// license:BSD-3-Clause // copyright-holders: Joakim Larsson Edström /*************************************************************************** Alfaskop 41 series This driver is a part of a revivel project for Alfaskop 41 series where no known working system exists today because of its distributed nature. All parts network boots over SS3 (SDLC) from a Floppy Disk unit and nothing works unless there is a floppy in that unit. These floppies are rare and many parts have been discarded because they are useless stand alone. The goal is to emulate missing parts so a full system can be demonstrated again. Links and credits ----------------- Project home page: https://github.com/MattisLind/alfaskop_emu Dalby Datormusem - http://www.datormuseum.se/peripherals/terminals/alfaskop Bitsavers - http://bitsavers.org/pdf/ericsson/alfaskop/ Dansk Datahistorisk Forening - http://datamuseum.dk/ ****************************************************************************/ #include "emu.h" #include "cpu/m6800/m6800.h" #include "machine/6850acia.h" #include "machine/6821pia.h" #include "machine/mc6854.h" #include "machine/mc6844.h" #include "machine/pla.h" #include "video/mc6845.h" #include "screen.h" #include "machine/input_merger.h" #include "machine/output_latch.h" //#include "bus/rs232/rs232.h" //#include "machine/clock.h" #define LOG_IO (1U << 1) #define LOG_NVRAM (1U << 2) #define LOG_MIC (1U << 3) #define LOG_DIA (1U << 4) #define LOG_DMA (1U << 5) #define LOG_IRQ (1U << 6) #define LOG_ADLC (1U << 7) //#define VERBOSE (LOG_MIC|LOG_ADLC|LOG_IRQ|LOG_DMA|LOG_IO) //#define LOG_OUTPUT_STREAM std::cout #include "logmacro.h" #define LOGIO(...) LOGMASKED(LOG_IO, __VA_ARGS__) #define LOGNVRAM(...) LOGMASKED(LOG_NVRAM, __VA_ARGS__) #define LOGMIC(...) LOGMASKED(LOG_MIC, __VA_ARGS__) #define LOGDIA(...) LOGMASKED(LOG_DIA, __VA_ARGS__) #define LOGDMA(...) LOGMASKED(LOG_DMA, __VA_ARGS__) #define LOGIRQ(...) LOGMASKED(LOG_IRQ, __VA_ARGS__) #define LOGADLC(...) LOGMASKED(LOG_ADLC, __VA_ARGS__) #define PLA1_TAG "ic50" #define PLA1_INUSE 0 // 0=disabled until a PLA converter between DATAIO and MAXLOADER (mame format) exists class alfaskop4110_state : public driver_device { public: alfaskop4110_state(const machine_config &mconfig, device_type type, const char *tag) : driver_device(mconfig, type, tag) , m_maincpu(*this, "maincpu") , m_kbd_acia(*this, "kbd_acia") , m_mic_pia(*this, "mic_pia") , m_dia_pia(*this, "dia_pia") , m_crtc(*this, "crtc") , m_screen(*this, "screen") , m_vram(*this, "vram") , m_pla(*this, PLA1_TAG) , m_chargen(*this, "chargen") , m_tia_adlc(*this, "tia_adlc") , m_tia_dma(*this, "tia_dma") , m_irq(0) , m_imsk(0) { } void alfaskop4110(machine_config &config); private: virtual void machine_start() override; virtual void machine_reset() override; void mem_map(address_map &map); required_device m_maincpu; required_device m_kbd_acia; required_device m_mic_pia; required_device m_dia_pia; required_device m_crtc; required_device m_screen; required_shared_ptr m_vram; required_device m_pla; /* Video controller */ required_region_ptr m_chargen; MC6845_UPDATE_ROW(crtc_update_row); /* TIA */ required_device m_tia_adlc; required_device m_tia_dma; /* Interrupt handling */ template DECLARE_WRITE_LINE_MEMBER(irq_w); uint8_t m_irq; uint8_t m_imsk; /* Debug stuff */ /* Timer */ enum { TIMER_POLL_START, TIMER_POLL_BIT }; void device_timer(emu_timer &timer, device_timer_id id, int param, void *ptr) override; // DEBUG stuff, will be removed when hooked up towards remote peer /* zero extended SDLC poll message frame to feed into receiver as a test 0 1 1 1 1 1 1 0 ; opening flag 0x7e 0 0 0 0 0 0 0 0 ; 0x00 1 1 1 1 1 0 1 1 1 ; 0xff <- a zero needs to be inserted, done by test code 0 0 0 0 0 0 1 1 ; 0xc0 0 0 0 0 0 1 0 1 ; 0xa0 1 0 1 1 0 0 0 1 ; CRC 0x8d 1 0 1 0 1 0 1 0 ; CRC 0x55 0 1 1 1 1 1 1 0 ; closing flag 0x7e */ uint8_t txBuf[10] = {0x7e, 0x00, 0xff, 0xc0, 0xa0, 0x8d, 0x55, 0x7e}; int index = 0; int pos = 0; int ones = 0; bool flank = false; }; class alfaskop4120_state : public driver_device { public: alfaskop4120_state(const machine_config &mconfig, device_type type, const char *tag) : driver_device(mconfig, type, tag) , m_maincpu(*this, "maincpu") , m_mic_pia(*this, "mic_pia") , m_fdapia(*this, "dia_pia") { } void alfaskop4120(machine_config &config); private: void mem_map(address_map &map); required_device m_maincpu; required_device m_mic_pia; required_device m_fdapia; }; class alfaskop4101_state : public driver_device { public: alfaskop4101_state(const machine_config &mconfig, device_type type, const char *tag) : driver_device(mconfig, type, tag) , m_maincpu(*this, "maincpu") , m_mic_pia(*this, "mic_pia") { } void alfaskop4101(machine_config &config); private: void mem_map(address_map &map); required_device m_maincpu; required_device m_mic_pia; }; void alfaskop4110_state::mem_map(address_map &map) { map.unmap_value_high(); map(0x0000, 0x7fff).ram(); map(0x7800, 0x7fff).ram().share(m_vram); // TODO: Video RAM base address is configurable via NVRAM - this is the default map(0x8000, 0xefff).ram(); // NVRAM map(0xf600, 0xf6ff).lrw8(NAME([this](offs_t offset) -> uint8_t { LOGNVRAM("nvram_r %04x: %02x\n", offset, 0); return (uint8_t) 0; }), NAME( [this](offs_t offset, uint8_t data) { LOGNVRAM("nvram_w %04x: %02x\n", offset, data); })); // TIA board map(0xf700, 0xf71f).mirror(0x00).lrw8(NAME([this](offs_t offset) -> uint8_t { LOGDMA("TIA DMA_r %04x: %02x\n", offset, 0); return m_tia_dma->read(offset); }), NAME([this](offs_t offset, uint8_t data) { LOGDMA("TIA DMA_w %04x: %02x\n", offset, data); m_tia_dma->write(offset, data); })); map(0xf720, 0xf723).mirror(0x04).lrw8(NAME([this](offs_t offset) -> uint8_t { LOGADLC("TIA ADLC_r %04x: %02x\n", offset, 0); return m_tia_adlc->read(offset); }), NAME([this](offs_t offset, uint8_t data) { LOGADLC("TIA ADLC_w %04x: %02x\n", offset, data); m_tia_adlc->write(offset, data); })); // Main PCB map(0xf7d9, 0xf7d9).mirror(0x06).lrw8(NAME([this](offs_t offset) -> uint8_t { LOGIO("CRTC reg r %04x: %02x\n", offset, 0); return m_crtc->register_r(); }), NAME([this](offs_t offset, uint8_t