 0; b < 18; b++) { for(INT32 s = 0; s < 4; s++) { UINT8 flags = xa[(4 + (s << 1)) ^ 1]; UINT8 shift = flags & 0xf; UINT8 filter = flags >> 4; INT32 f0 = s_cdic_adpcm_filter_coef[filter][0]; INT32 f1 = s_cdic_adpcm_filter_coef[filter][1]; for(INT32 i = 0; i < 28; i++) { INT16 d = (xa[(16 + (i << 2) + s) ^ 1] & 0xf) << 12; d = clamp((d >> shift) + (((l0 * f0) + (l1 * f1) + 32) >> 6)); *dp = d; dp++; l1 = l0; l0 = d; } flags = xa[(5 + (s << 1)) ^ 1]; shift = flags & 0xf; filter = flags >> 4; f0 = s_cdic_adpcm_filter_coef[filter][0]; f1 = s_cdic_adpcm_filter_coef[filter][1]; for(INT32 i = 0; i < 28; i++) { INT16 d = (xa[(16 + (i << 2) + s) ^ 1] >> 4) << 12; d = clamp((d >> shift) + (((l0 * f0) + (l1 * f1) + 32) >> 6)); *dp = d; dp++; l1 = l0; l0 = d; } } xa += 128; } cdic_xa_last[0] = l0; cdic_xa_last[1] = l1; } void cdicdic_device::decode_xa_mono8(int *cdic_xa_last, const unsigned char *xa, signed short *dp) { INT32 l0 = cdic_xa_last[0]; INT32 l1 = cdic_xa_last[1]; for(INT32 b = 0; b < 18; b++) { for(INT32 s = 0; s < 4; s++) { UINT8 flags = xa[(4 + s) ^ 1]; UINT8 shift = flags & 0xf; UINT8 filter = flags >> 4; INT32 f0 = s_cdic_adpcm_filter_coef[filter][0]; INT32 f1 = s_cdic_adpcm_filter_coef[filter][1]; for(INT32 i = 0; i < 28; i++) { INT16 d = (xa[(16 + (i << 2) + s) ^ 1] << 8); d = clamp((d >> shift) + (((l0 * f0) + (l1 * f1) + 32) >> 6)); *dp = d; dp++; l1 = l0; l0 = d; } } xa += 128; } cdic_xa_last[0] = l0; cdic_xa_last[1] = l1; } void cdicdic_device::decode_xa_stereo(INT32 *cdic_xa_last, const UINT8 *xa, INT16 *dp) { INT32 l0=cdic_xa_last[0]; INT32 l1=cdic_xa_last[1]; INT32 l2=cdic_xa_last[2]; INT32 l3=cdic_xa_last[3]; for(INT32 b = 0; b < 18; b++) { for(INT32 s = 0; s < 4; s++) { UINT8 flags0 = xa[(4 + (s << 1)) ^ 1]; UINT8 shift0 = flags0 & 0xf; UINT8 filter0 = flags0 >> 4; UINT8 flags1 = xa[(5 + (s << 1)) ^ 1]; UINT8 shift1 = flags1 & 0xf; UINT8 filter1 = flags1 >> 4; INT32 f0 = s_cdic_adpcm_filter_coef[filter0][0]; INT32 f1 = s_cdic_adpcm_filter_coef[filter0][1]; INT32 f2 = s_cdic_adpcm_filter_coef[filter1][0]; INT32 f3 = s_cdic_adpcm_filter_coef[filter1][1]; for(INT32 i = 0; i < 28; i++) { INT16 d=xa[(16 + (i << 2) + s) ^ 1]; INT16 d0 = (d & 0xf) << 12; INT16 d1 = (d >> 4) << 12; d0 = clamp((d0 >> shift0) + (((l0 * f0) + (l1 * f1) + 32) >> 6)); *dp = d0; dp++; l1 = l0; l0 = d0; d1 = clamp((d1 >> shift1) + (((l2 * f2) + (l3 * f3) + 32) >> 6)); *dp = d1; dp++; l3 = l2; l2 = d1; } } xa += 128; } cdic_xa_last[0] = l0; cdic_xa_last[1] = l1; cdic_xa_last[2] = l2; cdic_xa_last[3] = l3; } void cdicdic_device::decode_xa_stereo8(INT32 *cdic_xa_last, const UINT8 *xa, INT16 *dp) { INT32 l0 = cdic_xa_last[0]; INT32 l1 = cdic_xa_last[1]; INT32 l2 = cdic_xa_last[2]; INT32 l3 = cdic_xa_last[3]; for(INT32 b = 0; b < 18; b++) { for(INT32 s = 0; s < 4; s += 2) { UINT8 flags0 = xa[(4 + s) ^ 1]; UINT8 shift0 = flags0 & 0xf; UINT8 filter0 = flags0 >> 4; UINT8 flags1 = xa[(5 + s) ^ 1]; UINT8 shift1 = flags1 & 0xf; UINT8 filter1 = flags1 >> 4; INT32 f0 = s_cdic_adpcm_filter_coef[filter0][0]; INT32 f1 = s_cdic_adpcm_filter_coef[filter0][1]; INT32 f2 = s_cdic_adpcm_filter_coef[filter1][0]; INT32 f3 = s_cdic_adpcm_filter_coef[filter1][1]; for(INT32 i = 0; i < 28; i++) { INT16 d0 = (xa[(16 + (i << 2) + s + 0) ^ 1] << 8); INT16 d1 = (xa[(16 + (i << 2) + s + 1) ^ 1] << 8); d0 = clamp((d0 >> shift0) + (((l0 * f0) + (l1 * f1) + 32) >> 6)); *dp = d0; dp++; l1 = l0; l0 = d0; d1 = clamp((d1 >> shift1) + (((l2 * f2) + (l3 * f3) + 32) >> 6)); *dp = d1; dp++; l3 = l2; l2 = d1; } } xa += 128; } cdic_xa_last[0] = l0; cdic_xa_last[1] = l1; cdic_xa_last[2] = l2; cdic_xa_last[3] = l3; } void cdicdic_device::decode_audio_sector(const UINT8 *xa, INT32 triggered) { // Get XA format from sector header cdi_state *state = machine().driver_data(); const UINT8 *hdr = xa + 4; INT32 channels; INT32 bits = 4; INT32 index = 0; INT16 samples[18*28*16+16]; if(hdr[2] == 0xff && triggered == 1) { return; } verboselog(machine(), 0, "decode_audio_sector, got header type %02x\n", hdr[2] ); switch(hdr[2] & 0x3f) // ignore emphasis and reserved bits { case 0: channels = 1; m_audio_sample_freq = 37800.0f; //18900.0f; bits = 4; m_audio_sample_size = 4; break; case 1: channels=2; m_audio_sample_freq=37800.0f; bits=4; m_audio_sample_size=2; break; case 4: channels=1; m_audio_sample_freq=18900.0f; ///2.0f; bits=4; m_audio_sample_size=4; break; case 5: channels=2; m_audio_sample_freq=18900.0f; //37800.0f/2.0f; bits=4; m_audio_sample_size=2; break; case 16: channels=1; m_audio_sample_freq=37800.0f; bits=8; m_audio_sample_size=2; break; case 17: channels=2; m_audio_sample_freq=37800.0f; bits=8; m_audio_sample_size=1; break; default: fatalerror("play_xa: unhandled xa mode %08x\n",hdr[2]); } dmadac_set_frequency(&state->m_dmadac[0], 2, m_audio_sample_freq); dmadac_enable(&state->m_dmadac[0], 2, 1); switch(channels) { case 1: switch(bits) { case 4: decode_xa_mono(m_xa_last, hdr + 4, samples); for(index = 18*28*8 - 1; index >= 0; index--) { samples[index*2 + 1] = samples[index]; samples[index*2 + 0] = samples[index]; } samples[18*28*16 + 0] = samples[18*28*16 + 2] = samples[18*28*16 + 4] = samples[18*28*16 + 6] = samples[18*28*16 + 8] = samples[18*28*16 + 10] = samples[18*28*16 + 12] = samples[18*28*16 + 14] = samples[18*28*16 - 2]; samples[18*28*16 + 1] = samples[18*28*16 + 3] = samples[18*28*16 + 5] = samples[18*28*16 + 7] = samples[18*28*16 + 9] = samples[18*28*16 + 11] = samples[18*28*16 + 13] = samples[18*28*16 + 15] = samples[18*28*16 - 1]; break; case 8: decode_xa_mono8(m_xa_last, hdr + 4, samples); for(index = 18*28*8 - 1; index >= 0; index--) { samples[index*2 + 1] = samples[index]; samples[index*2 + 0] = samples[index]; } samples[18*28*8 + 0] = samples[18*28*8 + 2] = samples[18*28*8 + 4] = samples[18*28*8 + 6] = samples[18*28*8 + 8] = samples[18*28*8 + 10] = samples[18*28*8 + 12] = samples[18*28*8 + 14] = samples[18*28*8 - 2]; samples[18*28*8 + 1] = samples[18*28*8 + 3] = samples[18*28*8 + 5] = samples[18*28*8 + 7] = samples[18*28*8 + 9] = samples[18*28*8 + 11] = samples[18*28*8 + 13] = samples[18*28*8 + 15] = samples[18*28*8 - 1]; break; } break; case 2: switch(bits) { case 4: decode_xa_stereo(m_xa_last, hdr + 4, samples); samples[18*28*8 + 0] = samples[18*28*8 + 2] = samples[18*28*8 + 4] = samples[18*28*8 + 6] = samples[18*28*8 + 8] = samples[18*28*8 + 10] = samples[18*28*8 + 12] = samples[18*28*8 + 14] = samples[18*28*8 - 2]; samples[18*28*8 + 1] = samples[18*28*8 + 3] = samples[18*28*8 + 5] = samples[18*28*8 + 7] = samples[18*28*8 + 9] = samples[18*28*8 + 11] = samples[18*28*8 + 13] = samples[18*28*8 + 15] = samples[18*28*8 - 1]; //fwrite(samples, 1, 18*28*4*m_audio_sample_size, temp_adpcm); break; case 8: decode_xa_stereo8(m_xa_last, hdr + 4, samples); samples[18*28*4 + 0] = samples[18*28*4 + 2] = samples[18*28*4 + 4] = samples[18*28*4 + 6] = samples[18*28*4 + 8] = samples[18*28*4 + 10] = samples[18*28*4 + 12] = samples[18*28*4 + 