// license:BSD-3-Clause // copyright-holders:Olivier Galibert // Applesauce solved output formats #include "as_dsk.h" #include "ioprocs.h" #include "multibyte.h" #include namespace { template uint32_t crc32r(T &&data, uint32_t size) { // Reversed crc32 uint32_t crc = 0xffffffff; for(uint32_t i=0; i != size; i++) { crc = crc ^ data[i]; for(int j=0; j<8; j++) if(crc & 1) crc = (crc >> 1) ^ 0xedb88320; else crc = crc >> 1; } return ~crc; } template uint32_t find_tag(T &&data, size_t size, uint32_t tag) { uint32_t offset = 12; do { if(get_u32le(&data[offset]) == tag) return offset + 8; offset += get_u32le(&data[offset+4]) + 8; } while(offset < (size - 8)); return 0; } } // anonymous namespace as_format::as_format() : floppy_image_format_t() { } bool as_format::load_bitstream_track(const uint8_t *img, floppy_image &image, int head, int track, int subtrack, uint8_t idx, uint32_t off_trks, bool may_be_short, bool set_variant) { uint32_t trks_off = off_trks + (idx * 8); uint32_t track_size = get_u32le(&img[trks_off + 4]); if (track_size == 0) return false; uint32_t boff = (uint32_t)get_u16le(&img[trks_off + 0]) * 512; // With 5.25 floppies the end-of-track may be missing // if unformatted. Accept track length down to 95% of // 51090, otherwise pad it bool short_track = may_be_short && track_size < 48535; if(short_track) { std::vector buffer(6387, 0); memcpy(buffer.data(), &img[boff], (track_size + 7) / 8); generate_track_from_bitstream(track, head, buffer.data(), 51090, image, subtrack, 0xffff); } else generate_track_from_bitstream(track, head, &img[boff], track_size, image, subtrack, 0xffff); if(set_variant) image.set_variant(get_u32le(&img[trks_off + 4]) >= 90000 ? floppy_image::DSHD : floppy_image::DSDD); return true; } void as_format::load_flux_track(const uint8_t *img, floppy_image &image, int head, int track, int subtrack, uint8_t fidx, uint32_t off_trks) { uint32_t trks_off = off_trks + (fidx * 8); uint32_t boff = (uint32_t)get_u16le(&img[trks_off + 0]) * 512; uint32_t track_size = get_u32le(&img[trks_off + 4]); uint32_t total_ticks = 0; for(uint32_t i=0; i != track_size; i++) total_ticks += img[boff+i]; // There is always a pulse at index, and it's // the last one in the stream std::vector &buf = image.get_buffer(track, head, subtrack); buf.push_back(floppy_image::MG_F | 0); uint32_t cpos = 0; for(uint32_t i=0; i != track_size; i++) { uint8_t step = img[boff+i]; cpos += step; if(step != 0xff && i != track_size-1) buf.push_back(floppy_image::MG_F | uint64_t(cpos)*200000000/total_ticks); } } as_format::tdata as_format::analyze_for_save(const floppy_image &image, int head, int track, int subtrack, int speed_zone) { // 200000000 / 60.0 * 1.979e-6 ~= 6.5967 static const int cell_size_per_speed_zone[7] = { 394 * 65967 / 10000, 429 * 65967 / 10000, 472 * 65967 / 10000, 525 * 65967 / 10000, 590 * 65967 / 10000, 3915, 1000 }; static const int ticks_per_speed_zone[7] = { 60*8000000 / 394, 60*8000000 / 429, 60*8000000 / 472, 60*8000000 / 525, 60*8000000 / 590, 1333333, 1600000 }; tdata result; if(!image.track_is_formatted(track, head, subtrack)) return result; // Generate a bitstream to get the data and whether the phase is clean int cell_size = cell_size_per_speed_zone[speed_zone]; int max_delta; std::vector bitstream = generate_bitstream_from_track(track, head, cell_size, image, subtrack, &max_delta); // Bitstreams encodable as non-flux have a max_delta as 10% or less, otherwise it's 40% or more. Use 20% as the limit if(max_delta <= cell_size/5) { result.track_size = bitstream.size(); result.data.resize((bitstream.size()+7)/8, 0); for(unsigned j=0; j != bitstream.size(); j++) if(bitstream[j]) result.data[j >> 3] |= 0x80 >> (j & 7); return result; } result.flux = true; const std::vector &tbuf = image.get_buffer(track, head, subtrack); uint32_t first_edge = 0, last_edge = 0; for(uint32_t fp : tbuf) if((fp & floppy_image::MG_MASK) == floppy_image::MG_F) { first_edge = fp & floppy_image::TIME_MASK; break; } for(auto i = tbuf.rbegin(); i != tbuf.rend(); ++i) if((*i & floppy_image::MG_MASK) == floppy_image::MG_F) { last_edge = *i & floppy_image::TIME_MASK; break; } int dt = last_edge - 200000000; if((-dt) < first_edge) dt = first_edge; if(dt < -10000 || dt > 10000) dt = 0; uint32_t cur_tick = 0; uint64_t ticks = ticks_per_speed_zone[speed_zone]; for(uint32_t fp : tbuf) if((fp & floppy_image::MG_MASK) == floppy_image::MG_F) { uint32_t next_tick = ((fp & floppy_image::TIME_MASK) - dt) * ticks / 200000000; uint32_t cdt = next_tick - cur_tick; if(cdt) { while(cdt >= 255) { result.data.push_back(255); cdt -= 255; } result.data.push_back(cdt); } cur_tick = next_tick; } uint32_t cdt = ticks - cur_tick; if(cdt) { while(cdt >= 255) { result.data.push_back(255); cdt -= 255; } result.data.push_back(cdt); } result.track_size = result.data.size(); return result; } std::pair as_format::count_blocks(const std::vector &tracks) { int max_blocks = 0; int total_blocks = 0; for(const auto &t : tracks) { int blocks = (t.data.size() + 511) / 512; total_blocks += blocks; if(max_blocks < blocks) max_blocks = blocks; } return std::make_pair(total_blocks, max_blocks); } bool as_format::test_flux(const std::vector &tracks) { for(const auto &t : tracks) if(t.flux) return true; return false; } void as_format::save_tracks(std::vector &data, const std::vector &tracks, uint32_t total_blocks, bool has_flux) { put_u32le(&data[80], 0x50414d54); // TMAP put_u32le(&data[84], 160); // size uint32_t fstart = 1536 + total_blocks*512; if(has_flux) { put_u32le(&data[fstart], 0x58554c46); put_u32le(&data[fstart+4], 160); fstart += 8; } memset(data.data()+88, 0xff, 160); if(has_flux) memset(data.data()+fstart, 0xff, 160); uint8_t tcount = 0; for(int i=0; i != 160 ; i++) { if(!tracks[i].data.empty()) { if(!tracks[i].flux) data[88+i] = tcount; else data[fstart+i] = tcount; tcount++; } } put_u32le(&data[248], 0x534b5254); // TRKS put_u32le(&data[252], 1280 + total_blocks*512); // size uint8_t tid = 0; uint16_t tb = 3; for(int i=0; i != 160 ; i++) if(!tracks[i].data.empty()) { int size = tracks[i].data.size(); int blocks = (size + 511) / 512; memcpy(data.data() + tb*512, tracks[i].data.data(), size); put_u16le(&data[256 + tid*8], tb); put_u16le(&data[256 + tid*8 + 2], blocks); put_u32le(&data[256 + tid*8 + 4], tracks[i].track_size); tb += blocks; tid ++; } put_u32le(&data[8], crc32r(&data[12], data.size() - 12)); } woz_format::woz_format() : as_format() { } const char *woz_format::name() const noexcept { return "woz"; } const char *woz_format::description() const noexcept { return "Apple II WOZ Image"; } const char *woz_format::extensions() const noexcept { return "woz"; } bool woz_format::supports_save() const noexcept { return true; } const uint8_t woz_format::signature[8] = { 0x57, 0x4f, 0x5a, 0x31, 0xff, 0x0a, 0x0d, 0x0a }; const uint8_t woz_format::signature2[8] = { 0x57, 0x4f, 0x5a, 0x32, 0xff, 0x0a, 0x0d, 0x0a }; int woz_format::identify(util::random_read &io, uint32_t form_factor, const std::vector &variants) const { uint8_t header[8]; auto const [err, actual] = read_at(io, 0, header, 8); if(err || (8 != actual)) return 0; if(!memcmp(header, signature, 8)) return FIFID_SIGN; if(!memcmp(header, signature2, 8)) return FIFID_SIGN; return 0; } bool woz_format::load(util::random_read &io, uint32_t form_factor, const std::vector &variants, floppy_image &image) const { uint64_t image_size; if(io.length(image_size)) return false; auto const [err, img, actual] = read_at(io, 0, image_size); if(err || (actual != image_size)) return false; // Check signature if((memcmp(&img[0], signature, 8)) && (memcmp(&img[0], signature2, 8))) return false; uint32_t woz_vers = 1; if(!memcmp(&img[0], signature2, 8)) woz_vers = 2; // Check integrity uint32_t crc = crc32r(&img[12], image_size - 12); if(crc != get_u32le(&img[8])) return false; uint32_t off_info = find_tag(img, image_size, 0x4f464e49); uint32_t off_tmap = find_tag(img, image_size, 0x50414d54); uint32_t off_trks = find_tag(img, image_size, 0x534b5254); // uint32_t off_writ = find_tag(img, image_size, 0x54495257); if(!off_info || !off_tmap || !off_trks) return false; uint32_t info_vers = img[off_info + 0]; if(info_vers < 1 || info_vers > 3) return false; uint16_t off_flux = (info_vers < 3) ? 