data) { LOGIO("CRTC reg w %04x: %02x\n", offset, data); m_crtc->register_w(data);})); map(0xf7d8, 0xf7d8).mirror(0x06).lw8(NAME([this](offs_t offset, uint8_t data) { LOGIO("CRTC adr w %04x: %02x\n", offset, data); m_crtc->address_w(data); })); map(0xf7d0, 0xf7d3).mirror(0x04).lrw8(NAME([this](offs_t offset) -> uint8_t { LOGDIA("DIA pia_r %04x: %02x\n", offset, 0); return m_dia_pia->read(offset & 3); }), NAME([this](offs_t offset, uint8_t data) { LOGDIA("DIA pia_w %04x: %02x\n", offset, data); m_dia_pia->write(offset & 3, data); })); map(0xf7c4, 0xf7c7).mirror(0x00).lrw8(NAME([this](offs_t offset) -> uint8_t { uint8_t tmp = m_mic_pia->read(offset & 3); LOGMIC("\nMIC pia_r %04x: %02x\n", offset, tmp); return tmp; }), NAME([this](offs_t offset, uint8_t data) { LOGMIC("\nMIC pia_w %04x: %02x\n", offset, data); m_mic_pia->write(offset & 3, data); })); map(0xf7c0, 0xf7c1).mirror(0x02).lrw8(NAME([this](offs_t offset) -> uint8_t { LOGIO("KBD acia_r %04x: %02x\n", offset, 0); return m_kbd_acia->read(offset & 1); }), NAME([this](offs_t offset, uint8_t data) { LOGIO("KBD acia_w %04x: %02x\n", offset, data); m_kbd_acia->write(offset & 1, data); })); map(0xf7fc, 0xf7fc).mirror(0x00).lr8(NAME([this](offs_t offset) -> uint8_t { LOGIO("Address Switch 0-7\n"); return 0; })); #if PLA1_INUSE map(0xf800, 0xffe7).rom().region("roms", 0); // IRQ mask setting map(0xffe8, 0xfff7).rom().lrw8( NAME([this](offs_t offset) -> uint8_t { if (!machine().side_effects_disabled()) LOGIO("AMSK read set %04x\n", offset >> 1); m_imsk = (offset >> 1) & 7; return ((uint8_t *) memregion("roms")->base() + 0x7e8)[offset]; }), NAME([this](offs_t offset, uint8_t data) { if (!machine().side_effects_disabled()) LOGIO("AMSK write set %04x\n", offset); m_imsk = (offset >> 1) & 7; })); // Address modification map(0xfff8, 0xfff9).rom().lrw8( NAME([this](offs_t offset) -> uint8_t { uint16_t ploffs = (~m_irq & 0xff) | ((m_imsk & 0x07) << 8) | 0x000 | (0x18 << 11); uint8_t tmp = ((uint8_t *) memregion("roms")->base())[0x7e0 | offset | ((m_pla->read(ploffs) & 0xf0) >> 3)]; if (!machine().side_effects_disabled()) { LOGIO("AMOD read %04x: %02x\n", offset, tmp); LOGIO("AMOD pla read %04x: %02x ==> %04x\n", ploffs, m_pla->read(ploffs), (0xffe0 | offset | ((m_pla->read(ploffs) & 0xf0) >> 3))); } return tmp; }), NAME([this](offs_t offset, uint8_t data) // TODO: Check what a write does if anything { if (!machine().side_effects_disabled()) LOGIO("AMOD write %04x\n", offset); })); map(0xfffa, 0xffff).rom().region("roms", 0x7fa); #else map(0xf800, 0xffff).rom().region("roms", 0); #endif } void alfaskop4120_state::mem_map(address_map &map) { map.unmap_value_high(); map(0x0000, 0xefff).ram(); map(0xf600, 0xf6ff).lrw8(NAME([this](offs_t offset) -> uint8_t { LOGNVRAM("nvram_r %04x: %02x\n", offset, 0); return (uint8_t) 0; }), // TODO: Move to MRO board NAME([this](offs_t offset, uint8_t data) { LOGNVRAM("nvram_w %04x: %02x\n", offset, data); })); map(0xf740, 0xf743).mirror(0x0c).lrw8(NAME([this](offs_t offset) -> uint8_t { LOGIO("FDA pia_r %04x: %02x\n", offset, 