/********************************************************************* ap_dsk35.c Apple 3.5" disk images This code supports 3.5" 400k/800k disks used in early Macintoshes and the Apple IIgs, and 3.5" 1440k MFM disks used on most Macintoshes. These disks have the following properties: 400k: 80 tracks, 1 head 800k: 80 tracks, 2 heads Tracks 0-15 have 12 sectors each Tracks 16-31 have 11 sectors each Tracks 32-47 have 10 sectors each Tracks 48-63 have 9 sectors each Tracks 64-79 have 8 sectors each 1440k disks are simply 80 tracks, 2 heads and 18 sectors per track. Each sector on 400/800k disks has 524 bytes, 512 of which are really used by the Macintosh (80 tracks) * (avg of 10 sectors) * (512 bytes) * (2 sides) = 800 kB Data is nibblized : 3 data bytes -> 4 bytes on disk. In addition to 512 logical bytes, each sector contains 800 physical bytes. Here is the layout of the physical sector: Pos 0 0xFF (pad byte where head is turned on ???) 1-35 self synch 0xFFs (7*5) (42 bytes actually written to media) 36 0xD5 37 0xAA 38 0x96 39 diskbytes[(track number) & 0x3F] 40 diskbytes[(sector number)] 41 diskbytes[("side")] 42 diskbytes[("format byte")] 43 diskbytes[("sum")] 44 0xDE 45 0xAA 46 pad byte where head is turned off/on (0xFF here) 47-51 self synch 0xFFs (6 bytes actually written to media) 52 0xD5 53 0xAA 54 0xAD 55 spare byte, generally diskbytes[(sector number)] 56-754 "nibblized" sector data ... 755-758 checksum 759 0xDE 760 0xAA 761 pad byte where head is turned off (0xFF here) MFM Track layout for 1440K disks: Pos --------- track ID 0 0x4E (x80) 80 00 (x12) 92 C2 (x3) Mark byte 93 FC Index mark 94 4E (x50) --------- sector ID 144 00 (x12) 156 A1 (x3) Mark byte 159 FE Address mark 160 xx Track number 161 xx Side number 162 xx Sector number 163 xx Sector length 164/165 xx CRC 166 4E (x22) --------- sector data 188 00 (x12) 200 A1 (x3) Mark byte 203 FB Data address mark 204 xx (x256) data 460 4E (x54) (repeat from sector ID to fill track; end of track is padded with 4E) Note : "Self synch refers to a technique whereby two zeroes are inserted between each synch byte written to the disk.", i.e. "0xFF, 0xFF, 0xFF, 0xFF, 0xFF" is actually "0xFF, 0x3F, 0xCF, 0xF3, 0xFC, 0xFF" on disk. Since the IWM assumes the data transfer is complete when the MSBit of its shift register is 1, we do read 4 0xFF, even though they are not contiguous on the disk media. Some reflexion shows that 4 synch bytes allow the IWM to synchronize with the trailing data. Format byte codes: 0x00 Apple II 0x01 Lisa 0x02 Mac MFS (single sided)? 0x22 Mac MFS (double sided)? *********************************************************************/ #include #include #include "formats/ap_dsk35.h" struct apple35_tag { UINT32 data_offset; UINT32 data_size; UINT8 format_byte; UINT8 sides; unsigned int is_1440k : 1; /* stuff used in DiskCopy images */ UINT32 tag_offset; UINT32 tag_size; }; /* normal number of sector for each track */ static const UINT8 apple35_tracklen_800kb[80] = { 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8 }; /* blocks of data used to nibblize tracks */ static const UINT8 diskbytes[] = { 0x96, 0x97, 0x9A, 0x9B, 0x9D, 0x9E, 0x9F, 0xA6, /* 0x00 */ 0xA7, 0xAB, 0xAC, 0xAD, 0xAE, 0xAF, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB9, 0xBA, 0xBB, 0xBC, /* 0x10 */ 0xBD, 0xBE, 0xBF, 0xCB, 0xCD, 0xCE, 0xCF, 0xD3, 0xD6, 0xD7, 0xD9, 0xDA, 0xDB, 0xDC, 0xDD, 0xDE, /* 0x20 */ 0xDF, 0xE5, 0xE6, 0xE7, 0xE9, 0xEA, 0xEB, 0xEC, 0xED, 0xEE, 0xEF, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, /* 0x30 */ 0xF7, 0xF9, 0xFA, 