// license:BSD-3-Clause // copyright-holders:Olivier Galibert /********************************************************************* formats/upd765_dsk.h helper for simple upd765-formatted disk images *********************************************************************/ #include "emu.h" // emu_fatalerror #include "formats/upd765_dsk.h" upd765_format::upd765_format(const format *_formats) : file_header_skip_bytes(0), file_footer_skip_bytes(0) { formats = _formats; } int upd765_format::find_size(io_generic *io, uint32_t form_factor) const { uint64_t size = io_generic_size(io); for(int i=0; formats[i].form_factor; i++) { const format &f = formats[i]; if(form_factor != floppy_image::FF_UNKNOWN && form_factor != f.form_factor) continue; if(size == file_header_skip_bytes + (uint64_t) compute_track_size(f) * f.track_count * f.head_count + file_footer_skip_bytes) return i; } return -1; } int upd765_format::identify(io_generic *io, uint32_t form_factor) { int type = find_size(io, form_factor); if(type != -1) return 50; return 0; } int upd765_format::compute_track_size(const format &f) const { int track_size; if(f.sector_base_size) track_size = f.sector_base_size * f.sector_count; else { track_size = 0; for(int i=0; i != f.sector_count; i++) track_size += f.per_sector_size[i]; } return track_size; } void upd765_format::build_sector_description(const format &f, uint8_t *sectdata, desc_s *sectors, int track, int head) const { if(f.sector_base_id == -1) { for(int i=0; iget_maximal_geometry(img_tracks, img_heads); if (f.track_count > img_tracks || f.head_count > img_heads) return false; floppy_image_format_t::desc_e *desc; int current_size; int end_gap_index; switch (f.encoding) { case floppy_image::FM: desc = get_desc_fm(f, current_size, end_gap_index); break; case floppy_image::MFM: default: desc = get_desc_mfm(f, current_size, end_gap_index); break; } int total_size = 200000000/f.cell_size; int remaining_size = total_size - current_size; if(remaining_size < 0) throw emu_fatalerror("upd765_format: Incorrect track layout, max_size=%d, current_size=%d", total_size, current_size); // Fixup the end gap desc[end_gap_index].p2 = remaining_size / 16; desc[end_gap_index + 1].p2 = remaining_size & 15; desc[end_gap_index + 1].p1 >>= 16-(remaining_size & 15); int track_size = compute_track_size(f); uint8_t sectdata[40*512]; desc_s sectors[40]; for(int track=0; track < f.track_count; track++) for(int head=0; head < f.head_count; head++) { build_sector_description(f, sectdata, sectors, track, head); io_generic_read(io, sectdata, file_header_skip_bytes + (track*f.head_count + head)*track_size, track_size); generate_track(desc, track, head, sectors, f.sector_count, total_size, image); } image->set_variant(f.variant); return true; } bool upd765_format::supports_save() const { return true; } bool upd765_format::save(io_generic *io, floppy_image *image) { // Count the number of formats int formats_count; for(formats_count=0; formats[formats_count].form_factor; formats_count++) {}; // Allocate the storage for the list of testable formats for a // given cell size std::vector candidates; // Format we're finally choosing int chosen_candidate = -1; // Previously tested cell size int min_cell_size = 0; for(;;) { // Build the list of all formats for the immediately superior cell size int cur_cell_size = 0; candidates.clear(); for(int i=0; i != formats_count; i++) { if(image->get_form_factor() == floppy_image::FF_UNKNOWN || image->get_form_factor() == formats[i].form_factor) { if(formats[i].cell_size == cur_cell_size) candidates.push_back(i); else if((!cur_cell_size || formats[i].cell_size < cur_cell_size) && formats[i].cell_size > min_cell_size) { candidates.clear(); candidates.push_back(i); cur_cell_size = formats[i].cell_size; } } } min_cell_size = cur_cell_size; // No candidates with a cell size bigger than the previously // tested one, we're done