0); return m_fdapia->read(offset & 3); }), NAME([this](offs_t offset, uint8_t data) { LOGIO("FDA pia_w %04x: %02x\n", offset, data); m_fdapia->write(offset & 3, data); })); map(0xf7c4, 0xf7c7).mirror(0x00).lrw8(NAME([this](offs_t offset) -> uint8_t { LOGMIC("MIC pia_r %04x: %02x\n", offset, 0); return m_mic_pia->read(offset & 3); }), NAME([this](offs_t offset, uint8_t data) { LOGMIC("MIC pia_w %04x: %02x\n", offset, data); m_mic_pia->write(offset & 3, data); })); map(0xf800, 0xffff).rom().region("roms", 0); } void alfaskop4101_state::mem_map(address_map &map) { map.unmap_value_high(); map(0x0000, 0xefff).ram(); map(0xf600, 0xf6ff).lrw8(NAME([this](offs_t offset) -> uint8_t { LOGNVRAM("nvram_r %04x: %02x\n", offset, 0); return (uint8_t) 0; }), NAME([this](offs_t offset, uint8_t data) { LOGNVRAM("nvram_w %04x: %02x\n", offset, data); })); map(0xf7c4, 0xf7c7).mirror(0x00).lrw8(NAME([this](offs_t offset) -> uint8_t { LOGMIC("MIC pia_r %04x: %02x\n", offset, 0); return m_mic_pia->read(offset & 3); }), NAME([this](offs_t offset, uint8_t data) { LOGMIC("MIC pia_w %04x: %02x\n", offset, data); m_mic_pia->write(offset & 3, data); })); map(0xf800, 0xffff).rom().region("roms", 0); } /* Input ports */ static INPUT_PORTS_START( alfaskop4110 ) INPUT_PORTS_END static INPUT_PORTS_START( alfaskop4120 ) INPUT_PORTS_END static INPUT_PORTS_START( alfaskop4101 ) INPUT_PORTS_END /* Interrupt handling - vector address modifyer, irq prioritizer and irq mask */ template WRITE_LINE_MEMBER( alfaskop4110_state::irq_w ) { m_irq = (m_irq & ~(1 << N)) | ((state ? 1 : 0) << N); LOGIRQ("4110 IRQ %d: %d ==> %02x\n", N, state, m_irq); m_maincpu->set_input_line(M6800_IRQ_LINE, state); } /* Simplified chargen, no attributes or special formats/features yet */ MC6845_UPDATE_ROW( alfaskop4110_state::crtc_update_row ) { offs_t base = ma + 0x4000; u32 *px = &bitmap.pix32(y); for (int i = 0; i < x_count; i++) { u8 chr = m_vram[(base + i) & 0x07ff] & 0x7f; rgb_t bg = rgb_t::white(); rgb_t fg = rgb_t::black(); u8 dots = m_chargen[chr * 16 + ra]; for (int n = 8; n > 0; n--, dots <<= 1) *px++ = BIT(dots, 7) ? fg : bg; } } void alfaskop4110_state::alfaskop4110(machine_config &config) { /* basic machine hardware */ M6800(config, m_maincpu, XTAL(19'170'000) / 18); // Verified from service manual m_maincpu->set_addrmap(AS_PROGRAM, &alfaskop4110_state::mem_map); /* Interrupt controller and address modifier PLA */ /* * 82S100 data sheet * ----------------- * * The 82S100 is a bipolar, fuse-link programmable logic array. It uses the * standard AND/OR/invert architecture to directly implement custom * um-of-product logic equations. * * Each device consists of 16 dedicated inputs and 8 dedicated outputs. Each * output is capable of being actively controlled by any or all of the 48 * product terms. The true, complement, or don't care condition of each of the * 16 inputs ANDed together comprise one P-Term. All 48 P-Terms are then OR-d * to each output. The user must then only select which P-Terms will activate * an output by disconnecting terms