// license:CC0 // copyright-holders:Couriersud #include "devices/net_lib.h" /* * 0 = Basic hack (Norton with just amplification, no voltage cutting) * 1 = Model from LTSPICE mailing list - slow! * 2 = Simplified model using diode inputs and netlist * 3 = Model according to datasheet * 4 = Faster model by Colin Howell * * For Money Money 1 and 3 delivery comparable results. * 3 is simpler (less BJTs) and converges a lot faster. * * Model 4 uses a lot less resources and pn-junctions. The preferred new normal. */ #define USE_LM3900_MODEL (4) /* * Generic layout with 4 opamps, VCC on pin 4 and GND on pin 11 */ static NETLIST_START(opamp_layout_4_4_11) DIPPINS( /* +--------------+ */ A.OUT, /* |1 ++ 14| */ D.OUT, A.MINUS, /* |2 13| */ D.MINUS, A.PLUS, /* |3 12| */ D.PLUS, A.VCC, /* |4 11| */ A.GND, B.PLUS, /* |5 10| */ C.PLUS, B.MINUS, /* |6 9| */ C.MINUS, B.OUT, /* |7 8| */ C.OUT /* +--------------+ */ ) NET_C(A.GND, B.GND, C.GND, D.GND) NET_C(A.VCC, B.VCC, C.VCC, D.VCC) NETLIST_END() /* * Generic layout with 2 opamps, VCC on pin 8 and GND on pin 4 */ static NETLIST_START(opamp_layout_2_8_4) DIPPINS( /* +--------------+ */ A.OUT, /* |1 ++ 8| */ A.VCC, A.MINUS, /* |2 7| */ B.OUT, A.PLUS, /* |3 6| */ B.MINUS, A.GND, /* |4 5| */ B.PLUS /* +--------------+ */ ) NET_C(A.GND, B.GND) NET_C(A.VCC, B.VCC) NETLIST_END() /* * Generic layout with 2 opamps, VCC+ on pins 9/13, VCC- on pin 4 and compensation */ static NETLIST_START(opamp_layout_2_13_9_4) DIPPINS( /* +--------------+ */ A.MINUS, /* |1 ++ 14| */ A.N2, A.PLUS, /* |2 13| */ A.VCC, A.N1, /* |3 12| */ A.OUT, A.GND, /* |4 11| */ NC, B.N1, /* |5 10| */ B.OUT, B.PLUS, /* |6 9| */ B.VCC, B.MINUS, /* |7 8| */ B.N2 /* +--------------+ */ ) NET_C(A.GND, B.GND) NETLIST_END() /* * Generic layout with 1 opamp, VCC+ on pin 7, VCC- on pin 4 and compensation * // FIXME: Offset inputs are not supported! */ static NETLIST_START(opamp_layout_1_7_4) DIPPINS( /* +--------------+ */ NC /* OFFSET */, /* |1 ++ 8| */ NC, A.MINUS, /* |2 7| */ A.VCC, A.PLUS, /* |3 6| */ A.OUT, A.GND, /* |4 5| */ NC /* OFFSET */ /* +--------------+ */ ) NETLIST_END() /* * Generic layout with 1 opamp, VCC+ on pin 8, VCC- on pin 5 and compensation */ static NETLIST_START(opamp_layout_1_8_5) DIPPINS( /* +--------------+ */ NC.1, /* |1 10| */ NC.3, OFFSET.N1, /* |2 9| */ NC.2, MINUS, /* |3 8| */ VCC.PLUS, PLUS, /* |4 7| */ OUT, VCC.MINUS, /* |5 6| */ OFFSET.N2 /* +--------------+ */ ) NET_C(A.GND, VCC.MINUS) NET_C(A.VCC, VCC.PLUS) NET_C(A.MINUS, MINUS) NET_C(A.PLUS, PLUS) NET_C(A.OUT, OUT) NETLIST_END() /* * Generic layout with 1 opamp, VCC+ on pin 11, VCC- on pin 6 and