/*************************************************************************** validity.c Validity checks on internal data structures. Copyright (c) 1996-2007, Nicola Salmoria and the MAME Team. Visit http://mamedev.org for licensing and usage restrictions. ***************************************************************************/ #include "osdepend.h" #include "eminline.h" #include "driver.h" #include "hash.h" #include #include #include "uitext.h" #include "unicode.h" #include /************************************* * * Debugging * *************************************/ #define REPORT_TIMES (0) /************************************* * * Constants * *************************************/ #define QUARK_HASH_SIZE 389 /************************************* * * Type definitions * *************************************/ typedef struct _quark_entry quark_entry; struct _quark_entry { UINT32 crc; struct _quark_entry *next; }; typedef struct _quark_table quark_table; struct _quark_table { UINT32 entries; UINT32 hashsize; quark_entry *entry; quark_entry **hash; }; /************************************* * * Local variables * *************************************/ static quark_table *source_table; static quark_table *name_table; static quark_table *description_table; static quark_table *roms_table; static quark_table *inputs_table; static quark_table *defstr_table; /************************************* * * Allocate an array of quark * entries and a hash table * *************************************/ static quark_table *allocate_quark_table(UINT32 entries, UINT32 hashsize) { quark_table *table; UINT32 total_bytes; /* determine how many total bytes we need */ total_bytes = sizeof(*table) + entries * sizeof(table->entry[0]) + hashsize * sizeof(table->hash[0]); table = auto_malloc(total_bytes); /* fill in the details */ table->entries = entries; table->hashsize = hashsize; /* compute the pointers */ table->entry = (quark_entry *)((UINT8 *)table + sizeof(*table)); table->hash = (quark_entry **)((UINT8 *)table->entry + entries * sizeof(table->entry[0])); /* reset the hash table */ memset(table->hash, 0, hashsize * sizeof(table->hash[0])); return table; } /************************************* * * Compute the CRC of a string * *************************************/ INLINE UINT32 quark_string_crc(const char *string) { return crc32(0, (UINT8 *)string, (UINT32)strlen(string)); } /************************************* * * Add a quark to the table and * connect it to the hash tables * *************************************/ INLINE void add_quark(quark_table *table, int index, UINT32 crc) { quark_entry *entry = &table->entry[index]; int hash = crc % table->hashsize; entry->crc = crc; entry->next = table->hash[hash]; table->hash[hash] = entry; } /************************************* * * Return a pointer to the first * hash entry connected to a CRC * *************************************/ INLINE quark_entry *first_hash_entry(quark_table *table, UINT32 crc) { return table->hash[crc % table->hashsize]; } /************************************* * * Build "quarks" for fast string * operations * *************************************/ static void build_quarks(void) { int drivnum, strnum; /* first count drivers */ for (drivnum = 0; drivers[drivnum]; drivnum++) ; /* allocate memory for the quark tables */ source_table = allocate_quark_table(drivnum, QUARK_HASH_SIZE); name_table = allocate_quark_table(drivnum, QUARK_HASH_SIZE); description_table = allocate_quark_table(drivnum, QUARK_HASH_SIZE); roms_table = allocate_quark_table(drivnum, QUARK_HASH_SIZE); inputs_table = allocate_quark_table(drivnum, QUARK_HASH_SIZE); /* build the quarks and the hash tables */ for (drivnum = 0; drivers[drivnum]; drivnum++) { const game_driver *driver = drivers[drivnum]; /* fill in the quark with