which do not affect the output. In addition, * each output can be fused as active high or active low. * * The 82S100 is fully TTL compatible and includes chip-enable control for * expansion of input variables and output inhibit. It features three state * outputs. * * Field programmable Ni-Cr links * 16 inputs * 8 outputs * 48 product terms * Commercial verion - N82S100 - 50ns max address access time * Power dissipation - 600mW typ * Input loading - 100uA max * Chip enable input * Three state outputs * * */ /* _____ _____ * nc FE 1 |* \_/ | 28 Vcc * IRQ7 I7 2 | | 27 I8 mask 1 * IRQ6 I6 3 | | 26 I9 mask 2 * IRQ5 I5 4 | | 25 I10 mask 3 * IRQ4 I4 5 | | 24 I11 Address &== 1111 1111 111x xxxx * IRQ3 I3 6 | 82S100 | 23 I12 AI 1 A1 * IRQ2 I2 7 | | 22 I13 AI 2 A2 * IRQ1 I1 8 | IC50 | 21 I14 AI 3 A3 * IRQ0 I0 9 | | 20 I15 AI 4 A4 * P4 F7 10 | Interrupt | 19 _CE * mask P3 F6 11 | Controller | 18 F0 IRQ * mask P2 F5 12 | PLA | 17 F1 mask register * mask P1 F4 13 | | 16 F2 interrupt latch * GND 14 |_____________| 15 F3 nc */ PLS100(config, m_pla); MC6845(config, m_crtc, XTAL(19'170'000) / 9); m_crtc->set_screen("screen"); m_crtc->set_show_border_area(false); m_crtc->set_char_width(8); m_crtc->set_update_row_callback(FUNC(alfaskop4110_state::crtc_update_row)); // VSYNC should goto IRQ1 through some logic involving MIC PIA CRA bits 0 ( 1 == enable) & 1 (1 == positive edge) //m_crtc->out_vsync_callback().set(FUNC(alfaskop4110_state::crtc_vsync); //m_crtc->out_vsync_callback().set([this](bool state) { LOGIRQ("CRTC VSYNC: %d\n", state); }); //m_crtc->out_vsync_callback().set("irq1", FUNC(input_merger_device::in_w<1>)); SCREEN(config, m_screen, SCREEN_TYPE_RASTER); m_screen->set_raw(19'170'000, 80 * 8, 0, 80 * 8, 400, 0, 400); m_screen->set_screen_update("crtc", FUNC(mc6845_device::screen_update)); PIA6821(config, m_mic_pia, 0); // Main board PIA m_mic_pia->readcb1_handler().set([this](offs_t offset) -> uint8_t { LOGMIC("<-MIC PIA: CB1 read\n"); return 0;}); m_mic_pia->cb2_handler().set([this](offs_t offset, uint8_t data) { LOGMIC("->MIC PIA: CB2 write %d\n", data); }); /* * MIC PIA interface * * Port A (DDRA=0x7a) * 0 - PA0 input - not used * 1 - PA1 output - KB reset P11 pin 23 at connector 1 == KB reset 0 == no KB reset * 2 - PA2 input - MCP test mode 1 == no test mode 0 == in test mode, * 3 - PA3 output - not used (in DTC) * 4 - PA4 output - not used (in DTC) * 5 - PA5 output - Interrupt enable 1 == Int. out on P1:7 0 == no Int. out * 6 - PA6 output - I4 latch enable 1 == I4 will be latched 0 == no I4 latch * 7 - PA7 input - Button/MCP NMI 1 == NMI from DU button 0 == NMI from MCP P4:1=low * Note: At initialization a KB reset pulse will be sent as DDRA contains all zeros: PA I functions as a * high impedance input: "active level" for KB reset generation. * * Port B (DDRB=0xff) * 0 - PB0 output - Reset PC-error 1 == Reset PC error FF 0 == Memory PC used * or PC not used * 1 - PB1 output - VMAX/VMA 1 MPU 1 == VMAX gen by MPU 0 == VMA 1 gen by MPU * 2 - PB2 output - VMAX/VMA 1 DMA 1 == VMAX gen by DMA 0 == VMA 