compensation */ static NETLIST_START(opamp_layout_1_11_6) DIPPINS( /* +--------------+ */ NC.1, /* |1 ++ 14| */ NC.7, NC.2, /* |2 13| */ NC.6, OFFSET.N1, /* |3 12| */ NC.5, MINUS, /* |4 11| */ VCC.PLUS, PLUS, /* |5 10| */ OUT, VCC.MINUS, /* |6 9| */ OFFSET.N2, NC.3, /* |7 8| */ NC.4 /* +--------------+ */ ) NET_C(A.GND, VCC.MINUS) NET_C(A.VCC, VCC.PLUS) NET_C(A.MINUS, MINUS) NET_C(A.PLUS, PLUS) NET_C(A.OUT, OUT) NETLIST_END() static NETLIST_START(MB3614_DIP) OPAMP(A, "MB3614") OPAMP(B, "MB3614") OPAMP(C, "MB3614") OPAMP(D, "MB3614") INCLUDE(opamp_layout_4_4_11) NETLIST_END() static NETLIST_START(MC3340_DIP) // A netlist description of the Motorola MC3340 Electronic Attenuator // IC, a voltage-controlled amplifier/attenuator. It amplifies or // attenuates an input signal according to the voltage of a second, // control signal, with a maximum gain of about 12-13 dB (about a // factor of 4 in voltage), and higher control voltages giving greater // attenuation, which scales logarithmically. // The netlist here is based on the circuit schematic given in // Motorola's own data books, especially the most recent ones // published in the 1990s (e.g. _Motorola Analog/Interface ICs Device // Data, Vol. II_ (1996), p. 9-67), which are the only schematics that // include resistor values. However, the 1990s schematics are missing // one crossover connection which is present in older schematics // published in the 1970s (e.g. _Motorola Linear Integrated Circuits_ // (1979), p. 5-130). This missing connection is clearly an error // which has been fixed in this netlist; without it, the circuit won't // amplify properly, generating only a very weak output signal. // The 1990s schematics also omit a couple of diodes which are present // in the 1970s schematics. Both of these diodes have been included // here. One raises the minimum control voltage at which signal // attenuation starts, so it makes the netlist's profile of // attenuation vs. control voltage better match Motorola's charts for // the device. The other affects the level of the input "midpoint", // and including it makes the engine sound closer to that on real // 280-ZZZAP machines. // The Motorola schematics do not label components, so I've created my // own labeling scheme based on numbering components on the schematics // from top to bottom, left to right, with resistors also getting // their value (expressed European-style to avoid decimal points) as // part of the name. The netlist is also listed following the // schematics in roughly top-to-bottom, left-to-right order. // A very simple model is used for the transistors here, based