// license:BSD-3-Clause // copyright-holders:Aaron Giles /*************************************************************************** video.cpp Core MAME video routines. ***************************************************************************/ #include "emu.h" #include "crsshair.h" #include "debugger.h" #include "emuopts.h" #include "fileio.h" #include "main.h" #include "output.h" #include "screen.h" #include "ui/uimain.h" #include "corestr.h" #include "path.h" #include "png.h" #include "xmlfile.h" #include "osdepend.h" #include "rendersw.hxx" //************************************************************************** // DEBUGGING //************************************************************************** #define LOG_THROTTLE (0) //************************************************************************** // GLOBAL VARIABLES //************************************************************************** // frameskipping tables const bool video_manager::s_skiptable[FRAMESKIP_LEVELS][FRAMESKIP_LEVELS] = { { false, false, false, false, false, false, false, false, false, false, false, false }, { false, false, false, false, false, false, false, false, false, false, false, true }, { false, false, false, false, false, true , false, false, false, false, false, true }, { false, false, false, true , false, false, false, true , false, false, false, true }, { false, false, true , false, false, true , false, false, true , false, false, true }, { false, true , false, false, true , false, true , false, false, true , false, true }, { false, true , false, true , false, true , false, true , false, true , false, true }, { false, true , false, true , true , false, true , false, true , true , false, true }, { false, true , true , false, true , true , false, true , true , false, true , true }, { false, true , true , true , false, true , true , true , false, true , true , true }, { false, true , true , true , true , true , false, true , true , true , true , true }, { false, true , true , true , true , true , true , true , true , true , true , true } }; //************************************************************************** // VIDEO MANAGER //************************************************************************** static void video_notifier_callback(const char *outname, s32 value, void *param) { video_manager *vm = (video_manager *)param; vm->set_output_changed(); } //------------------------------------------------- // video_manager - constructor //------------------------------------------------- video_manager::video_manager(running_machine &machine) : m_machine(machine) , m_screenless_frame_timer(nullptr) , m_output_changed(false) , m_throttle_last_ticks(0) , m_throttle_realtime(attotime::zero) , m_throttle_emutime(attotime::zero) , m_throttle_history(0) , m_speed_last_realtime(0) , m_speed_last_emutime(attotime::zero) , m_speed_percent(1.0) , m_overall_real_seconds(0) , m_overall_real_ticks(0) , m_overall_emutime(attotime::zero) , m_overall_valid_counter(0) , m_throttled(true) , m_throttle_rate(1.0f) , m_fastforward(false) , m_seconds_to_run(machine.options().seconds_to_run()) , m_auto_frameskip(machine.options().auto_frameskip()) , m_speed(original_speed_setting()) , m_low_latency(machine.options().low_latency()) , m_empty_skip_count(0) , m_frameskip_max(m_auto_frameskip ? machine.options().frameskip() : 0) , m_frameskip_level(m_auto_frameskip ? 0 : machine.options().frameskip()) , m_frameskip_counter(0) , m_frameskip_adjust(0) , m_skipping_this_frame(false) , m_average_oversleep(0) , m_snap_target(nullptr) , m_snap_native(true) , m_snap_width(0) , m_snap_height(0) { // request a callback upon exiting machine.add_notifier(MACHINE_NOTIFY_EXIT, machine_notify_delegate(&video_manager::exit, this)); machine.save().register_postload(save_prepost_delegate(FUNC(video_manager::postload), this)); // extract initial execution state from global configuration settings update_refresh_speed(); const unsigned screen_count(screen_device_enumerator(machine.root_device()).count()); const bool no_screens(!screen_count); // create a render target for snapshots const char *viewname = machine.options().snap_view(); m_snap_native = !no_screens && !strcmp(viewname, "native"); if (m_snap_native) { // the native target is hard-coded to our internal layout and has all options disabled util::xml::file::ptr const root(util::xml::file::create()); if (!root) throw emu_fatalerror("Couldn't create XML document??"); util::xml::data_node *const layoutnode(root->add_child("mamelayout", nullptr)); if (!layoutnode) throw emu_fatalerror("Couldn't create XML node??"); layoutnode->set_attribute_int("version", 2); for (unsigned i = 0; screen_count > i; ++i) { util::xml::data_node *const viewnode(layoutnode->add_child("view", nullptr)); if (!viewnode) throw emu_fatalerror("Couldn't create XML node??"); viewnode->set_attribute("name", util::string_format("s%1$u", i).c_str()); util::xml::data_node *const screennode(viewnode->add_child("screen", nullptr)); if (!screennode) throw emu_fatalerror("Couldn't create XML node??"); screennode->set_attribute_int("index", i); util::xml::data_node *const boundsnode(screennode->add_child("bounds", nullptr)); if (!boundsnode) throw emu_fatalerror("Couldn't create XML node??"); boundsnode->set_attribute_int("left", 0); boundsnode->set_attribute_int("top", 0); boundsnode->set_attribute_int("right", 1); boundsnode->set_attribute_int("bottom", 1); } m_snap_target = machine.render().target_alloc(*root, RENDER_CREATE_SINGLE_FILE | RENDER_CREATE_HIDDEN); m_snap_target->set_screen_overlay_enabled(false); m_snap_target->set_zoom_to_screen(false); } else { // otherwise, non-default targets select the specified view and turn off effects m_snap_target = machine.render().target_alloc(nullptr, RENDER_CREATE_HIDDEN); m_snap_target->set_view(m_snap_target->configured_view(viewname, 0, 1)); m_snap_target->set_screen_overlay_enabled(false); } // extract snap resolution if present if (sscanf(machine.options().snap_size(), "%dx%d", &m_snap_width, &m_snap_height) != 2) m_snap_width = m_snap_height = 0; // if no screens, create a periodic timer to drive updates if (no_screens) { m_screenless_frame_timer = machine.scheduler().timer_alloc(timer_expired_delegate(FUNC(video_manager::screenless_update_callback), this)); m_screenless_frame_timer->adjust(screen_device::DEFAULT_FRAME_PERIOD, 0, screen_device::DEFAULT_FRAME_PERIOD); machine.output().set_global_notifier(video_notifier_callback, this); } } //------------------------------------------------- // set_frameskip - set the current actual // frameskip (-1 means autoframeskip) //------------------------------------------------- void video_manager::set_frameskip(int frameskip) { if (0 > frameskip) { // -1 means autoframeskip if (!m_auto_frameskip) m_frameskip_level = 0; m_auto_frameskip = true; } else { // any other level is a direct control m_auto_frameskip = false; m_frameskip_level = std::min(frameskip, MAX_FRAMESKIP); } } //------------------------------------------------- // frame_update - handle frameskipping and UI, // plus updating the screen during normal // operations //------------------------------------------------- void video_manager::frame_update(bool from_debugger) { // only render sound and video if we're in the running phase machine_phase const phase = machine().phase(); bool skipped_it = m_skipping_this_frame; bool const update_screens = (phase == machine_phase::RUNNING) && (!machine().paused() || machine().options().update_in_pause()); bool anything_changed = update_screens && finish_screen_updates(); // update inputs and draw the user interface machine().osd().input_update(true); anything_changed = emulator_info::draw_user_interface(machine()) || anything_changed; // let plugins draw over the UI anything_changed = emulator_info::frame_hook() || anything_changed; // if none of the screens changed and we haven't skipped too many frames in a row, // mark this frame as skipped to prevent throttling; this helps for games that // don't update their screen at the monitor refresh rate if (!anything_changed && !m_auto_frameskip && (m_frameskip_level == 0) && (m_empty_skip_count++ < 3)) skipped_it = true; else m_empty_skip_count = 0; // if we're throttling, synchronize before rendering attotime current_time = machine().time(); if (!from_debugger && phase > machine_phase::INIT && !m_low_latency && effective_throttle()) update_throttle(current_time); // ask the OSD to update { auto profile = g_profiler.start(PROFILER_BLIT); machine().osd().update(!from_debugger && skipped_it); } // we synchronize after rendering instead of before, if low latency mode is enabled if (!from_debugger && phase > machine_phase::INIT && m_low_latency && effective_throttle()) update_throttle(current_time); machine().osd().input_update(false); emulator_info::periodic_check(); if (!from_debugger) { // perform tasks for this frame machine().call_notifiers(MACHINE_NOTIFY_FRAME); // update frameskipping if (phase > machine_phase::INIT) update_frameskip(); // update speed computations if (!skipped_it && phase > machine_phase::INIT) recompute_speed(current_time); } // call the end-of-frame callback if (phase == machine_phase::RUNNING) { // reset partial updates if we're paused or if the debugger is active screen_device *const screen = screen_device_enumerator(machine().root_device()).first(); bool const debugger_enabled = machine().debug_flags & DEBUG_FLAG_ENABLED; bool const within_instruction_hook = debugger_enabled && machine().debugger().within_instruction_hook(); if (screen && ((machine().paused() && machine().options().update_in_pause()) || from_debugger || within_instruction_hook)) screen->reset_partial_updates(); } } //------------------------------------------------- // speed_text - print the text to be displayed // into a string buffer //------------------------------------------------- std::string video_manager::speed_text() { std::ostringstream str; // if we're paused, just display Paused bool paused = machine().paused(); if (paused) str << "paused"; // if we're fast forwarding, just display Fast-forward else if (m_fastforward) str << "fast "; // if we're auto frameskipping, display that plus the level else if (effective_autoframeskip()) util::stream_format(str, "auto%2d/%d", effective_frameskip(), m_frameskip_max ? m_frameskip_max : MAX_FRAMESKIP); // otherwise, just display the frameskip plus the level else util::stream_format(str, "skip %d/%d", effective_frameskip(), MAX_FRAMESKIP); // append the speed for all cases except paused if (!paused) util::stream_format(str, " %3d%%", int(100 * m_speed_percent + 0.5)); // display the number of partial updates as well int partials = 0; for (screen_device &screen : screen_device_enumerator(machine().root_device())) partials += screen.partial_updates(); if (partials > 1) util::stream_format(str, "\n%d partial updates", partials); return str.str(); } //------------------------------------------------- // save_snapshot - save a snapshot to the given // file handle //------------------------------------------------- void video_manager::save_snapshot(screen_device *screen, util::core_file &file) { // validate assert(!m_snap_native || screen != nullptr); // create the bitmap to pass in create_snapshot_bitmap(screen); // add two text entries describing the image std::string text1 = std::string(emulator_info::get_appname()).append(" ").append(emulator_info::get_build_version()); std::string text2 = std::string(machine().system().manufacturer).append(" ").append(machine().system().type.fullname()); util::png_info pnginfo; pnginfo.add_text("Software", text1); pnginfo.add_text("System", text2); // now do the actual work const rgb_t *palette = (screen != nullptr && screen->has_palette()) ? screen->palette().palette()->entry_list_adjusted() : nullptr; int entries = (screen != nullptr && screen->has_palette()) ? screen->palette().entries() : 0; std::error_condition const error = util::png_write_bitmap(file, &pnginfo, m_snap_bitmap, entries, palette); if (error) osd_printf_error("Error generating PNG for snapshot (%s:%d %s)\n", error.category().name(), error.value(), error.message()); } //------------------------------------------------- // save_active_screen_snapshots - save a // snapshot of all active screens //------------------------------------------------- void video_manager::save_active_screen_snapshots() { if (m_snap_native) { // if we're native, then write one snapshot per visible screen for (screen_device &screen : screen_device_enumerator(machine().root_device())) if (machine().render().is_live(screen)) { emu_file file(machine().options().snapshot_directory(), OPEN_FLAG_WRITE | OPEN_FLAG_CREATE | OPEN_FLAG_CREATE_PATHS); std::error_condition const filerr = open_next(file, "png"); if (!filerr) save_snapshot(&screen, file); } } else { // otherwise, just write a single snapshot emu_file file(machine().options().snapshot_directory(), OPEN_FLAG_WRITE | OPEN_FLAG_CREATE | OPEN_FLAG_CREATE_PATHS); std::error_condition const filerr = open_next(file, "png"); if (!filerr) save_snapshot(nullptr, file); } } //------------------------------------------------- // begin_recording_screen - begin recording a // movie for a specific screen //------------------------------------------------- void video_manager::begin_recording_screen(const std::string &filename, uint32_t index, screen_device *screen, movie_recording::format format) { // create the emu_file bool const is_absolute_path = !filename.empty() && osd_is_absolute_path(filename); std::unique_ptr movie_file = std::make_unique( is_absolute_path ? "" : machine().options().snapshot_directory(), OPEN_FLAG_WRITE | OPEN_FLAG_CREATE | OPEN_FLAG_CREATE_PATHS); // and open the actual file std::error_condition filerr = filename.empty() ? open_next(*movie_file, movie_recording::format_file_extension(format)) : movie_file->open(filename); if (filerr) { osd_printf_error("Error creating movie, %s:%d %s\n", filerr.category().name(), filerr.value(), filerr.message()); return; } // we have a file; try to create the recording std::unique_ptr recording = movie_recording::create(machine(), screen, format, std::move(movie_file), m_snap_bitmap); // if successful push it onto the list if (recording) m_movie_recordings.push_back(std::move(recording)); } //------------------------------------------------- // begin_recording - begin recording of a movie //------------------------------------------------- void video_manager::begin_recording(const char *name, movie_recording::format format) { // create a snapshot bitmap so we know what the target size is screen_device_enumerator iterator(machine().root_device()); screen_device_enumerator::iterator iter(iterator.begin()); uint32_t count = (uint32_t)iterator.count(); const bool no_screens(!count); if (no_screens) { assert(!m_snap_native); count = 1; } // clear out existing recordings m_movie_recordings.clear(); // check if the supplied name already has the desired extension std::string_view basename; std::string extension; if (name) { std::string_view const desired_ext = movie_recording::format_file_extension(format); basename = name; extension.reserve(1 + desired_ext.length()); extension.assign(1, '.').append(desired_ext); if (core_filename_ends_with(basename, extension)) { extension = basename.substr(basename.length() - extension.length()); basename.remove_suffix(extension.length()); } } if (m_snap_native) { std::string tempname; for (uint32_t index = 0; index < count; index++, iter++) { create_snapshot_bitmap(iter.current()); // TODO: only do this when starting on-the-fly, and make name match AVI file name if (name) { if (1 < count) tempname = util::string_format("%s%d%s", basename, index, extension); else tempname.assign(name).append(extension); } begin_recording_screen( tempname, index, iter.current(), format); } } else { create_snapshot_bitmap(nullptr); begin_recording_screen(std::string(basename) + extension, 0, iter.current(), format); } } //------------------------------------------------- // add_sound_to_recording - add sound to a movie // recording //------------------------------------------------- void video_manager::add_sound_to_recording(const s16 *sound, int numsamples) { for (auto &recording : m_movie_recordings) recording->add_sound_to_recording(sound, numsamples); } //------------------------------------------------- // video_exit - close down the video system //------------------------------------------------- void video_manager::exit() { // stop recording any movie m_movie_recordings.clear(); // free the snapshot target machine().render().target_free(m_snap_target); m_snap_bitmap.reset(); // print a final result if we have at least 2 seconds' worth of data if (!emulator_info::standalone() && m_overall_emutime.seconds() >= 1) { osd_ticks_t tps = osd_ticks_per_second(); double final_real_time = (double)m_overall_real_seconds + (double)m_overall_real_ticks / (double)tps; double final_emu_time = m_overall_emutime.as_double(); osd_printf_info("Average speed: %.2f%% (%d seconds)\n", 100 * final_emu_time / final_real_time, (m_overall_emutime + attotime(0, ATTOSECONDS_PER_SECOND / 2)).seconds()); } } //------------------------------------------------- // screenless_update_callback - update generator // when there are no screens to drive it //------------------------------------------------- void video_manager::screenless_update_callback(s32 param) { // force an update frame_update(false); } //------------------------------------------------- // postload - callback for resetting things after // state has been loaded //------------------------------------------------- void video_manager::postload() { attotime const emutime = machine().time(); for (const auto &x : m_movie_recordings) x->set_next_frame_time(emutime); // reset speed measurements m_speed_last_realtime = osd_ticks(); m_speed_last_emutime = emutime; } //------------------------------------------------- // effective_autoframeskip - return the effective // autoframeskip value, accounting for fast // forward //------------------------------------------------- inline bool video_manager::effective_autoframeskip() const { // if we're fast forwarding or paused, autoframeskip is disabled if (m_fastforward || machine().paused()) return false; // otherwise, it's up to the user return m_auto_frameskip; } //------------------------------------------------- // effective_frameskip - return the effective // frameskip value, accounting for fast // forward //------------------------------------------------- int video_manager::effective_frameskip() const { // if we're fast forwarding, use the maximum frameskip if (m_fastforward) return FRAMESKIP_LEVELS - 1; // otherwise, it's up to the user return m_frameskip_level; } //------------------------------------------------- // effective_throttle - return the effective // throttle value, accounting for fast // forward and user interface //------------------------------------------------- inline bool video_manager::effective_throttle() const { // if we're paused, or if the UI is active, we always throttle if (machine().paused() && !machine().options().update_in_pause()) //|| machine().ui().is_menu_active()) return true; // if we're fast forwarding, we don't throttle if (m_fastforward) return false; // otherwise, it's up to the user return throttled(); } //------------------------------------------------- // original_speed_setting - return the original // speed setting //------------------------------------------------- inline int video_manager::original_speed_setting() const { return machine().options().speed() * 1000.0f + 0.5f; } //------------------------------------------------- // finish_screen_updates - finish updating all // the screens //------------------------------------------------- bool video_manager::finish_screen_updates() { // finish updating the screens screen_device_enumerator iter(machine().root_device()); bool has_live_screen = false; for (screen_device &screen : iter) { if (screen.partial_scan_hpos() > 0) // previous update ended