1 gen by DMA * 3 - PB3 output - Display Memory 1 == 4KB Display Memory 0 == 8KB Display Memory * 4 - PB4 output - Option Character Generator 1 == Enabled to MIC bus 0 == Disabled from MIC bus * 5 - PB5 output - MPU Addr 1 == Mode 1 0 == Mode 0 * 6 - PB6 output - Reset 1 == Reset all but MPU 0 == No reset * and MIC PIA * 7 - PB7 output - not used */ m_mic_pia->writepa_handler().set([this](offs_t offset, uint8_t data) { LOGMIC("->MIC PIA: Port A write %02x\n", data); LOGMIC(" PA1 - KBD reset %s\n", BIT(data, 1) ? "active" : "inactive"); LOGMIC(" PA5 - Int out %s\n", BIT(data, 5) ? "enabled": "disabled"); LOGMIC(" PA6 - I4 latch %s\n", BIT(data, 6) ? "enabled": "disabled"); }); m_mic_pia->writepb_handler().set([this](offs_t offset, uint8_t data) { LOGMIC("->MIC PIA: Port B write %02x\n", data); LOGMIC(" PB0 - Reset PC-error %s\n", BIT(data, 0) ? "active" : "inactive"); LOGMIC(" PB1 - %s generated by MPU\n", BIT(data, 1) ? "VMAX" : "VMA 1"); LOGMIC(" PB2 - %s generated by DMA\n", BIT(data, 2) ? "VMAX" : "VMA 1"); LOGMIC(" PB3 - %sKB Display Memory\n", BIT(data, 3) ? "4" : "8"); LOGMIC(" PB4 - Option Char Generator %s\n", BIT(data, 4) ? "enabled" : "disabled"); LOGMIC(" PB5 - MPU Address Mode %s\n", BIT(data, 5) ? "1" : "0"); LOGMIC(" PB6 - Reset of devices %s\n", BIT(data, 6) ? "active" : "inactive"); }); m_mic_pia->readpa_handler().set([this](offs_t offset) -> uint8_t { uint8_t data = (1U << 2); // MCU is not in test mode LOGMIC("<-MIC PIA: Port A read\n"); LOGMIC(" PA2 - MCU test mode %s\n", BIT(data, 2) ? "inactive" : "active"); return 0; }); m_mic_pia->readpb_handler().set([this](offs_t offset) -> uint8_t { LOGMIC("<-MIC PIA: Port B read\n"); return 0;}); m_mic_pia->readca1_handler().set([this](offs_t offset) -> uint8_t { LOGMIC("<-MIC PIA: CA1 read\n"); return 0;}); m_mic_pia->readca2_handler().set([this](offs_t offset) -> uint8_t { LOGMIC("<-MIC PIA: CA2 read\n"); return 0;}); PIA6821(config, m_dia_pia, 0); // Display PIA, controls how the CRTC accesses memory etc m_dia_pia->readcb1_handler().set([this](offs_t offset) -> uint8_t { LOGDIA("DIA PIA: CB1_r\n"); return 0;}); m_dia_pia->cb2_handler().set([this](offs_t offset, uint8_t data) { LOGDIA("DIA PIA: CB2_w %d\n", data); }); m_dia_pia->writepa_handler().set([this](offs_t offset, uint8_t data) { LOGDIA("DIA PIA: PA_w %02x\n", data); }); m_dia_pia->writepb_handler().set([this](offs_t offset, uint8_t data) { LOGDIA("DIA PIA: PB_w %02x\n", data); }); m_dia_pia->readpa_handler().set([this](offs_t offset) -> uint8_t { LOGDIA("DIA PIA: PA_r\n"); return 0;}); m_dia_pia->readpb_handler().set([this](offs_t offset) -> uint8_t { LOGDIA("DIA PIA: PB_r\n"); return 0;}); m_dia_pia->readca1_handler().set([this](offs_t offset) -> uint8_t { LOGDIA("DIA PIA: CA1_r\n"); return 0;}); m_dia_pia->readca2_handler().set([this](offs_t offset) -> uint8_t { LOGDIA("DIA PIA: CA2_r\n"); return 0;}); ACIA6850(config, m_kbd_acia, 0); //CLOCK(config, "acia_clock", ACIA_CLOCK).signal_handler().set(FUNC(alfaskop4110_state::write_acia_clock)); m_kbd_acia->irq_handler().set("irq3", FUNC(input_merger_device::in_w<3>)); MC6854(config, m_tia_adlc, XTAL(19'170'000) / 