// license:BSD-3-Clause // copyright-holders:Couriersud /* Battlezone sound info, courtesy of Al Kossow: D7 motor enable this enables the engine sound D6 start LED D5 sound enable this enables ALL sound outputs including the POKEY output D4 engine rev en this controls the engine speed the engine sound is an integrated square wave (saw tooth) that is frequency modulated by engine rev. D3 shell loud, soft/ explosion volume D2 shell enable D1 explosion loud, soft/ explosion volume D0 explosion enable gates a noise generator */ #include "emu.h" #include "includes/bzone.h" #include "sound/discrete.h" #include "sound/pokey.h" #include "speaker.h" /* This sets an amount of gain boost to apply to the final signal * that will drive it into clipping. The slider is ajusted by the * reverse factor, so that the final result is not clipped. * This allows for the user to easily adjust the sound into the clipping * range so it sounds more like a real cabinet. */ #define BZ_FINAL_GAIN 2 #define BZ_NOISE_CLOCK 12000 #define TTL_OUT 3.4 /************************************* * * Discrete Sound Defines * *************************************/ /* Discrete Sound Input Nodes */ #define BZ_INPUT NODE_01 /* at M2 LS273 */ #define BZ_INP_EXPLO NODE_10_00 #define BZ_INP_EXPLOLS NODE_10_01 #define BZ_INP_SHELL NODE_10_02 #define BZ_INP_SHELLLS NODE_10_03 #define BZ_INP_ENGREV NODE_10_04 #define BZ_INP_SOUNDEN NODE_10_05 #define BZ_INP_STARTLED NODE_10_06 #define BZ_INP_MOTEN NODE_10_07 /* Adjusters */ #define BZ_R11_POT NODE_11 /* Discrete Sound Output Nodes */ #define BZ_NOISE NODE_20 #define BZ_SHELL_SND NODE_21 #define BZ_EXPLOSION_SND NODE_22 #define BZ_ENGINE_SND NODE_23 #define BZ_POKEY_SND NODE_24 /* Parts List - Resistors */ #define BZ_R5 RES_K(1) #define BZ_R6 RES_K(4.7) #define BZ_R7 RES_K(1) #define BZ_R8 RES_K(100) #define BZ_R9 RES_K(22) #define BZ_R10 RES_K(100) #define BZ_R11 RES_K(250) #define BZ_R12 RES_K(33) #define BZ_R13 RES_K(10) #define BZ_R14 RES_K(22) #define BZ_R15 RES_K(1) #define BZ_R16 RES_K(1) #define BZ_R17 RES_K(22) #define BZ_R18 RES_K(10) #define BZ_R19 RES_K(33) #define BZ_R20 RES_K(33) #define BZ_R21 RES_K(33) #define BZ_R25 RES_K(100) #define BZ_R26 RES_K(33) #define BZ_R27 RES_K(330) #define BZ_R28 RES_K(100) #define BZ_R29 RES_K(22) #define BZ_R30 RES_K(10) #define BZ_R31 RES_K(100) #define BZ_R32 RES_K(330) #define BZ_R33 RES_K(330) #define BZ_R34 RES_K(33) #define BZ_R35 RES_K(33) /* Parts List - Capacitors */ #define BZ_C9 CAP_U(4.7) #define BZ_C11 CAP_U(0.015) #define BZ_C13 CAP_U(10) #define BZ_C14 CAP_U(10) #define BZ_C20 CAP_U(0.1) #define BZ_C21 CAP_U(0.0047) #define BZ_C22 CAP_U(0.0047) #define BZ_C29 CAP_U(0.47) /************************************* * * Discrete Sound static structs * *************************************/ static const discrete_lfsr_desc bzone_lfsr = { DISC_CLK_IS_FREQ, 