0 : get_u16le(&img[off_info + 46]); uint16_t flux_size = (info_vers < 3) ? 0 : get_u16le(&img[off_info + 48]); if(!flux_size) off_flux = 0; bool is_35 = img[off_info + 1] == 2; if((form_factor == floppy_image::FF_35 && !is_35) || (form_factor == floppy_image::FF_525 && is_35)) return false; unsigned int limit = is_35 ? 160 : 141; if(is_35) image.set_form_variant(floppy_image::FF_35, floppy_image::SSDD); else image.set_form_variant(floppy_image::FF_525, floppy_image::SSSD); if(woz_vers == 1) { for (unsigned int trkid = 0; trkid != limit; trkid++) { int head = is_35 && trkid >= 80 ? 1 : 0; int track = is_35 ? trkid % 80 : trkid / 4; int subtrack = is_35 ? 0 : trkid & 3; uint8_t idx = img[off_tmap + trkid]; if(idx != 0xff) { uint32_t boff = off_trks + 6656*idx; if (get_u16le(&img[boff + 6648]) == 0) return false; generate_track_from_bitstream(track, head, &img[boff], get_u16le(&img[boff + 6648]), image, subtrack, get_u16le(&img[boff + 6650])); if(is_35 && !track && head) image.set_variant(floppy_image::DSDD); } } } else if(woz_vers == 2) { for (unsigned int trkid = 0; trkid != limit; trkid++) { int head = is_35 && trkid & 1 ? 1 : 0; int track = is_35 ? trkid >> 1 : trkid / 4; int subtrack = is_35 ? 0 : trkid & 3; uint8_t idx = img[off_tmap + trkid]; uint8_t fidx = off_flux ? img[off_flux*512 + 8 + trkid] : 0xff; if(fidx != 0xff) { load_flux_track(&img[0], image, head, track, subtrack, fidx, off_trks); } else if(idx != 0xff) { if(!load_bitstream_track(&img[0], image, head, track, subtrack, idx, off_trks, !is_35, is_35 && !track && head)) return false; } } } else return false; return true; } bool woz_format::save(util::random_read_write &io, const std::vector &variants, const floppy_image &image) const { std::vector tracks(160); bool twosided = false; if(image.get_form_factor() == floppy_image::FF_525) { for(unsigned int i=0; i != 141; i++) tracks[i] = analyze_for_save(image, 0, i >> 2, i & 3, 5); } else if(image.get_variant() == floppy_image::DSHD) { for(unsigned int i=0; i != 160; i++) { tracks[i] = analyze_for_save(image, i & 1, i >> 1, 0, 6); if((i & 1) && tracks[i].track_size) twosided = true; } } else { for(unsigned int i=0; i != 160; i++) { tracks[i] = analyze_for_save(image, i & 1, i >> 1, 0, i / (2*16)); if((i & 1) && tracks[i].track_size) twosided = true; } } auto [total_blocks, max_blocks] = count_blocks(tracks); bool has_flux = test_flux(tracks); std::vector data(1536 + total_blocks*512 + (has_flux ? 512 : 0), 0); memcpy(&data[0], signature2, 8); put_u32le(&data[12], 0x4f464e49); // INFO put_u32le(&data[16], 60); // size data[20] = 3; // chunk version data[21] = image.get_form_factor() == floppy_image::FF_525 ? 1 : 2; data[22] = 0; // not write protected data[23] = 1; // synchronized, since our internal format is data[24] = 1; // weak bits are generated, not stored data[25] = 'M'; data[26] = 'A'; data[27] = 'M'; data[28] = 'E'; memset(&data[29], ' ', 32-4); data[57] = twosided ? 2 : 1; data[58] = 0; // boot sector unknown data[59] = image.get_form_factor() == floppy_image::FF_525 ? 32 : image.get_variant() == floppy_image::DSHD ? 