hashes of the strings */ add_quark(source_table, drivnum, quark_string_crc(driver->source_file)); add_quark(name_table, drivnum, quark_string_crc(driver->name)); add_quark(description_table, drivnum, quark_string_crc(driver->description)); /* only track actual driver ROM entries */ if (driver->rom && (driver->flags & GAME_NO_STANDALONE) == 0) add_quark(roms_table, drivnum, (FPTR)driver->rom); } /* allocate memory for a quark table of strings */ defstr_table = allocate_quark_table(INPUT_STRING_COUNT, 97); /* add all the default strings */ for (strnum = 1; strnum < INPUT_STRING_COUNT; strnum++) { const char *string = input_port_string_from_token(INPUT_PORT_UINT32(strnum)); if (string != NULL) add_quark(defstr_table, strnum, quark_string_crc(string)); } } /************************************* * * Validate inline functions * *************************************/ static int validate_inlines(void) { #undef rand UINT64 testu64a = rand() + (rand() << 15) + ((UINT64)rand() << 30) + ((UINT64)rand() << 45) + 1; INT64 testi64a = rand() + (rand() << 15) + ((INT64)rand() << 30) + ((INT64)rand() << 45) + 1; #ifdef PTR64 INT64 testi64b = rand() + (rand() << 15) + ((INT64)rand() << 30) + ((INT64)rand() << 45) + 1; #endif UINT32 testu32a = rand() + (rand() << 15) + 1; UINT32 testu32b = rand() + (rand() << 15) + 1; INT32 testi32a = rand() + (rand() << 15) + 1; INT32 testi32b = rand() + (rand() << 15) + 1; INT32 resulti32, expectedi32; UINT32 resultu32, expectedu32; INT64 resulti64, expectedi64; UINT64 resultu64, expectedu64; INT32 remainder, expremainder; UINT32 uremainder, expuremainder; int error = FALSE; resulti64 = mul_32x32(testi32a, testi32b); expectedi64 = (INT64)testi32a * (INT64)testi32b; if (resulti64 != expectedi64) { mame_printf_error("Error testing mul_32x32 (%08X x %08X) = %08X%08X (expected %08X%08X)\n", testi32a, testi32b, (UINT32)(resulti64 >> 32), (UINT32)resulti64, (UINT32)(expectedi64 >> 32), (UINT32)expectedi64); error = TRUE; } resultu64 = mulu_32x32(testu32a, testu32b); expectedu64 = (UINT64)testu32a * (UINT64)testu32b; if (resultu64 != expectedu64) { mame_printf_error("Error testing mulu_32x32 (%08X x %08X) = %08X%08X (expected %08X%08X)\n", testu32a, testu32b, (UINT32)(resultu64 >> 32), (UINT32)resultu64, (UINT32)(expectedu64 >> 32), (UINT32)expectedu64); error = TRUE; } resulti32 = mul_32x32_hi(testi32a, testi32b); expectedi32 = ((INT64)testi32a * (INT64)testi32b) >> 32; if (resulti32 != expectedi32) { mame_printf_error("Error testing mul_32x32_hi (%08X x %08X) = %08X (expected %08X)\n", testi32a, testi32b, resulti32, expectedi32); error = TRUE; } resultu32 = mulu_32x32_hi(testu32a, testu32b); expectedu32 = ((INT64)testu32a * (INT64)testu32b) >> 32; if (resultu32 != expectedu32) { mame_printf_error("Error testing mulu_32x32_hi (%08X x %08X) = %08X (expected %08X)\n", testu32a, testu32b, resultu32, expectedu32); error = TRUE; } resulti32 = mul_32x32_shift(testi32a, testi32b, 7); expectedi32 = ((INT64)testi32a * (INT64)testi32b) >> 7; if (resulti32 != expectedi32) { mame_printf_error("Error testing mul_32x32_shift (%08X x %08X) >> 7 = %08X (expected %08X)\n", testi32a, testi32b, resulti32, expectedi32); error = TRUE; } resultu32 = mulu_32x32_shift(testu32a, testu32b, 7); expectedu32 = ((INT64)testu32a * (INT64)testu32b) >> 7; if (resultu32 != expectedu32) { mame_printf_error("Error testing mulu_32x32_shift (%08X x %08X) >> 7 = %08X (expected %08X)\n", testu32a, testu32b, resultu32, expectedu32); error = TRUE; } while ((INT64)testi32a * (INT64)0x7fffffff < testi64a) testi64a /= 2; while ((UINT64)testu32a * (UINT64)0xffffffff < testu64a) testu64a /= 2; resulti32 = div_64x32(testi64a, testi32a); expectedi32 = testi64a / (INT64)testi32a; if (resulti32 != expectedi32) { mame_printf_error("Error testing div_64x32 (%08X%08X / %08X) = %08X (expected %08X)\n", (UINT32)(testi64a >> 32), (UINT32)testi64a, testi32a, resulti32, expectedi32); error = TRUE; } resultu32 = divu_64x32(testu64a, testu32a); expectedu32 = testu64a / (UINT64)testu32a; if (resultu32 != expectedu32) { mame_printf_error("Error testing divu_64x32 (%08X%08X / %08X) = %08X (expected %08X)\n", (UINT32)(testu64a >> 32), (UINT32)testu64a, testu32a, resultu32, expectedu32); error = TRUE; } resulti32 = div_64x32_rem(testi64a, testi32a, &remainder); expectedi32 = testi64a / (INT64)testi32a; expremainder = testi64a % (INT64)testi32a; if (resulti32 != expectedi32 || remainder != expremainder) { mame_printf_error("Error testing div_64x32_rem (%08X%08X / %08X) = %08X,%08X (expected %08X,%08X)\n", (UINT32)(testi64a >> 32), (UINT32)testi64a, testi32a, resulti32, remainder, expectedi32, expremainder); error = TRUE; } resultu32 = divu_64x32_rem(testu64a, testu32a, &uremainder); expectedu32 = testu64a / (UINT64)testu32a; expuremainder = testu64a % (UINT64)testu32a; if (resultu32 != expectedu32 || uremainder != expuremainder) { mame_printf_error("Error testing divu_64x32_rem (%08X%08X / %08X) = %08X,%08X (expected %08X,%08X)\n", (UINT32)(testu64a >> 32), (UINT32)testu64a, testu32a, resultu32, uremainder, expectedu32, expuremainder); error = TRUE; } resulti32 = mod_64x32(testi64a, testi32a); expectedi32 = testi64a % (INT64)testi32a; if (resulti32 != expectedi32) { mame_printf_error("Error testing mod_64x32 (%08X%08X / %08X) = %08X (expected %08X)\n", (UINT32)(testi64a >> 32), (UINT32)testi64a, testi32a, resulti32, expectedi32); error = TRUE; } resultu32 = modu_64x32(testu64a, testu32a); expectedu32 = testu64a % (UINT64)testu32a; if (resultu32 != expectedu32) { mame_printf_error("Error testing modu_64x32 (%08X%08X / %08X) = %08X (expected %08X)\n", (UINT32)(testu64a >> 32), (UINT32)testu64a, testu32a, resultu32, expectedu32); error = TRUE; } while ((INT64)testi32a * (INT64)0x7fffffff < ((INT32)testi64a << 3)) testi64a /= 2; while ((UINT64)testu32a * (UINT64)0xffffffff < ((UINT32)testu64a << 3)) testu64a /= 2; resulti32 = div_32x32_shift((INT32)testi64a, testi32a, 3); expectedi32 = ((INT64)(INT32)testi64a << 3) / (INT64)testi32a; if (resulti32 != expectedi32) { mame_printf_error("Error testing div_32x32_shift (%08X << 3) / %08X = %08X (expected %08X)\n", (INT32)testi64a, testi32a, resulti32, expectedi32); error = TRUE; } resultu32 = divu_32x32_shift((UINT32)testu64a, testu32a, 3); expectedu32 = ((UINT64)(UINT32)testu64a << 3) / (UINT64)testu32a; if (resultu32 != expectedu32) { mame_printf_error("Error testing divu_32x32_shift (%08X << 3) / %08X = %08X (expected %08X)\n", (UINT32)testu64a, testu32a, resultu32, expectedu32); error = TRUE; } if (fabs(recip_approx(100.0) - 0.01) > 0.0001) { mame_printf_error("Error testing recip_approx\n"); error = TRUE; } testi32a = (testi32a & 0x0000ffff) | 0x400000; if (count_leading_zeros(testi32a) != 9) { mame_printf_error("Error testing count_leading_zeros\n"); error = TRUE; } testi32a = (testi32a | 0xffff0000) & ~0x400000; if (count_leading_ones(testi32a) != 9) { mame_printf_error("Error testing count_leading_ones\n"); error = TRUE; } testi32b = testi32a; if (compare_exchange32(&testi32a, testi32b, 1000) != testi32b || testi32a != 1000) { mame_printf_error("Error testing compare_exchange32\n"); error = TRUE; } #ifdef PTR64 testi64b = testi64a; if (compare_exchange64(&testi64a, testi64b, 1000) != testi64b || testi64a != 1000) { mame_printf_error("Error testing compare_exchange64\n"); error = TRUE; } #endif if (atomic_exchange32(&testi32a, testi32b) != 1000) { mame_printf_error("Error testing atomic_exchange32\n"); error = TRUE; } if (atomic_add32(&testi32a, 45) != testi32b + 45) { mame_printf_error("Error testing atomic_add32\n"); error = TRUE; } if (atomic_increment32(&testi32a) != testi32b + 