on the // generic NPN default but with a larger scale current. Again, this // was chosen to better match the netlist's attenuation vs. control // voltage profile to that given in Motorola's charts for the device. // The MC3340 has the same circuit internally as an older Motorola // device, the MFC6040, which was replaced by the MC3340 in the // mid-1970s. The two chips differ only in packaging. Older arcade // games which use the MFC6040 may also benefit from this netlist // implementation. RES(R1_5K1, RES_K(5.1)) DIODE(D1, "D(IS=1e-15 N=1)") RES(R2_4K7, RES_K(4.7)) QBJT_EB(Q1, "NPN(IS=1E-13 BF=100)") RES(R3_750, RES_R(750)) RES(R4_10K, RES_K(10)) QBJT_EB(Q2, "NPN(IS=1E-13 BF=100)") RES(R5_750, RES_R(750)) RES(R6_3K9, RES_K(3.9)) RES(R7_5K1, RES_K(5.1)) RES(R8_20K, RES_K(20)) DIODE(D2, "D(IS=1e-15 N=1)") RES(R9_510, RES_R(510)) QBJT_EB(Q3, "NPN(IS=1E-13 BF=100)") QBJT_EB(Q4, "NPN(IS=1E-13 BF=100)") QBJT_EB(Q5, "NPN(IS=1E-13 BF=100)") RES(R10_1K3, RES_K(1.3)) QBJT_EB(Q6, "NPN(IS=1E-13 BF=100)") RES(R11_5K1, RES_K(5.1)) QBJT_EB(Q7, "NPN(IS=1E-13 BF=100)") QBJT_EB(Q8, "NPN(IS=1E-13 BF=100)") RES(R12_1K5, RES_K(1.5)) RES(R13_6K2, RES_K(6.2)) QBJT_EB(Q9, "NPN(IS=1E-13 BF=100)") RES(R14_5K1, RES_K(5.1)) QBJT_EB(Q10, "NPN(IS=1E-13 BF=100)") RES(R15_5K1, RES_K(5.1)) RES(R16_200, RES_R(200)) RES(R17_5K1, RES_K(5.1)) DIODE(D3, "D(IS=1e-15 N=1)") RES(R18_510, RES_R(510)) ALIAS(VCC, R1_5K1.1) NET_C(R1_5K1.1, Q1.C, Q2.C, R7_5K1.1, Q3.C, Q4.C, Q7.C, R13_6K2.1, Q10.C, R17_5K1.1) // Location of first diode present on 1970s schematics but omitted on // 1990s ones. Including it raises the control voltage threshold for // attenuation significantly. NET_C(R1_5K1.2, D1.A, Q1.B) NET_C(D1.K, R2_4K7.1) NET_C(R2_4K7.2, GND) NET_C(Q1.E, R3_750.1, R5_750.1) NET_C(R3_750.2, R4_10K.1, Q2.B) NET_C(R4_10K.2, GND) NET_C(R5_750.2, R6_3K9.1, Q3.B) ALIAS(CONTROL, R6_3K9.2) ALIAS(INPUT, Q5.B) NET_C(INPUT, R8_20K.1) // Location of second diode present on 1970s schematics but omitted on // 1990s ones. Including it is critical to making the tone of the // output engine sound match that of real 280-ZZZAP machines. NET_C(R7_5K1.2, R8_20K.2, D2.A) NET_C(D2.K, R9_510.1) NET_C(R9_510.2, GND) NET_C(Q4.E, Q6.E, Q5.C) NET_C(Q5.E, R10_1K3.1) NET_C(R10_1K3.2, GND) NET_C(Q6.B, Q7.B, Q2.E, R11_5K1.1) NET_C(R11_5K1.2, GND) NET_C(Q7.E, Q9.E, Q8.C) NET_C(Q8.E, R12_1K5.1) NET_C(R12_1K5.2, GND) NET_C(Q4.B, Q9.B, Q3.E, R14_5K1.1) NET_C(R14_5K1.2, GND) // This is where the cross-connection is erroneously omitted from // 1990s schematics. NET_C(Q6.C, R13_6K2.2, Q9.C, Q10.B) // Connection for external frequency compensation