8 : 16; put_u16le(&data[60], 0); // compatibility unknown put_u16le(&data[62], 0); // needed RAM unknown put_u16le(&data[64], max_blocks); put_u16le(&data[66], has_flux ? total_blocks+3 : 0); put_u16le(&data[68], max_blocks); save_tracks(data, tracks, total_blocks, has_flux); /*auto const [err, actual] =*/ write_at(io, 0, data.data(), data.size()); // FIXME: check for errors return true; } const woz_format FLOPPY_WOZ_FORMAT; moof_format::moof_format() : as_format() { } const char *moof_format::name() const noexcept { return "moof"; } const char *moof_format::description() const noexcept { return "Macintosh MOOF Image"; } const char *moof_format::extensions() const noexcept { return "moof"; } bool moof_format::supports_save() const noexcept { return true; } const uint8_t moof_format::signature[8] = { 0x4d, 0x4f, 0x4f, 0x46, 0xff, 0x0a, 0x0d, 0x0a }; int moof_format::identify(util::random_read &io, uint32_t form_factor, const std::vector &variants) const { uint8_t header[8]; auto const [err, actual] = read_at(io, 0, header, 8); if(err || (8 != actual)) return 0; if(!memcmp(header, signature, 8)) return FIFID_SIGN; return 0; } bool moof_format::load(util::random_read &io, uint32_t form_factor, const std::vector &variants, floppy_image &image) const { uint64_t image_size; if(io.length(image_size)) return false; auto const [err, img, actual] = read_at(io, 0, image_size); if(err || (actual != image_size)) return false; // Check signature if(memcmp(&img[0], signature, 8)) return false; // Check integrity uint32_t crc = crc32r(&img[12], image_size - 12); if(crc != get_u32le(&img[8])) return false; uint32_t off_info = find_tag(img, image_size, 0x4f464e49); uint32_t off_tmap = find_tag(img, image_size, 0x50414d54); uint32_t off_trks = find_tag(img, image_size, 0x534b5254); if(!off_info || !off_tmap || !off_trks) return false; uint32_t info_vers = img[off_info + 0]; if(info_vers != 1) return false; uint16_t off_flux = get_u16le(&img[off_info + 40]); uint16_t flux_size = get_u16le(&img[off_info + 42]); if(!flux_size) off_flux = 0; switch(img[off_info + 1]) { case 1: image.set_form_variant(floppy_image::FF_35, floppy_image::SSDD); break; case 2: image.set_form_variant(floppy_image::FF_35, floppy_image::DSDD); break; case 3: image.set_form_variant(floppy_image::FF_35, floppy_image::DSHD); break; default: return false; } for (unsigned int trkid = 0; trkid != 160; trkid++) { int head = trkid & 1; int track = trkid >> 1; uint8_t idx = img[off_tmap + trkid]; uint8_t fidx = off_flux ? img[off_flux*512 + 8 + trkid] : 0xff; if(fidx != 0xff) { load_flux_track(&img[0], image, head, track, 0, fidx, off_trks); } else if(idx != 0xff) { if(!load_bitstream_track(&img[0], image, head, track, 0, idx, off_trks, false, false)) return false; } } return true; } bool moof_format::save(util::random_read_write &io, const std::vector &variants, const floppy_image &image) const { std::vector tracks(160); bool twosided = false; bool is_hd = false; if(image.get_variant() == floppy_image::DSHD) { twosided = true; is_hd = true; for(unsigned int i=0; i != 160; i++) tracks[i] = analyze_for_save(image, i & 1, i >> 1, 0, 6); } else { for(unsigned int i=0; i != 160; i++) { tracks[i] = analyze_for_save(image, i & 1, i >> 1, 0, i / (2*16)); if((i & 1) && tracks[i].track_size) twosided = true; } } auto [total_blocks, max_blocks] = count_blocks(tracks); bool has_flux = test_flux(tracks); std::vector data(1536 + total_blocks*512 + (has_flux ? 512 : 0), 0); memcpy(&data[0], signature, 8); put_u32le(&data[12], 0x4f464e49); // INFO put_u32le(&data[16], 60); // size data[20] = 1; // chunk version data[21] = is_hd ? 3 : twosided ? 2 : 1; // variant data[22] = 0; // not write protected data[23] = 1; // synchronized, since our internal format is data[24] = is_hd ? 8 : 16; // optimal timing data[25] = 'M'; data[26] = 'A'; data[27] = 'M'; data[28] = 'E'; memset(&data[29], ' ', 32-4); data[57] = 0; // pad put_u16le(&data[58], max_blocks); put_u16le(&data[60], has_flux ? total_blocks+3 : 0); put_u16le(&data[62], max_blocks); save_tracks(data, tracks, total_blocks, has_flux); /*auto const [err, actual] =*/ write_at(io, 0, data.data(), data.size()); // FIXME: check for errors return true; } const moof_format FLOPPY_MOOF_FORMAT;