mid-scanline screen.update_now(); screen.update_partial(screen.visible_area().max_y); if (machine().render().is_live(screen)) has_live_screen = true; } bool anything_changed = !has_live_screen || m_output_changed; m_output_changed = false; // now add the quads for all the screens for (screen_device &screen : iter) if (screen.update_quads()) anything_changed = true; // update our movie recording and burn-in state if (!machine().paused()) { record_frame(); // iterate over screens and update the burnin for the ones that care for (screen_device &screen : iter) screen.update_burnin(); } // draw any crosshairs for (screen_device &screen : iter) machine().crosshair().render(screen); return anything_changed; } //------------------------------------------------- // update_throttle - throttle to the game's // natural speed //------------------------------------------------- void video_manager::update_throttle(attotime emutime) { /* Throttling theory: This routine is called periodically with an up-to-date emulated time. The idea is to synchronize real time with emulated time. We do this by "throttling", or waiting for real time to catch up with emulated time. In an ideal world, it will take less real time to emulate and render each frame than the emulated time, so we need to slow things down to get both times in sync. There are many complications to this model: * some games run too slow, so each frame we get further and further behind real time; our only choice here is to not throttle * some games have very uneven frame rates; one frame will take a long time to emulate, and the next frame may be very fast * we run on top of multitasking OSes; sometimes execution time is taken away from us, and this means we may not get enough time to emulate one frame * we may be paused, and emulated time may not be marching forward * emulated time could jump due to resetting the machine or restoring from a saved state */ // outer scope so we can break out in case of a resync while (1) { // apply speed factor to emu time if (m_speed != 0 && m_speed != 1000) { // multiply emutime by 1000, then divide by the global speed factor emutime = (emutime * 1000) / m_speed; } // compute conversion factors up front osd_ticks_t ticks_per_second = osd_ticks_per_second(); attoseconds_t attoseconds_per_tick = ATTOSECONDS_PER_SECOND / ticks_per_second * m_throttle_rate; // if we're paused, emutime will not advance; instead, we subtract a fixed // amount of time (1/60th of a second) from the emulated time that was passed in, // and explicitly reset our tracked real and emulated timers to that value ... // this means we pretend that the last update was exactly 1/60th of a second // ago, and was in sync in both real and emulated time if (machine().paused()) { m_throttle_emutime = emutime - attotime(0, ATTOSECONDS_PER_SECOND / PAUSED_REFRESH_RATE); m_throttle_realtime = m_throttle_emutime; } // attempt to detect anomalies in the emulated time by subtracting the previously // reported value from our current value; this should be a small value somewhere // between 0 and 1/10th of a second ... anything outside of this range is obviously // wrong and requires a resync attoseconds_t emu_delta_attoseconds = (emutime - m_throttle_emutime).as_attoseconds(); if (emu_delta_attoseconds < 0 || emu_delta_attoseconds > ATTOSECONDS_PER_SECOND / 10) { if (LOG_THROTTLE) machine().logerror("Resync due to weird emutime delta: %s\n", attotime(0, emu_delta_attoseconds).as_string(18)); break; } // now determine the current real time in OSD-specified ticks; we have to be careful // here because counters can wrap, so we only use the difference between the last // read value and the current value in our computations osd_ticks_t diff_ticks = osd_ticks() - m_throttle_last_ticks; m_throttle_last_ticks += diff_ticks; // if it has been more than a full second of real time since the last call to this // function, we just need to resynchronize if (diff_ticks >= ticks_per_second) { if (LOG_THROTTLE) machine().logerror("Resync due to real time advancing by more than 1 second\n"); break; } // convert this value into attoseconds for easier comparison attoseconds_t real_delta_attoseconds = diff_ticks * attoseconds_per_tick; // now update our real and emulated timers with the current values m_throttle_emutime = emutime; m_throttle_realtime += attotime(0, real_delta_attoseconds); // keep a history of whether or not emulated time beat real time over the last few // updates; this can be used for future heuristics m_throttle_history = (m_throttle_history << 1) | (emu_delta_attoseconds > real_delta_attoseconds); // determine how far ahead real time is versus emulated time; note that we use the // accumulated times for this instead of the deltas for the current update because // we want to track time over a longer duration than a single update attoseconds_t real_is_ahead_attoseconds = (m_throttle_emutime - m_throttle_realtime).as_attoseconds(); // if we're more than 1/10th of a second out, or if we are