14] = samples[18*28*4 - 2]; samples[18*28*4 + 1] = samples[18*28*4 + 3] = samples[18*28*4 + 5] = samples[18*28*4 + 7] = samples[18*28*4 + 9] = samples[18*28*4 + 11] = samples[18*28*4 + 13] = samples[18*28*4 + 15] = samples[18*28*4 - 1]; break; } break; } dmadac_transfer(&state->m_dmadac[0], 2, 1, 2, 18*28*2*m_audio_sample_size, samples); } // After an appropriate delay for decoding to take place... TIMER_CALLBACK_MEMBER( cdicdic_device::audio_sample_trigger ) { sample_trigger(); } void cdicdic_device::sample_trigger() { cdi_state *state = machine().driver_data(); if(m_decode_addr == 0xffff) { verboselog(machine(), 0, "%s", "Decode stop requested, stopping playback\n" ); m_audio_sample_timer->adjust(attotime::never); return; } if(!m_decode_delay) { // Indicate that data has been decoded verboselog(machine(), 0, "%s", "Flagging that audio data has been decoded\n" ); m_audio_buffer |= 0x8000; // Set the CDIC interrupt line verboselog(machine(), 0, "%s", "Setting CDIC interrupt line for soundmap decode\n" ); state->m_maincpu->set_input_line_vector(M68K_IRQ_4, 128); state->m_maincpu->set_input_line(M68K_IRQ_4, ASSERT_LINE); } else { m_decode_delay = 0; } if(CDIC_IS_VALID_SAMPLE_BUF(m_ram, m_decode_addr & 0x3ffe)) { verboselog(machine(), 0, "Hit audio_sample_trigger, with m_decode_addr == %04x, calling decode_audio_sector\n", m_decode_addr ); // Decode the data at Z+4, the same offset as a normal CD sector. decode_audio_sector(((UINT8*)m_ram) + (m_decode_addr & 0x3ffe) + 4, 1); // Swap buffer positions to indicate our new buffer position at the next read m_decode_addr ^= 0x1a00; verboselog(machine(), 0, "Updated m_decode_addr, new value is %04x\n", m_decode_addr ); //// Delay for Frequency * (18*28*2*size in bytes) before requesting more data verboselog(machine(), 0, "%s", "Data is valid, setting up a new callback\n" ); m_decode_period = attotime::from_hz(CDIC_SAMPLE_BUF_FREQ(m_ram, m_decode_addr & 0x3ffe)) * (18*28*2*CDIC_SAMPLE_BUF_SIZE(m_ram, m_decode_addr & 0x3ffe)); m_audio_sample_timer->adjust(m_decode_period); //dmadac_enable(&dmadac[0], 2, 0); } else { // Swap buffer positions to indicate our new buffer position at the next read m_decode_addr ^= 0x1a00; verboselog(machine(), 0, "%s", "Data is not valid, indicating to shut down on the next audio sample\n" ); m_decode_addr = 0xffff; m_audio_sample_timer->adjust(m_decode_period); } } TIMER_CALLBACK_MEMBER( cdicdic_device::trigger_readback_int ) { process_delayed_command(); } void cdicdic_device::process_delayed_command() { cdi_state *state = machine().driver_data(); switch(m_command) { case 0x23: // Reset Mode 1 case 0x24: // Reset Mode 2 case 0x29: // Read Mode 1 case 0x2a: // Read Mode 2 //case 0x2c: // Seek { UINT8 buffer[2560] = { 0 }; UINT32 msf = m_time >> 8; UINT32 lba = 0; int index = 0; UINT8 nybbles[6] = { msf & 0x0000000f, (msf & 0x000000f0) >> 4, (msf & 0x00000f00) >> 8, (msf & 0x0000f000) >> 12, (msf & 0x000f0000) >> 16, (msf & 0x00f00000) >> 20 }; if(msf & 0x000080) { msf &= 0xffff00; nybbles[0] = 0; nybbles[1] = 0; } if(nybbles[2] >= 2) { nybbles[2] -= 2; } else { nybbles[2] = 8 + nybbles[2]; if(nybbles[3] > 0) { nybbles[3]--; } else { nybbles[3] = 5; if(nybbles[4] > 0) { nybbles[4]--; } else { nybbles[4] = 9; nybbles[5]--; } } } lba = nybbles[0] + nybbles[1]*10 + ((nybbles[2] + nybbles[3]*10)*75) + ((nybbles[4] + nybbles[5]*10)*75*60); //printf( "Reading Mode %d sector from MSF location %06x\n", m_command - 0x28, m_time | 2 ); verboselog(machine(), 