0xFB, 0xFC, 0xFD, 0xFE, 0xFF }; /* reverse lookup of diskbytes */ static const INT16 rev_diskbytes[] = { -1, -1, -1, -1, -1, -1, -1, -1, /* 0x00 */ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0x10 */ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0x20 */ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0x30 */ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0x40 */ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0x50 */ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0x60 */ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0x70 */ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0x80 */ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0x00, 0x01, /* 0x90 */ -1, -1, 0x02, 0x03, -1, 0x04, 0x05, 0x06, -1, -1, -1, -1, -1, -1, 0x07, 0x08, /* 0xA0 */ -1, -1, -1, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, -1, -1, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, /* 0xB0 */ -1, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, -1, -1, -1, -1, -1, -1, -1, -1, /* 0xC0 */ -1, -1, -1, 0x1B, -1, 0x1C, 0x1D, 0x1E, -1, -1, -1, 0x1F, -1, -1, 0x20, 0x21, /* 0xD0 */ -1, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, -1, -1, -1, -1, -1, 0x29, 0x2A, 0x2B, /* 0xE0 */ -1, 0x2C, 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, -1, -1, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, /* 0xF0 */ -1, 0x39, 0x3A, 0x3B, 0x3C, 0x3D, 0x3E, 0x3F }; static const UINT8 blk1[] = { /*0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xD5, 0xAA, 0x96*/ 0xFF, 0xFF, 0x3F, 0xCF, 0xF3, 0xFC, 0xFF, 0xFF, 0x3F, 0xCF, 0xF3, 0xFC, 0xFF, 0xFF, 0x3F, 0xCF, 0xF3, 0xFC, 0xFF, 0xFF, 0x3F, 0xCF, 0xF3, 0xFC, 0xFF, 0xFF, 0x3F, 0xCF, 0xF3, 0xFC, 0xFF, 0xFF, 0x3F, 0xCF, 0xF3, 0xFC, 0xFF, 0xFF, 0x3F, 0xCF, 0xF3, 0xFC, 0xFF, 0xD5, 0xAA, 0x96 }; static const UINT8 blk2[] = { 0xDE, 0xAA, 0xFF, 0xFF, 0x3F, 0xCF, 0xF3, 0xFC, 0xFF, 0xD5, 0xAA, 0xAD }; static const UINT8 blk3[] = { 0xDE, 0xAA, 0xFF }; static struct apple35_tag *get_apple35_tag(floppy_image_legacy *floppy) { struct apple35_tag *tag; tag = (struct apple35_tag *) floppy_tag(floppy); return tag; } int apple35_sectors_per_track(floppy_image_legacy *image, int track) { int sectors; assert(track >= 0); assert(track < ARRAY_LENGTH(apple35_tracklen_800kb)); if (get_apple35_tag(image)->is_1440k) sectors = 18; else sectors = apple35_tracklen_800kb[track]; return sectors; } /* converts data to its nibblized representation, and generate checksum now handles 524-byte-long sectors tag data IS important, since it allows data recovery when the catalog is trashed */ static void sony_nibblize35(const UINT8 *in, UINT8 *nib_ptr, UINT8 *csum) { int i, j; UINT32 c1, c2, c3, c4; UINT8 val; UINT8 w1, w2, w3, w4; UINT8 b1[175], b2[175], b3[175]; /* Copy from the user's buffer to our buffer, while computing * the three-byte data checksum */ i = 0; j = 0; c1 = 0; c2 = 0; c3 = 0; while (1) { c1 = (c1 & 0xFF) << 1; if (c1 & 0x0100) c1++; val = in[i++]; c3 += val; if (c1 & 0x0100) { c3++; c1 &= 0xFF; } b1[j] = (val ^ c1) & 0xFF; val = in[i++]; c2 += val; if (c3 > 0xFF) { c2++; c3 &= 0xFF; } b2[j] = (val ^ c3) & 0xFF; if (i == 524) break; val = in[i++]; c1 += val; if (c2 > 0xFF) { c1++; c2 &= 0xFF; } b3[j] = (val ^ c2) & 0xFF; j++; } c4 = ((c1 & 0xC0) >> 6) | ((c2 & 0xC0) >> 4) | ((c3 & 0xC0) >> 2); b3[174] = 0; j = 0; for (i = 0; i <= 174; i++) { w1 = b1[i] & 0x3F; w2 = b2[i] & 0x3F; w3 = b3[i] & 0x3F; w4 = ((b1[i] & 0xC0) >> 2); w4 |= ((b2[i] & 0xC0) >> 4); w4 |= ((b3[i] & 0xC0) >> 6); nib_ptr[j++] = w4; nib_ptr[j++] = w1; nib_ptr[j++] = w2; if (i != 174) nib_ptr[j++] = w3; } csum[0] = c1 & 0x3F; csum[1] = c2 & 0x3F; csum[2] = c3 & 0x3F; csum[3] = c4 & 0x3F; } /* does the reverse process of sony_nibblize35 */ static void sony_denibblize35(UINT8 *out, const UINT8 *nib_ptr, UINT8 *checksum) { int i, j; UINT32 c1,c2,c3,c4; UINT8 val; UINT8 w1,w2,w3=0,w4; UINT8 b1[175],b2[175],b3[175]; j = 0; for (i=0; i<=174; i++) { w4 = nib_ptr[j++]; w1 = nib_ptr[j++]; w2 = nib_ptr[j++]; if (i != 174) w3 = nib_ptr[j++]; b1[i] = (w1 & 0x3F) | ((w4 << 2) & 0xC0); b2[i] = (w2 & 0x3F) | ((w4 << 4) & 0xC0); b3[i] = (w3 & 0x3F) | ((w4 << 6) & 0xC0); } /* Copy from the user's buffer to our buffer, while computing * the three-byte data checksum */ i = 0; j = 0; c1 = 0; c2 = 0; c3 = 0; while (1) { c1 = (c1 & 0xFF) << 1; if (c1 & 0x0100) c1++; val = (b1[j] ^ c1) & 0xFF; c3 += val; if (c1 & 0x0100) { c3++; c1 &= 0xFF; } out[i++] = val; val = (b2[j] ^ c3) & 0xFF; c2 += val; if (c3 > 0xFF) { c2++; c3 &= 0xFF; } out[i++] = val; if (i == 524) break; val = (b3[j] ^ c2) & 0xFF; c1 += val; if (c2 > 0xFF) { c1++; c2 &= 0xFF; } out[i++] = val; j++; } c4 = ((c1 & 0xC0) >> 6) | ((c2 & 0xC0) >> 4) | ((c3 & 0xC0) >> 2); b3[174] = 0; checksum[0] = c1 & 0x3F; checksum[1] = c2 & 0x3F; checksum[2] = c3 & 0x3F; checksum[3] = c4 & 0x3F; } void sony_filltrack(UINT8 *buffer, size_t buffer_len, size_t *pos, UINT8 data) { buffer[*pos / 8] &= 0xFF << (8 - (*pos % 8)); buffer[*pos / 8] |= data >> (*pos % 8); *pos += 8; *pos %= buffer_len * 8; buffer[*pos / 8] &= 0xFF >> (*pos % 8); buffer[*pos / 8] |= data << (8 - (*pos % 8)); } UINT8 sony_fetchtrack(const UINT8 *buffer, size_t buffer_len, size_t *pos) { UINT8 data; data = buffer[*pos / 8] << (*pos % 8); *pos += 8; *pos %= (buffer_len * 8); data |= buffer[*pos / 8] >> (8 - (*pos % 8)); while ((data & 0x80) == 0) { /* this code looks weird because it isn't simply rotating the new bit * in, but for some reason it won't work if I rotate the bit in; I * have to match the algorithm used by the old code */ data <<= 1; data |= (buffer[*pos / 8] >> (8 - ((*pos % 8) + 1))); (*pos)++; *pos %= (buffer_len * 8); } return data; } static UINT32 apple35_get_offset(floppy_image_legacy *floppy, int head, int track, int sector, UINT32 *tag_offset) { int i; UINT32 sector_index = 0; struct apple35_tag *tag; tag = get_apple35_tag(floppy); if (track >= ARRAY_LENGTH(apple35_tracklen_800kb)) return ~0; if (head >= tag->sides) return ~0; if (sector >= apple35_sectors_per_track(floppy, track)) return ~0; for (i = 0; i < track; i++) sector_index += apple35_sectors_per_track(floppy, i); sector_index *= tag->sides; if (head) sector_index += apple35_sectors_per_track(floppy, i); sector_index += sector; if (tag_offset) { *tag_offset = sector_index * 12 + tag->tag_offset; if (*tag_offset >= tag->tag_size) *tag_offset = ~0; } return sector_index * 0x200 + tag->data_offset; } static floperr_t apple35_read_sector(floppy_image_legacy *floppy, int head, int track, int sector, void *buffer, size_t buflen) { UINT32 data_offset; // printf("Read sector: T %d S %d H %d\n", track, sector, head); data_offset = apple35_get_offset(floppy, head, track, sector, NULL); if (data_offset == ~0) return FLOPPY_ERROR_SEEKERROR; floppy_image_read(floppy, buffer, data_offset, buflen); return FLOPPY_ERROR_SUCCESS; } static floperr_t apple35_write_sector(floppy_image_legacy *floppy, int head, int track, int sector, const void *buffer, size_t buflen, int ddam) { UINT32 data_offset; data_offset = apple35_get_offset(floppy, head, track, sector, NULL); if (data_offset == ~0) return