16, /* Bit Length */ 0, /* Reset Value */ 3, /* Use Bit 10 (QC of second LS164) as F0 input 0 */ 14, /* Use Bit 23 (QH of third LS164) as F0 input 1 */ DISC_LFSR_XOR, /* F0 is XOR */ DISC_LFSR_NOT_IN0, /* F1 is inverted F0*/ DISC_LFSR_REPLACE, /* F2 replaces the shifted register contents */ 0x000001, /* Everything is shifted into the first bit only */ DISC_LFSR_FLAG_OUTPUT_SR_SN1, /* output the complete shift register to sub node 1*/ 15 /* Output bit */ }; #if 0 static const discrete_op_amp_filt_info bzone_explo_0 = { BZ_R18 + BZ_R19, 0, 0, 0, /* r1, r2, r3, r4 */ BZ_R33, /* rF */ BZ_C22, 0, 0, /* c1, c2, c3 */ 0, /* vRef - not used */ 22, 0 /* vP, vN */ }; static const discrete_op_amp_filt_info bzone_explo_1 = { BZ_R18, 0, 0, 0, /* r1, r2, r3, r4 */ BZ_R33, /* rF */ BZ_C22, 0, 0, /* c1, c2, c3 */ 0, /* vRef - not used */ 22, 0 /* vP, vN */ }; static const discrete_op_amp_filt_info bzone_shell_0 = { BZ_R13 + BZ_R12, 0, 0, 0, /* r1, r2, r3, r4 */ BZ_R32, /* rF */ BZ_C21, 0, 0, /* c1, c2, c3 */ 0, /* vRef - not used */ 22, 0 /* vP, vN */ }; static const discrete_op_amp_filt_info bzone_shell_1 = { BZ_R13, 0, 0, 0, /* r1, r2, r3, r4 */ BZ_R32, /* rF */ BZ_C21, 0, 0, /* c1, c2, c3 */ 0, /* vRef - not used */ 22, 0 /* vP, vN */ }; #endif static const discrete_555_desc bzone_vco_desc = { DISC_555_OUT_DC, 5.0, DEFAULT_555_CHARGE, 1.0 // Logic output }; static const discrete_mixer_desc bzone_eng_mixer_desc = { DISC_MIXER_IS_RESISTOR, {BZ_R20, BZ_R21, BZ_R34, BZ_R35}, {0, 0, 0, 0}, {0, 0, 0, 0}, 0, 0, BZ_C29, 0, /* no out cap */ 0, TTL_OUT /* inputs are logic */ }; static const discrete_mixer_desc bzone_final_mixer_desc = { DISC_MIXER_IS_RESISTOR, {BZ_R25, BZ_R28, BZ_R26 + BZ_R20 / 4, BZ_R27}, {0, 0, 0, 0}, {0, 0, 0, 0}, 0, BZ_R29, 0, BZ_C20, /* The speakers are driven by a +/- signal, just using the cap is good enough */ 0, 1 }; /************************************************************************ * * Custom Battlezone filter * * .------. r2 c * | O|-----+--ZZZZ--+-------||---------. * | 4066 | | | | * IN0 >--|c I|-. Z r1 | r5 | * '------' | Z +------ZZZZ--------+ * | Z | | * gnd | | |\ | * gnd | | \ | * '-----------|- \ | * r3 | >--+----> Netlist Node * IN1 >----ZZZZ----------------+-----------|+ / * | | / * Z r4 |/ * Z * Z * | VP = B+ * gnd * ************************************************************************/ #define BZONE_CUSTOM_FILTER__IN0 DISCRETE_INPUT(0) #define BZONE_CUSTOM_FILTER__IN1 DISCRETE_INPUT(1) #define BZONE_CUSTOM_FILTER__R1 DISCRETE_INPUT(2) #define BZONE_CUSTOM_FILTER__R2 DISCRETE_INPUT(3) #define BZONE_CUSTOM_FILTER__R3 DISCRETE_INPUT(4) #define BZONE_CUSTOM_FILTER__R4 DISCRETE_INPUT(5) #define BZONE_CUSTOM_FILTER__R5 DISCRETE_INPUT(6) #define BZONE_CUSTOM_FILTER__C DISCRETE_INPUT(7) #define BZONE_CUSTOM_FILTER__VP DISCRETE_INPUT(8) #define CD4066_R_ON 270 DISCRETE_CLASS_STEP_RESET(bzone_custom_filter, 1, double m_v_in1_gain; double m_v_p; double m_exponent; double m_gain[2]; double m_out_v; ); DISCRETE_STEP(bzone_custom_filter) { int in0 = (BZONE_CUSTOM_FILTER__IN0 == 0) ? 