capacitor; unused // here. ALIAS(ROLLOFF, Q10.B) NET_C(Q10.E, R16_200.1, R15_5K1.1) NET_C(R15_5K1.2, GND) ALIAS(OUTPUT, R16_200.2) NET_C(R17_5K1.2, D3.A, Q8.B) NET_C(D3.K, R18_510.1) ALIAS(GND, R18_510.2) ALIAS(1, INPUT) ALIAS(2, CONTROL) ALIAS(3, GND) ALIAS(6, ROLLOFF) ALIAS(7, OUTPUT) ALIAS(8, VCC) NETLIST_END() static NETLIST_START(TL081_DIP) OPAMP(A, "TL084") INCLUDE(opamp_layout_1_7_4) NETLIST_END() static NETLIST_START(TL082_DIP) OPAMP(A, "TL084") OPAMP(B, "TL084") INCLUDE(opamp_layout_2_8_4) NETLIST_END() static NETLIST_START(TL084_DIP) OPAMP(A, "TL084") OPAMP(B, "TL084") OPAMP(C, "TL084") OPAMP(D, "TL084") INCLUDE(opamp_layout_4_4_11) NETLIST_END() static NETLIST_START(LM324_DIP) OPAMP(A, "LM324") OPAMP(B, "LM324") OPAMP(C, "LM324") OPAMP(D, "LM324") INCLUDE(opamp_layout_4_4_11) NETLIST_END() static NETLIST_START(LM2902_DIP) // Same datasheet and mostly same characteristics as LM324 OPAMP(A, "LM324") OPAMP(B, "LM324") OPAMP(C, "LM324") OPAMP(D, "LM324") INCLUDE(opamp_layout_4_4_11) NETLIST_END() static NETLIST_START(LM358_DIP) OPAMP(A, "LM358") OPAMP(B, "LM358") INCLUDE(opamp_layout_2_8_4) NETLIST_END() static NETLIST_START(UA741_DIP8) OPAMP(A, "UA741") INCLUDE(opamp_layout_1_7_4) NETLIST_END() static NETLIST_START(UA741_DIP10) OPAMP(A, "UA741") INCLUDE(opamp_layout_1_8_5) NETLIST_END() static NETLIST_START(UA741_DIP14) OPAMP(A, "UA741") INCLUDE(opamp_layout_1_11_6) NETLIST_END() static NETLIST_START(MC1558_DIP) OPAMP(A, "UA741") OPAMP(B, "UA741") INCLUDE(opamp_layout_2_8_4) NETLIST_END() static NETLIST_START(LM747_DIP) OPAMP(A, "LM747") OPAMP(B, "LM747") INCLUDE(opamp_layout_2_13_9_4) NET_C(A.VCC, B.VCC) NETLIST_END() static NETLIST_START(LM747A_DIP) OPAMP(A, "LM747A") OPAMP(B, "LM747A") INCLUDE(opamp_layout_2_13_9_4) NET_C(A.VCC, B.VCC) NETLIST_END() //- Identifier: AN6551_SIL //- Title: AN6551 Dual Operational Amplifier //- Pinalias: VCC,A.OUT,A-,A+,GND,B+,B-,B.OUT,VCC //- Package: SIL //- NamingConvention: Naming conventions follow Panasonic datasheet //- FunctionTable: //- https://datasheetspdf.com/pdf-file/182163/PanasonicSemiconductor/AN6551/1 //- static NETLIST_START(AN6551_SIL) OPAMP(A, "AN6551") OPAMP(B, "AN6551") NET_C(A.GND, B.GND) ALIAS(1, A.VCC) ALIAS(2, A.OUT) ALIAS(3, A.MINUS) ALIAS(4, A.PLUS) ALIAS(5, A.GND) ALIAS(6, B.PLUS) ALIAS(7, B.MINUS) ALIAS(8, B.OUT) ALIAS(9, B.VCC) NETLIST_END() #if USE_LM3900_MODEL == 0 static NETLIST_START(LM3900) /* * Fast norton opamp model without bandwidth */ /* Terminal definitions for calling netlists */ ALIAS(PLUS, R1.1) // Positive input ALIAS(MINUS, R2.1) // Negative input ALIAS(OUT, G1.OP) // Opamp output ... ALIAS(GND, G1.ON) // V- terminal ALIAS(VCC, DUMMY.1) // V+ terminal RES(DUMMY, RES_K(1)) NET_C(DUMMY.2, GND) /* The opamp model */ RES(R1, 1) RES(R2, 1) NET_C(R1.1, G1.IP) NET_C(R2.1, G1.IN) NET_C(R1.2, R2.2, G1.ON) VCVS(G1, 10000000) //PARAM(G1.RI, 1) PARAM(G1.RO, RES_K(8)) NETLIST_END() #endif #if USE_LM3900_MODEL == 1 // LTSPICE MODEL OF LM3900 FROM NATIONAL SEMICONDUCTOR // MADE BY HELMUT SENNEWALD, 8/6/2004 // THE LM3900 IS A SO CALLED NORTON AMPLIFIER. // // PIN ORDER: IN+ IN- VCC VSS OUT static NETLIST_START(LM3900) PARAM(E1.G, 0.5) //ALIAS(IN+, Q2.B) //ALIAS(IN-, Q2.C) //ALIAS(VCC, Q10.C) //ALIAS(VSS, Q2.E) ALIAS(PLUS, Q2.B) ALIAS(MINUS, Q2.C) ALIAS(VCC, Q10.C) ALIAS(GND, Q2.E) ALIAS(OUT, Q6.C) //CS(B1/*I=LIMIT(0, V(VCC,VSS)/10K, 0.2m)*/) CS(B1, 2e-4) CAP(C1, CAP_P(6.000000)) VCVS(E1, 1) QBJT_EB(Q1, "LM3900_NPN1") QBJT_EB(Q10, "LM3900_NPN1") QBJT_EB(Q11, "LM3900_NPN1") QBJT_EB(Q12, "LM3900_NPN1") QBJT_EB(Q2, "LM3900_NPN1") QBJT_EB(Q3, "LM3900_NPN1") QBJT_EB(Q4, "LM3900_PNP1") QBJT_EB(Q5, "LM3900_PNP1") QBJT_EB(Q6, "LM3900_PNP1") QBJT_EB(Q7, "LM3900_PNP1") QBJT_EB(Q8, "LM3900_NPN1") QBJT_EB(Q9, "LM3900_NPN1") RES(R1, RES_K(2.000000)) RES(R6, RES_K(1.600000)) NET_C(Q11.B, Q12.B, R6.2) NET_C(Q5.C, Q5.B, B1.P, Q4.B) NET_C(Q8.C, Q8.B, B1.N, R1.1, E1.IP) NET_C(Q9.B, R1.2) NET_C(R6.1, E1.OP) NET_C(Q10.C, Q5.E, Q4.E, Q11.C, Q12.C) NET_C(Q2.C, Q3.B, Q12.E) NET_C(Q2.E, Q3.E, Q9.E, C1.2, Q1.E, Q8.E, E1.ON, E1.IN, Q7.C) NET_C(Q3.C, Q6.B, C1.1, Q7.B) NET_C(Q6.E, Q10.B, Q4.C) NET_C(Q6.C, Q10.E, Q9.C, Q7.E) NET_C(Q2.B, Q1.C, Q1.B, Q11.E) NETLIST_END() #endif #if USE_LM3900_MODEL == 2 static NETLIST_START(LM3900) OPAMP(A, "LM3900") DIODE(D1, "D(IS=1e-15 N=1)") CCCS(CS1, 1) // Current Mirror ALIAS(VCC, A.VCC) ALIAS(GND, A.GND) ALIAS(PLUS, A.PLUS) ALIAS(MINUS, A.MINUS) ALIAS(OUT, A.OUT) NET_C(A.PLUS, CS1.IP) NET_C(D1.A, CS1.IN) NET_C(CS1.ON, A.MINUS) NET_C(CS1.OP, A.GND, D1.K) NETLIST_END() #endif #if USE_LM3900_MODEL == 3 static NETLIST_START(LM3900) ALIAS(VCC, Q5.C) ALIAS(GND, Q1.E) ALIAS(PLUS, Q1.B) ALIAS(MINUS, Q1.C) ALIAS(OUT, Q5.E) CAP(C1, CAP_P(6.000000)) CS(I1, 1.300000e-3) CS(I2, 200e-6) QBJT_EB(Q1, "NPN") QBJT_EB(Q2, "NPN") QBJT_EB(Q3, "PNP") QBJT_EB(Q4, "PNP") QBJT_EB(Q5, "NPN") QBJT_EB(Q6, "NPN") NET_C(Q3.E, Q5.B, I2.2) NET_C(Q3.C, Q4.E, Q5.E, I1.1) NET_C(Q5.C, I2.1) NET_C(Q1.B, Q6.C, Q6.B) NET_C(Q1.E, Q2.E, Q4.C, C1.2, I1.2, Q6.E) NET_C(Q1.C, Q2.B) NET_C(Q2.C, Q3.B, Q4.B, C1.1) NETLIST_END() #endif #if USE_LM3900_MODEL == 4 static NETLIST_START(LM3900) OPAMP(A, "OPAMP(TYPE=3 VLH=0.5 VLL=0.03 FPF=2k UGF=2.5M SLEW=1M RI=10M RO=100 DAB=0.0015)") DIODE(D1, "D(IS=6e-15 