if(candidates.empty()) break; // Filter with track 0 head 0 check_compatibility(image, candidates); // Nobody matches, try with the next cell size if(candidates.empty()) continue; // We have a match at that cell size, we just need to find the // best one given the geometry // If there's only one, we're done if(candidates.size() == 1) { chosen_candidate = candidates[0]; break; } // Otherwise, find the best int tracks, heads; image->get_actual_geometry(tracks, heads); chosen_candidate = candidates[0]; for(unsigned int i=1; i != candidates.size(); i++) { const format &cc = formats[chosen_candidate]; const format &cn = formats[candidates[i]]; // Handling enough sides is better than not if(cn.head_count >= heads && cc.head_count < heads) goto change; else if(cc.head_count >= heads && cn.head_count < heads) goto dont_change; // Since we're limited to two heads, at that point head // count is identical for both formats. // Handling enough tracks is better than not if(cn.track_count >= tracks && cc.track_count < tracks) goto change; else if(cc.track_count >= tracks && cn.track_count < tracks) goto dont_change; // Both are on the same side of the track count, so closest is best if(cc.track_count < tracks && cn.track_count > cc.track_count) goto change; if(cc.track_count >= tracks && cn.track_count < cc.track_count) goto change; goto dont_change; change: chosen_candidate = candidates[i]; dont_change: ; } // We have a winner, bail out break; } // No match, pick the first one and be done with it if(chosen_candidate == -1) chosen_candidate = 0; const format &f = formats[chosen_candidate]; int track_size = compute_track_size(f); uint8_t sectdata[40*512]; desc_s sectors[40]; for(int track=0; track < f.track_count; track++) for(int head=0; head < f.head_count; head++) { build_sector_description(f, sectdata, sectors, track, head); extract_sectors(image, f, sectors, track, head); io_generic_write(io, sectdata, (track*f.head_count + head)*track_size, track_size); } return true; } void upd765_format::check_compatibility(floppy_image *image, std::vector &candidates) { uint8_t bitstream[500000/8]; uint8_t sectdata[50000]; desc_xs sectors[256]; int track_size; // Extract the sectors generate_bitstream_from_track(0, 0, formats[candidates[0]].cell_size, bitstream, track_size, image); switch (formats[candidates[0]].encoding) { case floppy_image::FM: extract_sectors_from_bitstream_fm_pc(bitstream, track_size, sectors, sectdata, sizeof(sectdata)); break; case floppy_image::MFM: extract_sectors_from_bitstream_mfm_pc(bitstream, track_size, sectors, sectdata, sizeof(sectdata)); break; } // Check compatibility with every candidate, copy in-place int *ok_cands = &candidates[0]; for(unsigned int i=0; i != candidates.size(); i++) { const format &f = formats[candidates[i]]; int ns = 0; for(int j=0; j<256; j++) if(sectors[j].data) { int sid; if(f.sector_base_id == -1) { for(sid=0; sid < f.sector_count; sid++) if(f.per_sector_id[sid] == j) break; } else sid = j - f.sector_base_id; if(sid < 0 || sid > f.sector_count) goto fail; if(f.sector_base_size) { if(sectors[j].size != f.sector_base_size) goto fail; } else { if(sectors[j].size != f.per_sector_size[sid]) goto fail; } ns++; } if(ns == f.sector_count) *ok_cands++ = candidates[i]; fail: ; } candidates.resize(ok_cands - &candidates[0]); } void upd765_format::extract_sectors(floppy_image *image, const format &f, desc_s *sdesc, int track, int head) { uint8_t bitstream[500000/8]; uint8_t sectdata[50000]; desc_xs sectors[256]; int track_size; // Extract the sectors generate_bitstream_from_track(track, head, f.cell_size, bitstream, track_size, image); switch (f.encoding) { case floppy_image::FM: extract_sectors_from_bitstream_fm_pc(bitstream, track_size, sectors, sectdata, sizeof(sectdata)); break; case floppy_image::MFM: extract_sectors_from_bitstream_mfm_pc(bitstream, track_size, sectors, sectdata, sizeof(sectdata)); break; } for(int i=0; i