behind at all and emulation // is taking longer than the real frame, we just need to resync if (real_is_ahead_attoseconds < -ATTOSECONDS_PER_SECOND / 10 || (real_is_ahead_attoseconds < 0 && population_count_32(m_throttle_history & 0xff) < 6)) { if (LOG_THROTTLE) machine().logerror("Resync due to being behind: %s (history=%08X)\n", attotime(0, -real_is_ahead_attoseconds).as_string(18), m_throttle_history); break; } // if we're behind, it's time to just get out if (real_is_ahead_attoseconds < 0) return; // compute the target real time, in ticks, where we want to be osd_ticks_t target_ticks = m_throttle_last_ticks + real_is_ahead_attoseconds / attoseconds_per_tick; // throttle until we read the target, and update real time to match the final time diff_ticks = throttle_until_ticks(target_ticks) - m_throttle_last_ticks; m_throttle_last_ticks += diff_ticks; m_throttle_realtime += attotime(0, diff_ticks * attoseconds_per_tick); return; } // reset realtime and emutime to the same value m_throttle_realtime = m_throttle_emutime = emutime; } //------------------------------------------------- // throttle_until_ticks - spin until the // specified target time, calling the OSD code // to sleep if possible //------------------------------------------------- osd_ticks_t video_manager::throttle_until_ticks(osd_ticks_t target_ticks) { // we're allowed to sleep via the OSD code only if we're configured to do so // and we're not frameskipping due to autoframeskip, or if we're paused bool const allowed_to_sleep = (machine().options().sleep() && (!effective_autoframeskip() || effective_frameskip() == 0)) || machine().paused(); // loop until we reach our target auto profile = g_profiler.start(PROFILER_IDLE); osd_ticks_t current_ticks = osd_ticks(); while (current_ticks < target_ticks) { // compute how much time to sleep for, taking into account the average oversleep osd_ticks_t delta = target_ticks - current_ticks; if (delta > m_average_oversleep / 1000) delta -= m_average_oversleep / 1000; else delta = 0; // see if we can sleep bool const slept = allowed_to_sleep && delta; if (slept) osd_sleep(delta); // read the new value osd_ticks_t const new_ticks = osd_ticks(); // keep some metrics on the sleeping patterns of the OSD layer if (slept) { // if we overslept, keep an average of the amount osd_ticks_t const actual_ticks = new_ticks - current_ticks; if (actual_ticks > delta) { // take 99% of the previous average plus 1% of the new value osd_ticks_t const oversleep_milliticks = 1000 * (actual_ticks - delta); m_average_oversleep = (m_average_oversleep * 99 + oversleep_milliticks) / 100; if (LOG_THROTTLE) machine().logerror("Slept for %d ticks, got %d ticks, avgover = %d\n", (int)delta, (int)actual_ticks, (int)m_average_oversleep); } } current_ticks = new_ticks; } return current_ticks; } //------------------------------------------------- // update_frameskip - update frameskipping // counters and periodically update autoframeskip //------------------------------------------------- void video_manager::update_frameskip() { // if we're throttling and autoframeskip is on, adjust if (effective_throttle() && effective_autoframeskip() && m_frameskip_counter == 0) { // calibrate the "adjusted speed" based on the target double adjusted_speed_percent = m_speed_percent / double(m_throttle_rate); double speed = m_speed * 0.001; if (adjusted_speed_percent >= 0.995 * speed) { // if we're too fast, attempt to decrease the frameskip // but only after 3 consecutive frames where we are too fast if (++m_frameskip_adjust >= 3) { m_frameskip_adjust = 0; if (m_frameskip_level > 0) m_frameskip_level--; } } else { // if we're too slow, attempt to increase the frameskip if (adjusted_speed_percent < 0.80 * speed) // if below 80% speed, be more aggressive m_frameskip_adjust -= (0.90 * speed - m_speed_percent) / 0.05; else if (m_frameskip_level < 8) // if we're close, only force it up to frameskip 8 m_frameskip_adjust--; // perform the adjustment while (m_frameskip_adjust <= -2) { m_frameskip_adjust += 2; if (m_frameskip_level < (m_frameskip_max ? m_frameskip_max : MAX_FRAMESKIP)) m_frameskip_level++; } } } // increment the frameskip counter and determine if we will skip the next frame m_frameskip_counter = (m_frameskip_counter + 1) % FRAMESKIP_LEVELS; m_skipping_this_frame = s_skiptable[effective_frameskip()][m_frameskip_counter]; } //------------------------------------------------- // update_refresh_speed - update the m_speed // based on the maximum refresh rate supported //------------------------------------------------- void video_manager::update_refresh_speed() { // only do this if the refreshspeed option is used if (machine().options().refresh_speed()) { double minrefresh = machine().render().max_update_rate(); if (minrefresh != 0) { // find the screen with the shortest frame period (max refresh rate) // note that we first check the token since this can get called before all screens are created attoseconds_t min_frame_period = ATTOSECONDS_PER_SECOND; for (screen_device &screen : screen_device_enumerator(machine().root_device())) { attoseconds_t period = screen.frame_period().attoseconds(); if (period != 0) min_frame_period = std::min(min_frame_period, period); } // compute a target speed as an integral percentage // note that we lop 0.25Hz off of the minrefresh when doing the computation to allow for // the fact that most refresh rates are not accurate to 10 digits... u32 target_speed = floor((minrefresh - 0.25) * 1000.0 / ATTOSECONDS_TO_HZ(min_frame_period)); u32 original_speed = original_speed_setting(); target_speed = std::min(target_speed, original_speed); // if we changed, log that verbosely if (target_speed != m_speed) { osd_printf_verbose("Adjusting target speed to %.1f%% (hw=%.2fHz, game=%.2fHz, adjusted=%.2fHz)\n", target_speed / 10.0, minrefresh, ATTOSECONDS_TO_HZ(min_frame_period), ATTOSECONDS_TO_HZ(min_frame_period * 1000.0 / target_speed)); m_speed = target_speed; } } } } //------------------------------------------------- // recompute_speed - recompute the current // overall speed; we assume this is called only // if we did not skip a frame //------------------------------------------------- void video_manager::recompute_speed(const attotime &emutime) { // if we don't have a starting time yet, or if we're paused, reset our starting point if (m_speed_last_realtime == 0 || machine().paused()) { m_speed_last_realtime = osd_ticks(); m_speed_last_emutime = emutime; } // if it has been more than the update interval, update the time attotime delta_emutime = emutime - m_speed_last_emutime; if (delta_emutime > attotime(0, ATTOSECONDS_PER_SPEED_UPDATE)) { // convert from ticks to attoseconds osd_ticks_t realtime = osd_ticks(); osd_ticks_t delta_realtime = realtime - m_speed_last_realtime; osd_ticks_t tps = osd_ticks_per_second(); m_speed_percent = delta_emutime.as_double() * (double)tps / (double)delta_realtime; // remember the last times m_speed_last_realtime = realtime; m_speed_last_emutime = emutime; // if we're throttled, this time period counts for overall speed; otherwise, we reset the counter if (!m_fastforward) m_overall_valid_counter++; else m_overall_valid_counter = 0; // if we've had at least 4 consecutive valid periods, accumulate stats if (m_overall_valid_counter >= 4) { m_overall_real_ticks += delta_realtime; while (m_overall_real_ticks >= tps) { m_overall_real_ticks -= tps; m_overall_real_seconds++; } m_overall_emutime += delta_emutime; } } // if we're past the "time-to-execute" requested, signal an exit if (m_seconds_to_run != 0 && emutime.seconds() >= m_seconds_to_run) { // create a final screenshot if (m_snap_native) { for (screen_device &screen : screen_device_enumerator(machine().root_device())) { emu_file file(machine().options().snapshot_directory(), OPEN_FLAG_WRITE | OPEN_FLAG_CREATE | OPEN_FLAG_CREATE_PATHS); std::error_condition const filerr = open_next(file, "png"); if (!filerr) save_snapshot(&screen, file); } } else { emu_file file(machine().options().snapshot_directory(), OPEN_FLAG_WRITE | OPEN_FLAG_CREATE | OPEN_FLAG_CREATE_PATHS); std::error_condition const filerr = open_next(file, "png"); if (!filerr) save_snapshot(nullptr, file); } //printf("Scheduled exit at %f\n", emutime.as_double()); // schedule our demise machine().schedule_exit(); } } //------------------------------------------------- // create_snapshot_bitmap - creates a // bitmap containing the screenshot for the // given screen //------------------------------------------------- typedef software_renderer snap_renderer_bilinear; typedef software_renderer snap_renderer; void video_manager::create_snapshot_bitmap(screen_device *screen) { // select the appropriate view in our dummy target if (m_snap_native && screen) { screen_device_enumerator iter(machine().root_device()); int view_index = iter.indexof(*screen); assert(view_index != -1); m_snap_target->set_view(view_index); } // get the minimum width/height and set it on the target and bitmap s32 width, height; compute_snapshot_size(width, height); m_snap_target->set_bounds(width, height); if (width != m_snap_bitmap.width() || height != m_snap_bitmap.height()) m_snap_bitmap.resize(width, height); // render the screen there render_primitive_list &primlist = m_snap_target->get_primitives(); primlist.acquire_lock(); if (machine().options().snap_bilinear()) snap_renderer_bilinear::draw_primitives(primlist, &m_snap_bitmap.pix(0), width, height, m_snap_bitmap.rowpixels()); else snap_renderer::draw_primitives(primlist, &m_snap_bitmap.pix(0), width, height, m_snap_bitmap.rowpixels()); primlist.release_lock(); } //------------------------------------------------- // compute_snapshot_size - computes width and // height of the current snapshot target // accounting for OPTION_SNAPSIZE //------------------------------------------------- void video_manager::compute_snapshot_size(s32 &width, s32 &height) { width = m_snap_width; height = m_snap_height; if (width == 0 || height == 0) m_snap_target->compute_minimum_size(width, height); } //------------------------------------------------- // pixels - fills the specified buffer with the // RGB values of each pixel in the snapshot target //------------------------------------------------- void video_manager::pixels(u32 *buffer) { create_snapshot_bitmap(nullptr); for (int y = 0; y < m_snap_bitmap.height(); y++) { const u32 *src = &m_snap_bitmap.pix(y, 0); for (int x = 0; x < m_snap_bitmap.width(); x++) { *buffer++ = *src++; } } } //------------------------------------------------- // open_next - open the next non-existing file of // type filetype according to our numbering // scheme //------------------------------------------------- std::error_condition video_manager::open_next(emu_file &file, const char *extension, uint32_t added_index) { u32 origflags = file.openflags(); // handle defaults const char *snapname = machine().options().snap_name(); if (!snapname || !snapname[0]) snapname = "%g/%i"; std::string snapstr(snapname); // strip desired extension if already present std::string extstr; extstr.reserve(1 + std::strlen(extension)); extstr.assign(1, '.').append(extension); if (core_filename_ends_with(snapstr, extstr)) { extstr = snapstr.substr(snapstr.length() - extstr.length()); snapstr.resize(snapstr.length() - extstr.length()); } // handle %d in the template (for image devices) std::string snapdev("%d_"); int pos = snapstr.find(snapdev); if (pos != -1) { // if more %d are found, revert to default and ignore them all if (snapstr.find(snapdev, pos + 3) != -1) snapstr.assign("%g/%i"); // else if there is a single %d, try to create the correct snapname else { int name_found = 0; // find length of the device name int end = snapstr.find_first_not_of("abcdefghijklmnopqrstuvwxyz1234567890", pos + 3); if (end == -1) end = snapstr.length(); // copy the device name to an std::string std::string snapdevname; snapdevname.assign(snapstr.substr(pos + 3, end - pos - 3)); //printf("check template: %s\n", snapdevname.c_str()); // verify that there is such a device for this system for (device_image_interface &image : image_interface_enumerator(machine().root_device())) { // get the device name std::string tempdevname(image.brief_instance_name()); //printf("check device: %s\n", tempdevname.c_str()); if (snapdevname.compare(tempdevname) == 0) { // verify that such a device has an image mounted if (image.basename() != nullptr) { std::string filename(image.basename()); // strip extension filename = filename.substr(0, filename.find_last_of('.')); // setup snapname and remove the %d_ strreplace(snapstr, snapdevname, filename); snapstr.erase(pos, 3); //printf("check image: %s\n", filename.c_str()); name_found = 1; } } } // or fallback to default if (name_found == 0) snapstr.assign("%g/%i"); } } // handle %t in the template (for timestamp) std::string snaptime("%t"); int pos_time = snapstr.find(snaptime); if (pos_time != -1) { char t_str[16]; const std::time_t cur_time = std::time(nullptr); strftime(t_str, sizeof(t_str), "%Y%m%d_%H%M%S", std::localtime(&cur_time)); strreplace(snapstr, "%t", t_str); } // append extension snapstr.append(extstr); // substitute path and gamename up front strreplace(snapstr, "/", PATH_SEPARATOR); strreplace(snapstr, "%g", machine().basename()); // determine if the template has an index std::string fname; if (snapstr.find("%i") == -1) { // if not, we always use the same name fname.assign(snapstr); } else { // otherwise, we scan for the next available filename // try until we succeed file.set_openflags(OPEN_FLAG_WRITE); for (int seq = 0; ; seq++) { // build up the filename fname.assign(snapstr); strreplace(fname, "%i", string_format("%04d", seq)); // try to open the file; stop when we fail std::error_condition const filerr = file.open(fname); if (std::errc::no_such_file_or_directory == filerr) break; } } // create the final file file.set_openflags(origflags); return file.open(fname); } //------------------------------------------------- // record_frame - record a frame of a movie //------------------------------------------------- void video_manager::record_frame() { // ignore if nothing to do if (!is_recording()) return; // start the profiler and get the current time auto profile = g_profiler.start(PROFILER_MOVIE_REC); attotime curtime = machine().time(); bool error = false; for (auto &recording : m_movie_recordings) { // create the bitmap create_snapshot_bitmap(recording->screen()); // and append the frame if (!recording->append_video_frame(m_snap_bitmap, curtime)) { error = true; break; } } if (error) end_recording(); } //------------------------------------------------- // toggle_record_movie //------------------------------------------------- void video_manager::toggle_record_movie(movie_recording::format format) { if (!is_recording()) { begin_recording(nullptr, format); machine().popmessage("REC START (%s)", format == movie_recording::format::MNG ? "MNG" : "AVI"); } else { end_recording(); machine().popmessage("REC STOP"); } } void video_manager::end_recording() { m_movie_recordings.clear(); }