N=1)") DIODE(D2, "D(IS=6e-15 N=1)") CCCS(CS1, 1) // Current Mirror ALIAS(VCC, A.VCC) ALIAS(GND, A.GND) ALIAS(OUT, A.OUT) ALIAS(PLUS, CS1.IP) NET_C(D1.A, CS1.IN) NET_C(A.GND, D1.K) CS(CS_BIAS, 10e-6) NET_C(A.VCC, CS_BIAS.P) ALIAS(MINUS, CS1.OP) NET_C(CS1.ON, A.GND) CCVS(VS1, 200000) // current-to-voltage gain NET_C(CS1.OP, VS1.IP) NET_C(VS1.IN, CS_BIAS.N, D2.A) NET_C(D2.K, A.GND) NET_C(VS1.OP, A.MINUS) NET_C(VS1.ON, A.PLUS, A.GND) NETLIST_END() #endif NETLIST_START(opamp_lib) LOCAL_LIB_ENTRY(opamp_layout_4_4_11) LOCAL_LIB_ENTRY(opamp_layout_2_8_4) LOCAL_LIB_ENTRY(opamp_layout_2_13_9_4) LOCAL_LIB_ENTRY(opamp_layout_1_7_4) LOCAL_LIB_ENTRY(opamp_layout_1_8_5) LOCAL_LIB_ENTRY(opamp_layout_1_11_6) // FIXME: JFET Opamp may need better model // VLL and VHH for +-6V RI=10^12 (for numerical stability 10^9 is used below // RO from data sheet NET_MODEL("TL084 OPAMP(TYPE=3 VLH=0.75 VLL=0.75 FPF=10 UGF=3000k SLEW=13M RI=1000M RO=192 DAB=0.0014)") NET_MODEL("LM324 OPAMP(TYPE=3 VLH=2.0 VLL=0.2 FPF=5 UGF=500k SLEW=0.3M RI=1000k RO=50 DAB=0.00075)") NET_MODEL("LM358 OPAMP(TYPE=3 VLH=2.0 VLL=0.2 FPF=5 UGF=500k SLEW=0.3M RI=1000k RO=50 DAB=0.001)") NET_MODEL("MB3614 OPAMP(TYPE=3 VLH=1.4 VLL=0.02 FPF=3 UGF=1000k SLEW=0.6M RI=1000k RO=100 DAB=0.002)") NET_MODEL("UA741 OPAMP(TYPE=3 VLH=1.0 VLL=1.0 FPF=5 UGF=1000k SLEW=0.5M RI=2000k RO=75 DAB=0.0017)") NET_MODEL("LM747 OPAMP(TYPE=3 VLH=1.0 VLL=1.0 FPF=5 UGF=1000k SLEW=0.5M RI=2000k RO=50 DAB=0.0017)") NET_MODEL("LM747A OPAMP(TYPE=3 VLH=2.0 VLL=2.0 FPF=5 UGF=1000k SLEW=0.7M RI=6000k RO=50 DAB=0.0015)") NET_MODEL("LM748 OPAMP(TYPE=3 VLH=2.0 VLL=2.0 FPF=5 UGF=800k SLEW=0.7M RI=800k RO=60 DAB=0.001)") // TI and Motorola Datasheets differ - below are Motorola values, SLEW is average of LH and HL NET_MODEL("LM3900 OPAMP(TYPE=3 VLH=1.0 VLL=0.03 FPF=2k UGF=4M SLEW=10M RI=10M RO=2k DAB=0.0015)") NET_MODEL("AN6551 OPAMP(TYPE=3 VLH=1.0 VLL=0.03 FPF=20 UGF=2M SLEW=1M RI=10M RO=200 DAB=0.0015)") #if USE_LM3900_MODEL == 1 NET_MODEL("LM3900_NPN1 NPN(IS=1E-14 BF=150 TF=1E-9 CJC=1E-12 CJE=1E-12 VAF=150 RB=100 RE=5 IKF=0.002)") NET_MODEL("LM3900_PNP1 PNP(IS=1E-14 BF=40 TF=1E-7 CJC=1E-12 CJE=1E-12 VAF=150 RB=100 RE=5)") #endif LOCAL_LIB_ENTRY(MB3614_DIP) LOCAL_LIB_ENTRY(MC3340_DIP) LOCAL_LIB_ENTRY(TL081_DIP) LOCAL_LIB_ENTRY(TL082_DIP) LOCAL_LIB_ENTRY(TL084_DIP) LOCAL_LIB_ENTRY(LM324_DIP) LOCAL_LIB_ENTRY(LM358_DIP) LOCAL_LIB_ENTRY(LM2902_DIP) LOCAL_LIB_ENTRY(UA741_DIP8) LOCAL_LIB_ENTRY(UA741_DIP10) LOCAL_LIB_ENTRY(UA741_DIP14) LOCAL_LIB_ENTRY(MC1558_DIP) LOCAL_LIB_ENTRY(LM747_DIP) LOCAL_LIB_ENTRY(LM747A_DIP) LOCAL_LIB_ENTRY(LM3900) LOCAL_LIB_ENTRY(AN6551_SIL) NETLIST_END()