FLOPPY_ERROR_SEEKERROR; floppy_image_write(floppy, buffer, data_offset, buflen); return FLOPPY_ERROR_SUCCESS; } static floperr_t apple35_read_sector_td(floppy_image_legacy *floppy, int head, int track, int sector, void *buffer, size_t buflen) { floperr_t err; UINT32 tag_offset = 0; assert(buflen == 524); // printf("Read sector TD: T %d S %d H %d\n", track, sector, head); /* first read the sector */ err = apple35_read_sector(floppy, head, track, sector, ((UINT8 *) buffer) + 12, 512); if (err) return err; /* read the tag data, if possible */ memset(buffer, '\0', 12); apple35_get_offset(floppy, head, track, sector, &tag_offset); if (tag_offset != ~0) floppy_image_read(floppy, buffer, tag_offset, 12); return FLOPPY_ERROR_SUCCESS; } static floperr_t apple35_write_sector_td(floppy_image_legacy *floppy, int head, int track, int sector, const void *buffer, size_t buflen, int ddam) { floperr_t err; UINT32 tag_offset = 0; assert(buflen == 524); /* first write the sector */ err = apple35_write_sector(floppy, head, track, sector, ((const UINT8 *) buffer) + 12, 512, 0); if (err) return err; /* write the tag data, if possible */ apple35_get_offset(floppy, head, track, sector, &tag_offset); if (tag_offset != ~0) floppy_image_write(floppy, buffer, tag_offset, 12); return FLOPPY_ERROR_SUCCESS; } static floperr_t apple35_get_sector_length(floppy_image_legacy *floppy, int head, int track, int sector, UINT32 *sector_length) { *sector_length = 512; return FLOPPY_ERROR_SUCCESS; } static int apple35_get_heads_per_disk(floppy_image_legacy *floppy) { return get_apple35_tag(floppy)->sides; } static int apple35_get_tracks_per_disk(floppy_image_legacy *floppy) { return 80; } static UINT32 apple35_get_track_size(floppy_image_legacy *floppy, int head, int track) { if ((track < 0) || (track >= 80)) return 0; return apple35_sectors_per_track(floppy, track) * 800; } static UINT8 calculate_side(int head, int track) { UINT8 side; side = head ? 0x20 : 0x00; if (track & 0x40) side |= 0x01; return side; } static floperr_t apple35_read_track(floppy_image_legacy *floppy, int head, int track, UINT64 offset, void *buffer, size_t buflen) { floperr_t err; size_t pos = 0; int sector_count, sector, i; UINT8 sum, side; struct apple35_tag *tag; UINT8 sector_data[524]; UINT8 nibble_data[699]; UINT8 checksum[4]; tag = get_apple35_tag(floppy); if (track >= ARRAY_LENGTH(apple35_tracklen_800kb)) return FLOPPY_ERROR_SEEKERROR; if (offset != 0) return FLOPPY_ERROR_UNSUPPORTED; memset(buffer, 0xFF, buflen); sector_count = apple35_sectors_per_track(floppy, track); side = calculate_side(head, track); for (sector = 0; sector < sector_count; sector++) { /* read the sector */ err = apple35_read_sector_td(floppy, head, track, sector, sector_data, ARRAY_LENGTH(sector_data)); if (err) return err; sony_nibblize35(sector_data, nibble_data, checksum); for (i = 0; i < ARRAY_LENGTH(blk1); i++) sony_filltrack((UINT8*)buffer, buflen, &pos, blk1[i]); sum = (track ^ sector ^ side ^ tag->format_byte) & 0x3F; sony_filltrack((UINT8*)buffer, buflen, &pos, diskbytes[track & 0x3f]); sony_filltrack((UINT8*)buffer, buflen, &pos, diskbytes[sector]); sony_filltrack((UINT8*)buffer, buflen, &pos, diskbytes[side]); sony_filltrack((UINT8*)buffer, buflen, &pos, diskbytes[tag->format_byte]); sony_filltrack((UINT8*)buffer, buflen, &pos, diskbytes[sum]); for (i = 0; i < ARRAY_LENGTH(blk2); i++) sony_filltrack((UINT8*)buffer, buflen, &pos, blk2[i]); sony_filltrack((UINT8*)buffer, buflen, &pos, diskbytes[sector]); for (i = 0; i < ARRAY_LENGTH(nibble_data); i++) sony_filltrack((UINT8*)buffer, buflen, &pos, diskbytes[nibble_data[i]]); for (i = 3; i >= 0; i--) sony_filltrack((UINT8*)buffer, buflen, &pos, diskbytes[checksum[i]]); for (i = 0; i < ARRAY_LENGTH(blk3); i++) sony_filltrack((UINT8*)buffer, buflen, &pos, blk3[i]); } return FLOPPY_ERROR_SUCCESS; } static floperr_t apple35_write_track(floppy_image_legacy *floppy, int head, int track, UINT64 offset, const void *buffer, size_t buflen) { floperr_t err; size_t pos = 0; int sector_count, sector, i, j; struct apple35_tag *tag; UINT8 sum, format_byte, val, side; UINT32 found_sectors = 0; UINT8 sector_data[524]; UINT8 nibble_data[699]; UINT8 checksum[4]; tag = get_apple35_tag(floppy); if (track >= ARRAY_LENGTH(apple35_tracklen_800kb)) return FLOPPY_ERROR_SEEKERROR; if (offset != 0) return FLOPPY_ERROR_UNSUPPORTED; sector_count = apple35_sectors_per_track(floppy, track); side = calculate_side(head, track); /* do 2 rotations, in case the bit slip stuff prevent us to read the first sector */ for (j = 0; j < (buflen * 2); j++) { if (sony_fetchtrack((UINT8*)buffer, buflen, &pos) != 0xD5) continue; j++; if (sony_fetchtrack((UINT8*)buffer, buflen, &pos) != 0xAA) continue; j++; if (sony_fetchtrack((UINT8*)buffer, buflen, &pos) != 0x96) continue; j++; if (rev_diskbytes[sony_fetchtrack((UINT8*)buffer, buflen, &pos)] != (track & 0x3F)) continue; j++; sector = rev_diskbytes[sony_fetchtrack((UINT8*)buffer, buflen, &pos)]; if ((sector < 0) || (sector >= sector_count)) continue; j++; if (rev_diskbytes[sony_fetchtrack((UINT8*)buffer, buflen, &pos)] != side) continue; j++; format_byte = rev_diskbytes[sony_fetchtrack((UINT8*)buffer, buflen, &pos)]; if (format_byte != tag->format_byte) { /* this is an error, but not THAT critical, I guess */ } j++; sum = track ^ sector ^ side ^ format_byte; if (rev_diskbytes[sony_fetchtrack((UINT8*)buffer, buflen, &pos)] != sum) continue; j++; if (sony_fetchtrack((UINT8*)buffer, buflen, &pos) != 0xDE) continue; j++; if (sony_fetchtrack((UINT8*)buffer, buflen, &pos) != 0xAA) continue; j++; while((val = sony_fetchtrack((UINT8*)buffer, buflen, &pos)) == 0xFF) j++; if (val != 0xD5) continue; /* lost bit slip mark! */ j++; if (sony_fetchtrack((UINT8*)buffer, buflen, &pos) != 0xAA) continue; j++; if (sony_fetchtrack((UINT8*)buffer, buflen, &pos) != 0xAD) continue; j++; /* should this be regarded as a critical error ??? */ if (rev_diskbytes[sony_fetchtrack((UINT8*)buffer, buflen, &pos)] != sector) continue; j++; for (i = 0; i < ARRAY_LENGTH(nibble_data); i++) { nibble_data[i] = rev_diskbytes[sony_fetchtrack((UINT8*)buffer, buflen, &pos)]; j++; } for (i = 3; i >= 0; i--) { /* should be checking checksum */ sony_fetchtrack((UINT8*)buffer, buflen, &pos); } sony_fetchtrack((UINT8*)buffer, buflen, &pos); /* should get 0xDE */ sony_fetchtrack((UINT8*)buffer, buflen, &pos); /* should get 0xAA */ sony_fetchtrack((UINT8*)buffer, buflen, &pos); /* should get 0xFF */ /* did we already write this sector? */ if ((found_sectors & (1 << sector)) == 0) { sony_denibblize35(sector_data, nibble_data, checksum); /* write the sector */ err = apple35_write_sector_td(floppy, head, track, sector, sector_data, ARRAY_LENGTH(sector_data), 0); if (err) return err; found_sectors |= 1 << sector; } } return FLOPPY_ERROR_SUCCESS; } static floperr_t apple35_construct(floppy_image_legacy *floppy, UINT32 data_offset, UINT32 data_size, UINT32 tag_offset, UINT32 tag_size, INT16 format_byte, UINT8 sides, int is_1440k) { struct apple35_tag *tag; struct FloppyCallbacks *format; /* figure out format byte if not specified */ if (format_byte < 0) { switch(sides) { case 1: format_byte = 0x02; break; case 2: format_byte = 0x22; break; default: return FLOPPY_ERROR_INVALIDIMAGE; } } /* create tag */ tag = (struct apple35_tag *) floppy_create_tag(floppy, sizeof(struct apple35_tag)); if (!tag) return FLOPPY_ERROR_OUTOFMEMORY; tag->data_offset = data_offset; tag->data_size = data_size; tag->tag_offset = tag_offset; tag->tag_size = tag_size; tag->format_byte = (UINT8) format_byte; tag->sides = sides; tag->is_1440k = is_1440k ? 