0 : 1; double v; if (BZONE_CUSTOM_FILTER__IN1 > 0) v = 0; v = BZONE_CUSTOM_FILTER__IN1 * m_v_in1_gain * m_gain[in0]; if (v > m_v_p) v = m_v_p; if (v < 0) v = 0; m_out_v += (v - m_out_v) * m_exponent; set_output(0, m_out_v); } DISCRETE_RESET(bzone_custom_filter) { m_gain[0] = BZONE_CUSTOM_FILTER__R1 + BZONE_CUSTOM_FILTER__R2; m_gain[0] = BZONE_CUSTOM_FILTER__R5 / m_gain[0] + 1; m_gain[1] = RES_2_PARALLEL(CD4066_R_ON, BZONE_CUSTOM_FILTER__R1) + BZONE_CUSTOM_FILTER__R2; m_gain[1] = BZONE_CUSTOM_FILTER__R5 / m_gain[1] + 1; m_v_in1_gain = RES_VOLTAGE_DIVIDER(BZONE_CUSTOM_FILTER__R3, BZONE_CUSTOM_FILTER__R4); m_v_p = BZONE_CUSTOM_FILTER__VP - OP_AMP_VP_RAIL_OFFSET; m_exponent = RC_CHARGE_EXP(BZONE_CUSTOM_FILTER__R5 * BZONE_CUSTOM_FILTER__C); m_out_v = 0.0; } /************************************* * * Discrete Sound Blocks * *************************************/ static DISCRETE_SOUND_START(bzone_discrete) /************************************************/ /* Input register mapping for Battlezone */ /************************************************/ DISCRETE_INPUT_DATA(BZ_INPUT) /* decode the bits */ DISCRETE_BITS_DECODE(NODE_10, BZ_INPUT, 0, 7, 1) /* IC M2, bits 0 - 7 */ /* the pot is 250K, but we will use a smaller range to get a better adjustment range */ DISCRETE_ADJUSTMENT(BZ_R11_POT, RES_K(75), RES_K(10), DISC_LINADJ, "R11") /************************************************/ /* NOISE */ /************************************************/ /* 12Khz clock is divided by two by B4 74LS109 */ DISCRETE_LFSR_NOISE(BZ_NOISE, /* IC H4, pin 13 */ 1, 1, BZ_NOISE_CLOCK / 2, 1.0, 0, 0.5, &bzone_lfsr) /* divide by 2 */ DISCRETE_COUNTER(NODE_31, /* IC J5, pin 8 */ 1, 0, BZ_NOISE, 0, 1, DISC_COUNT_UP, 0, DISC_CLK_ON_R_EDGE) DISCRETE_BITS_DECODE(NODE_32, NODE_SUB(BZ_NOISE, 1), 11, 14, 1) /* IC H4, pins 6, 10, 11, 12 */ DISCRETE_LOGIC_NAND4(NODE_33, /* IC J4, pin 8 */ NODE_32_00, NODE_32_01, NODE_32_02, NODE_32_03) /* LSFR bits 11-14 */ /* divide by 2 */ DISCRETE_COUNTER(NODE_34, /* IC J5, pin 6 */ 1, 0, NODE_33, 0, 1, DISC_COUNT_UP, 0, DISC_CLK_ON_R_EDGE) /************************************************/ /* Shell */ /************************************************/ DISCRETE_RC_CIRCUIT_1(NODE_40, /* IC J3, pin 9 */ BZ_INP_SHELL, NODE_31, /* INP0, INP1 */ BZ_R14 + BZ_R15, BZ_C9) DISCRETE_CUSTOM9(BZ_SHELL_SND, bzone_custom_filter, /* IC K5, pin 1 */ BZ_INP_EXPLOLS, NODE_40, /* IN0, IN1 */ BZ_R12, BZ_R13, BZ_R14, BZ_R15, BZ_R32, BZ_C21, 22, /* B+ of op-amp */ nullptr) /************************************************/ /* Explosion */ /************************************************/ DISCRETE_RC_CIRCUIT_1(NODE_50, /* IC J3, pin 3 */ BZ_INP_EXPLO, NODE_34, /* INP0, INP1 */ BZ_R17 + BZ_R16, BZ_C14) DISCRETE_CUSTOM9(BZ_EXPLOSION_SND, bzone_custom_filter, /* IC K5, pin 1 */ BZ_INP_EXPLOLS, NODE_50, /* IN0, IN1 */ BZ_R19, BZ_R18, BZ_R17, BZ_R16, BZ_R33, BZ_C22, 22, /* B+ of op-amp */ nullptr) /************************************************/ /* Engine */ /************************************************/ DISCRETE_SWITCH(NODE_61, /* effect of IC L4, pin 2 */ 1, BZ_INP_ENGREV, /* ENAB, SWITCH */ 5.0 * RES_VOLTAGE_DIVIDER(BZ_R7, BZ_R6), /* INP0 */ 5.0 * RES_VOLTAGE_DIVIDER(BZ_R7, RES_2_PARALLEL(CD4066_R_ON + BZ_R5, BZ_R6))) /* INP1 */ /* R5, R6, R7 all affect the following circuit charge discharge rates */ /* they are not emulated as their effect is less than the 5% component tolerance */ DISCRETE_RCDISC3(NODE_62, /* IC K5, pin 7 */ 1, NODE_61, BZ_R8, BZ_R9, BZ_C13, -0.5) DISCRETE_555_ASTABLE_CV(NODE_63, /* IC F3, pin 3 */ 1, /* RESET */ BZ_R10, BZ_R11_POT, BZ_C11, NODE_62, /* CV - IC F3, pin 5 */ &bzone_vco_desc) DISCRETE_LOGIC_INVERT(NODE_64, BZ_INP_MOTEN) DISCRETE_COUNTER(NODE_65, /* IC F4 */ 1, NODE_64, NODE_63, /* ENAB, RESET, CLK */ 4, 15, DISC_COUNT_UP, 0, DISC_CLK_ON_R_EDGE) /* MIN, MAX, DIR, INIT, CLKTYPE */ DISCRETE_TRANSFORM2(NODE_66, NODE_65, 7, "01>") /* QD - IC F4, pin 11 */ DISCRETE_TRANSFORM2(NODE_67, NODE_65, 15, "01=") /* Ripple - IC F4, pin 15 */ DISCRETE_COUNTER(NODE_68, /* IC F5 */ 1, NODE_64, NODE_63, /* ENAB, RESET, CLK */ 6, 15, DISC_COUNT_UP, 0, DISC_CLK_ON_R_EDGE) /* MIN, MAX, DIR, INIT, CLKTYPE */ DISCRETE_TRANSFORM2(NODE_69, NODE_68, 7, "01>") /* QD - IC F5, pin 11 */ DISCRETE_TRANSFORM2(NODE_70, NODE_68, 15, "01=") /* Ripple - IC F5, pin 15 */ DISCRETE_MIXER4(BZ_ENGINE_SND, 1, NODE_66, NODE_67, NODE_69, NODE_70, &bzone_eng_mixer_desc) /************************************************/ /* FINAL MIX */ /************************************************/ /* We won't bother emulating the final gain of op-amp IC K5, pin 14. * This signal never reaches a value where it clips, so we will * just output the final 16-bit level. */ /* Convert Pokey output to 5V Signal */ DISCRETE_INPUTX_STREAM(BZ_POKEY_SND, 0, 5.0 / 32768, 0) DISCRETE_MIXER4(NODE_280, BZ_INP_SOUNDEN, BZ_SHELL_SND, BZ_EXPLOSION_SND, BZ_ENGINE_SND, BZ_POKEY_SND, &bzone_final_mixer_desc) DISCRETE_OUTPUT(NODE_280, 48000) DISCRETE_SOUND_END void bzone_state::bzone_sounds_w(uint8_t data) { m_discrete->write(BZ_INPUT, data); m_startled = BIT(data, 6); machine().sound().system_enable(data & 0x20); } void bzone_state::bzone_audio(machine_config &config) { SPEAKER(config, "mono").front_center(); pokey_device &pokey(POKEY(config, "pokey", BZONE_MASTER_CLOCK / 8)); pokey.allpot_r().set_ioport("IN3"); pokey.set_output_rc(RES_K(10), CAP_U(0.015), 5.0); pokey.add_route(0, "discrete", 1.0, 0); DISCRETE(config, "discrete", bzone_discrete).add_route(ALL_OUTPUTS, "mono", 1.0); }