0, "Reading Mode %d sector from MSF location %06x\n", m_command - 0x28, m_time | 2 ); cdrom_read_data(m_cd, lba, buffer, CD_TRACK_RAW_DONTCARE); m_time += 0x100; if((m_time & 0x00000f00) == 0x00000a00) { m_time &= 0xfffff0ff; m_time += 0x00001000; } if((m_time & 0x0000ff00) == 0x00007500) { m_time &= 0xffff00ff; m_time += 0x00010000; if((m_time & 0x000f0000) == 0x000a0000) { m_time &= 0xfff0ffff; m_time += 0x00100000; } } if((m_time & 0x00ff0000) == 0x00600000) { m_time &= 0xff00ffff; m_time += 0x01000000; if((m_time & 0x0f000000) == 0x0a000000) { m_time &= 0xf0ffffff; m_time += 0x10000000; } } m_data_buffer &= ~0x0004; m_data_buffer ^= 0x0001; if((buffer[CDIC_SECTOR_FILE2] << 8) == m_file) { if(((buffer[CDIC_SECTOR_SUBMODE2] & (CDIC_SUBMODE_FORM | CDIC_SUBMODE_DATA | CDIC_SUBMODE_AUDIO | CDIC_SUBMODE_VIDEO)) == (CDIC_SUBMODE_FORM | CDIC_SUBMODE_AUDIO)) && (m_channel & m_audio_channel & (1 << buffer[CDIC_SECTOR_CHAN2]))) { verboselog(machine(), 0, "%s", "Audio sector\n" ); m_x_buffer |= 0x8000; //m_data_buffer |= 0x4000; m_data_buffer |= 0x0004; for(index = 6; index < 2352/2; index++) { m_ram[(m_data_buffer & 5) * (0xa00/2) + (index - 6)] = (buffer[index*2] << 8) | buffer[index*2 + 1]; } decode_audio_sector(((UINT8*)m_ram) + ((m_data_buffer & 5) * 0xa00 + 4), 0); //printf( "Setting CDIC interrupt line\n" ); verboselog(machine(), 0, "%s", "Setting CDIC interrupt line for audio sector\n" ); state->m_maincpu->set_input_line_vector(M68K_IRQ_4, 128); state->m_maincpu->set_input_line(M68K_IRQ_4, ASSERT_LINE); } else if((buffer[CDIC_SECTOR_SUBMODE2] & (CDIC_SUBMODE_DATA | CDIC_SUBMODE_AUDIO | CDIC_SUBMODE_VIDEO)) == 0x00) { m_x_buffer |= 0x8000; //m_data_buffer |= 0x4000; for(index = 6; index < 2352/2; index++) { m_ram[(m_data_buffer & 5) * (0xa00/2) + (index - 6)] = (buffer[index*2] << 8) | buffer[index*2 + 1]; } if((buffer[CDIC_SECTOR_SUBMODE2] & CDIC_SUBMODE_TRIG) == CDIC_SUBMODE_TRIG || (buffer[CDIC_SECTOR_SUBMODE2] & CDIC_SUBMODE_EOR) == CDIC_SUBMODE_EOR || (buffer[CDIC_SECTOR_SUBMODE2] & CDIC_SUBMODE_EOF) == CDIC_SUBMODE_EOF) { //printf( "Setting CDIC interrupt line\n" ); verboselog(machine(), 0, "%s", "Setting CDIC interrupt line for message sector\n" ); state->m_maincpu->set_input_line_vector(M68K_IRQ_4, 128); state->m_maincpu->set_input_line(M68K_IRQ_4, ASSERT_LINE); } else { verboselog(machine(), 0, "%s", "Message sector, ignored\n" ); } } else { m_x_buffer |= 0x8000; //m_data_buffer |= 0x4000; for(index = 6; index < 2352/2; index++) { m_ram[(m_data_buffer & 5) * (0xa00/2) + (index - 6)] = (buffer[index*2] << 8) | buffer[index*2 + 1]; } //printf( "Setting CDIC interrupt line\n" ); verboselog(machine(), 0, "%s", "Setting CDIC interrupt line for data sector\n" ); state->m_maincpu->set_input_line_vector(M68K_IRQ_4, 128); state->m_maincpu->set_input_line(M68K_IRQ_4, ASSERT_LINE); } if((buffer[CDIC_SECTOR_SUBMODE2] & CDIC_SUBMODE_EOF) == 0 && m_command != 0x23) { m_interrupt_timer->adjust(attotime::from_hz(75)); // 75Hz = 1x CD-ROM speed } else { if(m_command == 0x23) // Mode 1 Reset { m_interrupt_timer->adjust(attotime::never); } } } break; } case 0x2e: // Abort m_interrupt_timer->adjust(attotime::never); //m_data_buffer &= ~4; break; case 0x28: // Play CDDA audio { UINT8 buffer[2560] = { 0 }; int index = 0; UINT32 msf = (m_time & 0xffff7f00) >> 8; UINT32 next_msf = increment_cdda_frame_bcd((m_time & 0xffff7f00) >> 8); UINT32 rounded_next_msf = increment_cdda_sector_bcd((m_time & 