18); // TODO: attach IRQ by IRQ 7 through descrete interrupt prioritization instead //m_tia_adlc->out_irq_cb().set([this](bool state){ LOGDMA("TIA ADLC IRQ: %s\n", state == ASSERT_LINE ? "asserted" : "cleared"); m_maincpu->set_input_line(M6800_IRQ_LINE, state); }); //m_tia_adlc->out_irq_cb().set([this](bool state){ LOGDMA("TIA ADLC IRQ: %s\n", state == ASSERT_LINE ? "asserted" : "cleared"); m_maincpu->set_input_line(M6800_IRQ_LINE, state); }); m_tia_adlc->out_irq_cb().set("irq7", FUNC(input_merger_device::in_w<7>)); m_tia_adlc->out_rdsr_cb().set([this](bool state){ LOGDMA("TIA ADLC RDSR: %d\n", state); m_tia_dma->dreq_w<1>(state); }); m_tia_adlc->out_tdsr_cb().set([this](bool state){ LOGDMA("TIA ADLC TDSR: %d\n", state); m_tia_dma->dreq_w<0>(state); }); MC6844(config, m_tia_dma, XTAL(19'170'000) / 18); //m_tia_dma->out_int_callback().set([this](bool state){ LOGDMA("TIA DMA IRQ: %d\n", state); }); // Used as DEND (end of dma) towards the ADLC through some logic m_tia_dma->out_drq1_callback().set([this](bool state){ LOGDMA("TIA DMA DRQ1: %d\n", state); m_tia_dma->dgrnt_w(state); }); //m_tia_dma->out_drq2_callback().set([this](bool state){ LOGDMA("TIA DMA DRQ2: %d\n", state); }); // Not connected m_tia_dma->in_ior_callback<1>().set([this](offs_t offset) -> uint8_t { return m_tia_adlc->dma_r(); }); m_tia_dma->out_memw_callback().set([this](offs_t offset, uint8_t data) { m_maincpu->space(AS_PROGRAM).write_byte(offset, data); }); /* 74LS273 latch inputs of interruptt sources */ INPUT_MERGER_ANY_HIGH(config, "irq0").output_handler().set(FUNC(alfaskop4110_state::irq_w<0>)); INPUT_MERGER_ANY_HIGH(config, "irq1").output_handler().set(FUNC(alfaskop4110_state::irq_w<1>)); INPUT_MERGER_ANY_HIGH(config, "irq2").output_handler().set(FUNC(alfaskop4110_state::irq_w<2>)); INPUT_MERGER_ANY_HIGH(config, "irq3").output_handler().set(FUNC(alfaskop4110_state::irq_w<3>)); INPUT_MERGER_ANY_HIGH(config, "irq4").output_handler().set(FUNC(alfaskop4110_state::irq_w<4>)); INPUT_MERGER_ANY_HIGH(config, "irq5").output_handler().set(FUNC(alfaskop4110_state::irq_w<5>)); INPUT_MERGER_ANY_HIGH(config, "irq6").output_handler().set(FUNC(alfaskop4110_state::irq_w<6>)); INPUT_MERGER_ANY_HIGH(config, "irq7").output_handler().set(FUNC(alfaskop4110_state::irq_w<7>)); } void alfaskop4110_state::machine_start() { save_item(NAME(m_irq)); save_item(NAME(m_imsk)); timer_set(attotime::from_msec(5000), TIMER_POLL_START); } void alfaskop4110_state::device_timer(emu_timer &timer, device_timer_id id, int param, void *ptr) { // Debug, inserts a poll SDLC frame through the ADLC, it ends up at address 0x140 in RAM through DMA switch (id) { case TIMER_POLL_START: /* The serial transfer of 8 bits is complete. Now trigger INT7. */ LOGADLC("Starting poll message\n"); m_tia_adlc->set_rx(0); timer_set(attotime::from_hz(300000), TIMER_POLL_BIT); break; case TIMER_POLL_BIT: if (flank) { if (index != 0 && index != 7 && BIT(txBuf[index], (pos % 8)) && ones == 5) { LOGADLC("%d%c", 2, (pos % 8) == 7 ? '\n' : ' '); m_tia_adlc->set_rx(0); ones = 0; } else { LOGADLC("%d%c", BIT(txBuf[index], (pos % 8)), (pos % 8) == 7 ? '\n' : ' '); m_tia_adlc->set_rx(BIT(txBuf[index], (pos % 8))); if (index != 0 && index != 7 && BIT(txBuf[index], (pos % 8))) ones++; else ones = 0; pos++; index = pos / 8; } } m_tia_adlc->rxc_w(flank ? 