1 : 0; /* set up format callbacks */ format = floppy_callbacks(floppy); format->read_sector = apple35_read_sector; format->write_sector = apple35_write_sector; format->read_track = apple35_read_track; format->write_track = apple35_write_track; format->get_sector_length = apple35_get_sector_length; format->get_heads_per_disk = apple35_get_heads_per_disk; format->get_tracks_per_disk = apple35_get_tracks_per_disk; format->get_track_size = apple35_get_track_size; return FLOPPY_ERROR_SUCCESS; } /* ----------------------------------------------------------------------- */ static FLOPPY_IDENTIFY(apple35_raw_identify) { UINT64 size; size = floppy_image_size(floppy); *vote = ((size == 80*1*10*512) || (size == 80*2*10*512) || (size == (80*2*18*512)+84) || (size == 80*2*18*512)) ? 100 : 0; return FLOPPY_ERROR_SUCCESS; } static FLOPPY_CONSTRUCT(apple35_raw_construct) { UINT64 size; UINT8 sides; int is_1440k; if (params) { /* create */ sides = option_resolution_lookup_int(params, PARAM_HEADS); size = 80*sides*10*512; is_1440k = FALSE; } else { /* load */ size = floppy_image_size(floppy); if (size == 80*1*10*512) { sides = 1; is_1440k = FALSE; } else if ((size == 80*2*10*512) || (size == 80*2*18*512) || (size == (80*2*18*512)+84)) { sides = 2; is_1440k = (size == 80*2*18*512) || (size == (80*2*18*512)+84); } else return FLOPPY_ERROR_INVALIDIMAGE; } return apple35_construct(floppy, 0, (UINT32) size, 0, 0, -1, sides, is_1440k); } /* ----------------------------------------------------------------------- */ struct header_diskcopy { UINT8 disk_name[64]; /* name of the disk */ UINT32 data_size; /* total size of data for all sectors (512*number_of_sectors) */ UINT32 tag_size; /* total size of tag data for all sectors (12*number_of_sectors for GCR 3.5" floppies, 20*number_of_sectors for HD20, 0 otherwise) */ UINT32 data_checksum; /* CRC32 checksum of all sector data */ UINT32 tag_checksum; /* CRC32 checksum of all tag data */ UINT8 disk_format; /* 0 = 400K, 1 = 800K, 2 = 720K, 3 = 1440K (other values reserved) */ UINT8 format_byte; /* should be $00 Apple II, $01 Lisa, $02 Mac MFS ??? */ /* $12 = 400K, $22 = >400K Macintosh (DiskCopy uses this value for all Apple II disks not 800K in size, and even for some of those), $24 = 800K Apple II disk */ UINT16 magic; /* always $0100 (otherwise, the file may be in a different format. */ }; static floperr_t apple35_diskcopy_headerdecode(floppy_image_legacy *floppy, UINT32 *data_offset, UINT32 *data_size, UINT32 *tag_offset, UINT32 *tag_size, UINT8 *format_byte, UINT8 *sides) { UINT64 size; struct header_diskcopy header; if (data_offset) *data_offset = 0; if (data_size) *data_size = 0; if (tag_offset) *tag_offset = 0; if (tag_size) *tag_size = 0; if (format_byte) *format_byte = 0; if (sides) *sides = 0; size = floppy_image_size(floppy); if (size < sizeof(struct header_diskcopy)) return FLOPPY_ERROR_INVALIDIMAGE; floppy_image_read(floppy, &header, 0, sizeof(header)); header.data_size = BIG_ENDIANIZE_INT32(header.data_size); header.tag_size = BIG_ENDIANIZE_INT32(header.tag_size); header.data_checksum = BIG_ENDIANIZE_INT32(header.data_checksum); header.tag_checksum = BIG_ENDIANIZE_INT32(header.tag_checksum); header.magic = BIG_ENDIANIZE_INT16(header.magic); if (header.disk_name[0] >= sizeof(header.disk_name)) return FLOPPY_ERROR_INVALIDIMAGE; if (header.magic != 0x0100) return FLOPPY_ERROR_INVALIDIMAGE; if (size != (header.data_size + header.tag_size + sizeof(header))) return FLOPPY_ERROR_INVALIDIMAGE; if (header.data_size == 80*1*10*512) { if (sides) *sides = 1; } else if (header.data_size == 80*2*10*512) { if (sides) *sides = 2; } else return FLOPPY_ERROR_INVALIDIMAGE; if (data_offset) *data_offset = sizeof(header); if (data_size) *data_size = header.data_size; if (tag_offset) *tag_offset = sizeof(header) + header.data_size; if (tag_size) *tag_size = header.tag_size; if (format_byte) *format_byte = header.format_byte; return FLOPPY_ERROR_SUCCESS; } static FLOPPY_IDENTIFY(apple35_diskcopy_identify) { *vote = apple35_diskcopy_headerdecode(floppy, NULL, NULL, NULL, NULL, NULL, NULL) ? 0 : 100; return FLOPPY_ERROR_SUCCESS; } static FLOPPY_CONSTRUCT(apple35_diskcopy_construct) { floperr_t err; UINT8 format_byte, sides; UINT32 data_offset, data_size; UINT32 tag_offset, tag_size; INT16 format_byte_param = -1; struct header_diskcopy header; if (params) { /* create */ sides = option_resolution_lookup_int(params, PARAM_HEADS); data_size = 80*sides*10*512; tag_size = 80*sides*10*12; memset(&header, 0, sizeof(header)); header.data_size = BIG_ENDIANIZE_INT32(data_size); header.tag_size = BIG_ENDIANIZE_INT32(tag_size); header.disk_format = (sides > 1) ? 1 : 0; header.magic = BIG_ENDIANIZE_INT16(0x100); floppy_image_write(floppy, &header, 0, sizeof(header)); floppy_image_write_filler(floppy, 0, sizeof(header), data_size + tag_size); } /* load */ err = apple35_diskcopy_headerdecode(floppy, &data_offset, &data_size, &tag_offset, &tag_size, &format_byte, &sides); if (err) return err; format_byte_param = format_byte; return apple35_construct(floppy, data_offset, data_size, tag_offset, tag_size, format_byte_param, sides, FALSE); } /* ----------------------------------------------------------------------- */ struct header_2img { char magic[4]; /* '2IMG' */ char creator[4]; /* signature; 'MESS' for MESS */ UINT16 header_length; UINT16 version; UINT32 image_format; UINT32 flags; UINT32 block_count; UINT32 data_offset; UINT32 data_length; UINT32 comment_offset; UINT32 comment_length; UINT32 creator_offset; UINT32 creator_length; UINT32 padding[4]; }; #define IMAGE_FORMAT_DO 0 #define IMAGE_FORMAT_PO 1 #define IMAGE_FORMAT_NIB 2 #define IMAGE_FLAGS_LOCKED 0x80000000 static floperr_t apple35_2img_decode(floppy_image_legacy *floppy, UINT32 *image_format, UINT32 *data_offset, UINT32 *data_length) { struct header_2img header; UINT64 size; if (image_format) *image_format = 0; if (data_offset) *data_offset = 0; if (data_length) *data_length = 0; size = floppy_image_size(floppy); if (size < sizeof(header)) { return FLOPPY_ERROR_INVALIDIMAGE; } floppy_image_read(floppy, &header, 0, sizeof(header)); if (memcmp(header.magic, "2IMG", 4)) { return FLOPPY_ERROR_INVALIDIMAGE; } header.header_length = LITTLE_ENDIANIZE_INT16(header.header_length); header.version = LITTLE_ENDIANIZE_INT16(header.version); header.image_format = LITTLE_ENDIANIZE_INT32(header.image_format); header.flags = LITTLE_ENDIANIZE_INT32(header.flags); header.block_count = LITTLE_ENDIANIZE_INT32(header.block_count); header.data_offset = LITTLE_ENDIANIZE_INT32(header.data_offset); header.data_length = LITTLE_ENDIANIZE_INT32(header.data_length); header.comment_offset = LITTLE_ENDIANIZE_INT32(header.comment_offset); header.comment_length = LITTLE_ENDIANIZE_INT32(header.comment_length); header.creator_offset = LITTLE_ENDIANIZE_INT32(header.creator_offset); header.creator_length = LITTLE_ENDIANIZE_INT32(header.creator_length); // at least some images "in the wild" (e.g. TOSEC Minor Set 1) have big-endian data sizes // even though that's against the .2mg spec if (header.data_length == 0x800c00) { LOG_FORMATS("ap_dsk35: corrected bad-endian data length\n"); header.data_length = 0x0c8000; } if ((((UINT64) header.data_offset) + header.data_length) > size) return FLOPPY_ERROR_INVALIDIMAGE; if ((((UINT64) header.comment_offset) + header.comment_length) > size) return FLOPPY_ERROR_INVALIDIMAGE; if ((((UINT64) header.creator_offset) + header.creator_length) > size) return FLOPPY_ERROR_INVALIDIMAGE; if ((header.image_format != IMAGE_FORMAT_DO) && (header.image_format != IMAGE_FORMAT_PO) && (header.image_format != IMAGE_FORMAT_NIB)) return FLOPPY_ERROR_INVALIDIMAGE; if (image_format) *image_format = header.image_format; if (data_offset) *data_offset = header.data_offset; if (data_length) *data_length = header.data_length; return FLOPPY_ERROR_SUCCESS; } static FLOPPY_IDENTIFY(apple35_2img_identify) { *vote = apple35_2img_decode(floppy, NULL, NULL, NULL) ? 0 : 100; return FLOPPY_ERROR_SUCCESS; } static FLOPPY_CONSTRUCT(apple35_2img_construct) { floperr_t err; UINT32 image_format; UINT32 data_offset; UINT32 data_size; UINT8 sides = 2; struct header_2img header; if (params) { /* create */ sides = option_resolution_lookup_int(params, PARAM_HEADS); data_offset = sizeof(header); data_size = 80*sides*10*512; memset(&header, 0, sizeof(header)); header.header_length = LITTLE_ENDIANIZE_INT16(sizeof(header)); header.block_count = LITTLE_ENDIANIZE_INT32(80*sides*10); header.data_offset = LITTLE_ENDIANIZE_INT32(data_offset); header.data_length = LITTLE_ENDIANIZE_INT32(data_size); floppy_image_write(floppy, &header, 0, sizeof(header)); floppy_image_write_filler(floppy, 0, sizeof(header), data_size); } else { /* load */ err = apple35_2img_decode(floppy, &image_format, &data_offset, &data_size); if (err) return err; if (data_size == 80*1*10*512) sides = 1; /* single sided */ else if (data_size == 80*2*10*512) sides = 2; /* double sided */ else sides = 2; /* unknown... what to do... */ } return apple35_construct(floppy, data_offset, data_size, 0, 0, -1, sides, FALSE); } LEGACY_FLOPPY_OPTIONS_START( apple35_mac ) LEGACY_FLOPPY_OPTION( apple35_raw, "dsk,img,image", "Apple raw 3.5\" disk image", apple35_raw_identify, apple35_raw_construct, NULL, HEADS([1]-2) TRACKS([80]) SECTOR_LENGTH([512]) FIRST_SECTOR_ID([0])) LEGACY_FLOPPY_OPTION( apple35_dc, "dc,dsk,img,image", "Apple DiskCopy disk image", apple35_diskcopy_identify, apple35_diskcopy_construct, NULL, HEADS([1]-2) TRACKS([80]) SECTOR_LENGTH([512]) FIRST_SECTOR_ID([0])) LEGACY_FLOPPY_OPTIONS_END LEGACY_FLOPPY_OPTIONS_START( apple35_iigs ) LEGACY_FLOPPY_OPTION( apple35_raw, "dsk,img,image", "Apple raw 3.5\" disk image", apple35_raw_identify, apple35_raw_construct, NULL, HEADS([1]-2) TRACKS([80]) SECTOR_LENGTH([512]) FIRST_SECTOR_ID([0])) LEGACY_FLOPPY_OPTION( apple35_dc, "dc,dsk,img,image", "Apple DiskCopy disk image", apple35_diskcopy_identify, apple35_diskcopy_construct, NULL, HEADS([1]-2) TRACKS([80]) SECTOR_LENGTH([512]) FIRST_SECTOR_ID([0])) LEGACY_FLOPPY_OPTION( apple35_2img, "2img,2mg", "Apple ][gs 2IMG disk image", apple35_2img_identify, apple35_2img_construct, NULL, HEADS([1]-2) TRACKS([80]) SECTOR_LENGTH([512]) FIRST_SECTOR_ID([0])) LEGACY_FLOPPY_OPTIONS_END