0xffff0000) >> 8); UINT32 lba = 0; // UINT32 next_lba = 0; UINT8 nybbles[6] = { msf & 0x0000000f, (msf & 0x000000f0) >> 4, (msf & 0x00000f00) >> 8, (msf & 0x0000f000) >> 12, (msf & 0x000f0000) >> 16, (msf & 0x00f00000) >> 20 }; /* UINT8 next_nybbles[6] = { rounded_next_msf & 0x0000000f, (rounded_next_msf & 0x000000f0) >> 4, (rounded_next_msf & 0x00000f00) >> 8, (rounded_next_msf & 0x0000f000) >> 12, (rounded_next_msf & 0x000f0000) >> 16, (rounded_next_msf & 0x00f00000) >> 20 };*/ lba = nybbles[0] + nybbles[1]*10 + ((nybbles[2] + nybbles[3]*10)*75) + ((nybbles[4] + nybbles[5]*10)*75*60); if(!cdrom_read_data(m_cd, lba, buffer, CD_TRACK_RAW_DONTCARE)) { osd_printf_verbose("Unable to read CD-ROM data.\n"); } if(!(msf & 0x0000ff)) { // next_lba = next_nybbles[0] + next_nybbles[1]*10 + ((next_nybbles[2] + next_nybbles[3]*10)*75) + ((next_nybbles[4] + next_nybbles[5]*10)*75*60); verboselog(machine(), 0, "Playing CDDA sector from MSF location %06x\n", m_time | 2 ); state->m_cdda->start_audio(lba, rounded_next_msf); } m_ram[(m_data_buffer & 5) * (0xa00/2) + 0x924/2] = 0x0001; // CTRL m_ram[(m_data_buffer & 5) * (0xa00/2) + 0x926/2] = 0x0001; // TRACK m_ram[(m_data_buffer & 5) * (0xa00/2) + 0x928/2] = 0x0000; // INDEX m_ram[(m_data_buffer & 5) * (0xa00/2) + 0x92a/2] = (m_time >> 24) & 0x000000ff; // MIN m_ram[(m_data_buffer & 5) * (0xa00/2) + 0x92c/2] = (m_time >> 16) & 0x000000ff; // SEC m_ram[(m_data_buffer & 5) * (0xa00/2) + 0x92e/2] = (m_time >> 8) & 0x0000007f; // FRAC m_ram[(m_data_buffer & 5) * (0xa00/2) + 0x930/2] = 0x0000; // ZERO m_ram[(m_data_buffer & 5) * (0xa00/2) + 0x932/2] = (m_time >> 24) & 0x000000ff; // AMIN m_ram[(m_data_buffer & 5) * (0xa00/2) + 0x934/2] = (m_time >> 16) & 0x000000ff; // ASEC m_ram[(m_data_buffer & 5) * (0xa00/2) + 0x936/2] = (m_time >> 8) & 0x0000007f; // AFRAC m_ram[(m_data_buffer & 5) * (0xa00/2) + 0x938/2] = 0x0000; // CRC1 m_ram[(m_data_buffer & 5) * (0xa00/2) + 0x93a/2] = 0x0000; // CRC2 m_time = next_msf << 8; // the following line BREAKS 'The Apprentice', hangs when you attempt to start the game //m_interrupt_timer->adjust(attotime::from_hz(75)); m_x_buffer |= 0x8000; //m_data_buffer |= 0x4000; for(index = 6; index < 2352/2; index++) { m_ram[(m_data_buffer & 5) * (0xa00/2) + (index - 6)] = (buffer[index*2] << 8) | buffer[index*2 + 1]; } verboselog(machine(), 0, "%s", "Setting CDIC interrupt line for CDDA sector\n" ); state->m_maincpu->set_input_line_vector(M68K_IRQ_4, 128); state->m_maincpu->set_input_line(M68K_IRQ_4, ASSERT_LINE); break; } case 0x2c: // Seek { UINT8 buffer[2560] = { 0 }; int index = 0; UINT32 msf = (m_time & 0xffff7f00) >> 8; UINT32 next_msf = increment_cdda_frame_bcd((m_time & 0xffff7f00) >> 8); UINT32 lba = 0; UINT8 nybbles[6] = { msf & 0x0000000f, (msf & 0x000000f0) >> 4, (msf & 0x00000f00) >> 8, (msf & 0x0000f000) >> 12, (msf & 0x000f0000) >> 16, (msf & 0x00f00000) >> 20 }; lba = nybbles[0] + nybbles[1]*10 + ((nybbles[2] + nybbles[3]*10)*75) + ((nybbles[4] + nybbles[5]*10)*75*60); m_interrupt_timer->adjust(attotime::from_hz(75)); cdrom_read_data(m_cd, lba, buffer, CD_TRACK_RAW_DONTCARE); m_data_buffer ^= 0x0001; m_x_buffer |= 0x8000; m_data_buffer |= 0x4000; for(index = 6; index < 2352/2; index++) { m_ram[(m_data_buffer & 5) * (0xa00/2) + (index - 6)] = (buffer[index*2] << 8) | buffer[index*2 + 1]; } m_ram[(m_data_buffer & 5) * (0xa00/2) + 0x924/2] = 0x0041; // CTRL m_ram[(m_data_buffer & 5) * (0xa00/2) + 0x926/2] = 0x0001; // TRACK