1 : 0); if (index < 8) timer_set(attotime::from_hz(300000) / 2, TIMER_POLL_BIT); flank = !flank; break; } } void alfaskop4110_state::machine_reset() { m_irq = 0x00; } void alfaskop4120_state::alfaskop4120(machine_config &config) { /* basic machine hardware */ M6800(config, m_maincpu, XTAL(19'170'000) / 18); // Verified from service manual m_maincpu->set_addrmap(AS_PROGRAM, &alfaskop4120_state::mem_map); PIA6821(config, m_mic_pia, 0); // Main Board PIA PIA6821(config, m_fdapia, 0); // Floppy Disk PIA } void alfaskop4101_state::alfaskop4101(machine_config &config) { /* basic machine hardware */ M6800(config, m_maincpu, XTAL(19'170'000) / 18); // Verified from service manual m_maincpu->set_addrmap(AS_PROGRAM, &alfaskop4101_state::mem_map); PIA6821(config, m_mic_pia, 0); // Main board PIA } /* ROM definitions */ ROM_START( alfaskop4110 ) // Display Unit ROM_REGION( 0x800, "roms", ROMREGION_ERASEFF ) ROM_LOAD( "e3405870205201.bin", 0x0000, 0x0800, CRC(23f20f7f) SHA1(6ed008e309473ab966c6b0d42a4f87c76a7b1d6e)) ROM_REGION( 0x800, "chargen", ROMREGION_ERASEFF ) ROM_LOAD( "e3405972067500.bin", 0x0000, 0x0400, CRC(fb12b549) SHA1(53783f62c5e51320a53e053fbcf8b3701d8a805f)) ROM_LOAD( "e3405972067600.bin", 0x0400, 0x0400, CRC(c7069d65) SHA1(587efcbee036d4c0c5b936cc5d7b1f97b6fe6dba)) ROM_REGION( 0xff, PLA1_TAG, 0 ) //ROM_LOAD( "dtc_a_e34062_0100_ic50_e3405970303601_ml.bin", 0x00, 0xf5, CRC(b37395f2) SHA1(a00dc77d4bef084c0ddceef618986d83c69b1d65) ) // Signetics_N82S100N.bin MAXLOADER format ROM_LOAD( "dtc_a_e34062_0100_ic50_e3405970303601.bin", 0x00, 0xfa, CRC(16339b7a) SHA1(9b313a7526460dc9bcedfda25bece91c924f0ddc) ) // Signetics_N82S100N.bin DATAIO format ROM_END ROM_START( alfaskop4120 ) // Flexible Disk Unit ROM_REGION( 0x800, "roms", ROMREGION_ERASEFF ) ROM_LOAD( "alfaskop4120.bin", 0x0000, 0x0800, NO_DUMP) ROM_END ROM_START( alfaskop4101 ) // Communication Processor Unit ROM_REGION( 0x800, "roms", ROMREGION_ERASEFF ) ROM_LOAD( "alfaskop4101.bin", 0x0000, 0x0800, NO_DUMP) ROM_END /* Driver(S) */ // Only 4101 may exist as a driver in the end making the 4110 and 4120 as slots devices on the SS3 bus, time will tell // YEAR NAME PARENT COMPAT MACHINE INPUT CLASS INIT COMPANY FULLNAME FLAGS COMP( 1984, alfaskop4110, 0, 0, alfaskop4110, alfaskop4110, alfaskop4110_state, empty_init, "Ericsson", "Alfaskop Display Unit 4110", MACHINE_IS_SKELETON) COMP( 1984, alfaskop4120, 0, 0, alfaskop4120, alfaskop4120, alfaskop4120_state, empty_init, "Ericsson", "Alfaskop Flexible Disk Unit 4120", MACHINE_IS_SKELETON) COMP( 1984, alfaskop4101, 0, 0, alfaskop4101, alfaskop4101, alfaskop4101_state, empty_init, "Ericsson", "Alfaskop Communication Processor 4101", MACHINE_IS_SKELETON)