m_ram[(m_data_buffer & 5) * (0xa00/2) + 0x928/2] = 0x0000; // INDEX m_ram[(m_data_buffer & 5) * (0xa00/2) + 0x92a/2] = (m_time >> 24) & 0x000000ff; // MIN m_ram[(m_data_buffer & 5) * (0xa00/2) + 0x92c/2] = (m_time >> 16) & 0x000000ff; // SEC m_ram[(m_data_buffer & 5) * (0xa00/2) + 0x92e/2] = (m_time >> 8) & 0x0000007f; // FRAC m_ram[(m_data_buffer & 5) * (0xa00/2) + 0x930/2] = 0x0000; // ZERO m_ram[(m_data_buffer & 5) * (0xa00/2) + 0x932/2] = (m_time >> 24) & 0x000000ff; // AMIN m_ram[(m_data_buffer & 5) * (0xa00/2) + 0x934/2] = (m_time >> 16) & 0x000000ff; // ASEC m_ram[(m_data_buffer & 5) * (0xa00/2) + 0x936/2] = (m_time >> 8) & 0x0000007f; // AFRAC m_ram[(m_data_buffer & 5) * (0xa00/2) + 0x938/2] = 0x0000; // CRC1 m_ram[(m_data_buffer & 5) * (0xa00/2) + 0x93a/2] = 0x0000; // CRC2 m_time = next_msf << 8; verboselog(machine(), 0, "%s", "Setting CDIC interrupt line for Seek sector\n" ); state->m_maincpu->set_input_line_vector(M68K_IRQ_4, 128); state->m_maincpu->set_input_line(M68K_IRQ_4, ASSERT_LINE); break; } } } READ16_MEMBER( cdicdic_device::regs_r ) { cdi_state *state = machine().driver_data(); UINT32 addr = offset + 0x3c00/2; switch(addr) { case 0x3c00/2: // Command register verboselog(machine(), 0, "cdic_r: Command Register = %04x & %04x\n", m_command, mem_mask); return m_command; case 0x3c02/2: // Time register (MSW) verboselog(machine(), 0, "cdic_r: Time Register (MSW) = %04x & %04x\n", m_time >> 16, mem_mask); return m_time >> 16; case 0x3c04/2: // Time register (LSW) verboselog(machine(), 0, "cdic_r: Time Register (LSW) = %04x & %04x\n", (UINT16)(m_time & 0x0000ffff), mem_mask); return m_time & 0x0000ffff; case 0x3c06/2: // File register verboselog(machine(), 0, "cdic_r: File Register = %04x & %04x\n", m_file, mem_mask); return m_file; case 0x3c08/2: // Channel register (MSW) verboselog(machine(), 0, "cdic_r: Channel Register (MSW) = %04x & %04x\n", m_channel >> 16, mem_mask); return m_channel >> 16; case 0x3c0a/2: // Channel register (LSW) verboselog(machine(), 0, "cdic_r: Channel Register (LSW) = %04x & %04x\n", m_channel & 0x0000ffff, mem_mask); return m_channel & 0x0000ffff; case 0x3c0c/2: // Audio Channel register verboselog(machine(), 0, "cdic_r: Audio Channel Register = %04x & %04x\n", m_audio_channel, mem_mask); return m_audio_channel; case 0x3ff4/2: // ABUF { UINT16 temp = m_audio_buffer; m_audio_buffer &= 0x7fff; if(!((m_audio_buffer | m_x_buffer) & 0x8000)) { state->m_maincpu->set_input_line(M68K_IRQ_4, CLEAR_LINE); verboselog(machine(), 0, "%s", "Clearing CDIC interrupt line\n" ); ////printf("Clearing CDIC interrupt line\n" ); } verboselog(machine(), 0, "cdic_r: Audio Buffer Register = %04x & %04x\n", temp, mem_mask); return temp; } case 0x3ff6/2: // XBUF { UINT16 temp = m_x_buffer; m_x_buffer &= 0x7fff; if(!((m_audio_buffer | m_x_buffer) & 0x8000)) { state->m_maincpu->set_input_line(M68K_IRQ_4, CLEAR_LINE); verboselog(machine(), 0, "%s", "Clearing CDIC interrupt line\n" ); ////printf("Clearing CDIC interrupt line\n" ); } verboselog(machine(), 0, "cdic_r: X-Buffer Register = %04x & %04x\n", temp, mem_mask); return temp; } case 0x3ffa/2: // AUDCTL { if(m_audio_sample_timer->remaining().is_never()) { m_z_buffer ^= 0x0001; } verboselog(machine(), 0, "cdic_r: Z-Buffer Register = %04x & %04x\n", m_z_buffer, mem_mask); return m_z_buffer; } case 0x3ffe/2: { verboselog(machine(), 0, "cdic_r: Data buffer Register = %04x & %04x\n", m_data_buffer, mem_mask); return m_data_buffer; } default: verboselog(machine(), 0, "cdic_r: UNIMPLEMENTED: Unknown address: %04x & %04x\n", addr*2, mem_mask); return 0; } } WRITE16_MEMBER( cdicdic_device::regs_w ) { cdi_state *state = machine().driver_data(); UINT32 addr = offset + 0x3c00/2; switch(addr) { case 0x3c00/2: // Command register verboselog(machine(), 0, "cdic_w: Command Register = %04x & %04x\n", data, mem_mask); COMBINE_DATA(&m_command); break; case 0x3c02/2: // Time register (MSW) m_time &= ~(mem_mask << 16); m_time |= (data & mem_mask) << 16; verboselog(machine(), 0, "cdic_w: Time Register (MSW) = %04x & %04x\n", data, mem_mask); break; case 0x3c04/2: // Time register (LSW) m_time &= ~mem_mask; m_time |= data & mem_mask; verboselog(machine(), 0, "cdic_w: Time Register (LSW) = %04x & %04x\n", data, mem_mask); break; case 0x3c06/2: // File register verboselog(machine(), 0, "cdic_w: File Register = %04x & %04x\n", data, mem_mask); COMBINE_DATA(&m_file); break; case 0x3c08/2: // Channel register (MSW) m_channel &= ~(mem_mask << 16); m_channel |= (data & mem_mask) << 16; verboselog(machine(), 0, "cdic_w: Channel Register (MSW) = %04x & %04x\n", data, mem_mask); break; case 0x3c0a/2: // Channel register (LSW) m_channel &= ~mem_mask; m_channel |= data & mem_mask; verboselog(machine(), 0, "cdic_w: Channel Register (LSW) = %04x & %04x\n", data, mem_mask); break; case 0x3c0c/2: // Audio Channel register verboselog(machine(), 0, "cdic_w: Audio Channel Register = %04x & %04x\n", data, mem_mask); COMBINE_DATA(&m_audio_channel); break; case 0x3ff4/2: verboselog(machine(), 0, "cdic_w: Audio Buffer Register = %04x & %04x\n", data, mem_mask); COMBINE_DATA(&m_audio_buffer); break; case 0x3ff6/2: verboselog(machine(), 0, "cdic_w: X Buffer Register = %04x & %04x\n", data, mem_mask); COMBINE_DATA(&m_x_buffer); break; case 0x3ff8/2: { UINT32 start = state->m_scc->dma().channel[0].memory_address_counter; UINT32 count = state->m_scc->dma().channel[0].transfer_counter; UINT32 index = 0; UINT32 device_index = (data & 0x3fff) >> 1; UINT16 *memory = state->m_planea; verboselog(machine(), 0, "memory address counter: %08x\n", scc68070->dma.channel[0].memory_address_counter); verboselog(machine(), 0, "cdic_w: DMA Control Register = %04x & %04x\n", data, mem_mask); verboselog(machine(), 0, "Doing copy, transferring %04x bytes\n", count * 2 ); ////printf("Doing copy, transferring %04x bytes\n", count * 2 ); if((start & 0x00f00000) == 0x00200000) { start -= 0x00200000; memory = state->m_planeb; } for(index = start / 2; index < (start / 2 + count); index++) { if(state->m_scc->dma().channel[0].operation_control & OCR_D) { memory[index] = m_ram[device_index++]; } else { m_ram[device_index++] = memory[index]; } } state->m_scc->dma().channel[0].memory_address_counter += state->m_scc->dma().channel[0].transfer_counter * 2; break; } case 0x3ffa/2: { verboselog(machine(), 0, "cdic_w: Z-Buffer Register = %04x & %04x\n", data, mem_mask); COMBINE_DATA(&m_z_buffer); if(m_z_buffer & 0x2000) { attotime period = m_audio_sample_timer->remaining(); if(period.is_never()) { m_decode_addr = m_z_buffer & 0x3a00; m_decode_delay = 1; m_audio_sample_timer->adjust(attotime::from_hz(75)); } } else { m_decode_addr = 0xffff; m_audio_sample_timer->adjust(attotime::never); } break; } case 0x3ffc/2: verboselog(machine(), 0, "cdic_w: Interrupt Vector Register = %04x & %04x\n", data, mem_mask); COMBINE_DATA(&m_interrupt_vector); break; case 0x3ffe/2: { verboselog(machine(), 0, "cdic_w: Data Buffer Register = %04x & %04x\n", data, mem_mask); COMBINE_DATA(&m_data_buffer); if(m_data_buffer & 0x8000) { switch(m_command) { //case 0x24: // Reset Mode 2 case 0x2e: // Abort { m_interrupt_timer->adjust(attotime::never); dmadac_enable(&state->m_dmadac[0], 2, 0); //m_data_buffer &= 0xbfff; break; } case 0x2b: // Stop CDDA state->m_cdda->stop_audio(); m_interrupt_timer->adjust(attotime::never); break; case 0x23: // Reset Mode 1 case 0x29: // Read Mode 1 case 0x2a: // Read Mode 2 case 0x28: // Play CDDA case 0x2c: // Seek { attotime period = m_interrupt_timer->remaining(); if(!period.is_never()) { m_interrupt_timer->adjust(period); } else { if(m_command != 0x23 && m_command != 0x24) { m_interrupt_timer->adjust(attotime::from_hz(75)); } } break; } default: verboselog(machine(), 0, "Unknown CDIC command: %02x\n", m_command ); break; } } m_data_buffer &= 0x7fff; break; } default: verboselog(machine(), 0, "cdic_w: UNIMPLEMENTED: Unknown address: %04x = %04x & %04x\n", addr*2, data, mem_mask); break; } } //************************************************************************** // LIVE DEVICE //************************************************************************** //------------------------------------------------- // cdicdic_device - constructor //------------------------------------------------- cdicdic_device::cdicdic_device(const machine_config &mconfig, const char *tag, device_t *owner, UINT32 clock) : device_t(mconfig, MACHINE_CDICDIC, "CDICDIC", tag, owner, clock, "cdicdic", __FILE__) { } //------------------------------------------------- // device_start - device-specific startup //------------------------------------------------- void cdicdic_device::device_start() { save_item(NAME(m_command)); save_item(NAME(m_time)); save_item(NAME(m_file)); save_item(NAME(m_channel)); save_item(NAME(m_audio_channel)); save_item(NAME(m_audio_buffer)); save_item(NAME(m_x_buffer)); save_item(NAME(m_dma_control)); save_item(NAME(m_z_buffer)); save_item(NAME(m_interrupt_vector)); save_item(NAME(m_data_buffer)); save_item(NAME(m_audio_sample_freq)); save_item(NAME(m_audio_sample_size)); m_interrupt_timer = machine().scheduler().timer_alloc(timer_expired_delegate(FUNC(cdicdic_device::trigger_readback_int), this)); m_interrupt_timer->adjust(attotime::never); m_audio_sample_timer = machine().scheduler().timer_alloc(timer_expired_delegate(FUNC(cdicdic_device::audio_sample_trigger), this)); m_audio_sample_timer->adjust(attotime::never); m_ram = auto_alloc_array(machine(), UINT16, 0x3c00/2); } //------------------------------------------------- // device_reset - device-specific reset //------------------------------------------------- void cdicdic_device::device_reset() { cdi_state *state = machine().driver_data(); m_command = 0; m_time = 0; m_file = 0; m_channel = 0xffffffff; m_audio_channel = 0xffff; m_audio_buffer = 0; m_x_buffer = 0; m_dma_control = 0; m_z_buffer = 0; m_interrupt_vector = 0; m_data_buffer = 0; m_audio_sample_freq = 0; m_audio_sample_size = 0; m_decode_addr = 0; m_decode_delay = 0; cdrom_image_device *cdrom_dev = machine().device("cdrom"); if( cdrom_dev ) { // MESS case (has CDROM device) m_cd = cdrom_dev->get_cdrom_file(); state->m_cdda->set_cdrom(m_cd); } else { // MAME case m_cd = cdrom_open(get_disk_handle(machine(), ":cdrom")); state->m_cdda->set_cdrom(m_cd); } } WRITE16_MEMBER( cdicdic_device::ram_w ) { COMBINE_DATA(&m_ram[offset]); } READ16_MEMBER( cdicdic_device::ram_r ) { return m_ram[offset]; }