46) { mame_printf_error("Error testing atomic_increment32\n"); error = TRUE; } if (atomic_decrement32(&testi32a) != testi32b + 45) { mame_printf_error("Error testing atomic_decrement32\n"); error = TRUE; } return error; } /************************************* * * Validate basic driver info * *************************************/ static int validate_driver(int drivnum, const machine_config *drv) { const game_driver *driver = drivers[drivnum]; const game_driver *clone_of; quark_entry *entry; int error = FALSE; const char *s; UINT32 crc; /* determine the clone */ clone_of = driver_get_clone(driver); /* if we have at least 100 drivers, validate the clone */ /* (100 is arbitrary, but tries to avoid tiny.mak dependencies) */ if (driver_list_get_count(drivers) > 100 && !clone_of && strcmp(driver->parent, "0")) { mame_printf_error("%s: %s is a non-existant clone\n", driver->source_file, driver->parent); error = TRUE; } /* look for recursive cloning */ if (clone_of == driver) { mame_printf_error("%s: %s is set as a clone of itself\n", driver->source_file, driver->name); error = TRUE; } /* look for clones that are too deep */ if (clone_of != NULL && (clone_of = driver_get_clone(clone_of)) != NULL && (clone_of->flags & GAME_IS_BIOS_ROOT) == 0) { mame_printf_error("%s: %s is a clone of a clone\n", driver->source_file, driver->name); error = TRUE; } /* make sure the driver name is 8 chars or less */ if (strlen(driver->name) > 8) { mame_printf_error("%s: %s driver name must be 8 characters or less\n", driver->source_file, driver->name); error = TRUE; } /* make sure the year is only digits, '?' or '+' */ for (s = driver->year; *s; s++) if (!isdigit(*s) && *s != '?' && *s != '+') { mame_printf_error("%s: %s has an invalid year '%s'\n", driver->source_file, driver->name, driver->year); error = TRUE; break; } #ifndef MESS /* make sure sound-less drivers are flagged */ if ((driver->flags & GAME_IS_BIOS_ROOT) == 0 && drv->sound[0].type == SOUND_DUMMY && (driver->flags & GAME_NO_SOUND) == 0 && strcmp(driver->name, "minivadr")) { mame_printf_error("%s: %s missing GAME_NO_SOUND flag\n", driver->source_file, driver->name); error = TRUE; } #endif /* find duplicate driver names */ crc = quark_string_crc(driver->name); for (entry = first_hash_entry(name_table, crc); entry; entry = entry->next) if (entry->crc == crc && entry != &name_table->entry[drivnum]) { const game_driver *match = drivers[entry - name_table->entry]; if (!strcmp(match->name, driver->name)) { mame_printf_error("%s: %s is a duplicate name (%s, %s)\n", driver->source_file, driver->name, match->source_file, match->name); error = TRUE; } } /* find duplicate descriptions */ crc = quark_string_crc(driver->description); for (entry = first_hash_entry(description_table, crc); entry; entry = entry->next) if (entry->crc == crc && entry != &description_table->entry[drivnum]) { const game_driver *match = drivers[entry - description_table->entry]; if (!strcmp(match->description, driver->description)) { mame_printf_error("%s: %s is a duplicate description (%s, %s)\n", driver->source_file, driver->description, match->source_file, match->name); error = TRUE; } } /* find shared ROM entries */ #ifndef MESS if (driver->rom && (driver->flags & GAME_IS_BIOS_ROOT) == 0) { crc = (FPTR)driver->rom; for (entry = first_hash_entry(roms_table, crc); entry; entry = entry->next) if (entry->crc == crc && entry != &roms_table->entry[drivnum]) { const game_driver *match = drivers[entry - roms_table->entry]; if (match->rom == driver->rom) { mame_printf_error("%s: %s uses the same ROM set as (%s, %s)\n", driver->source_file, driver->description, match->source_file, match->name); error = TRUE; } } } #endif /* MESS */ return error; } /************************************* * * Validate ROM definitions * *************************************/ static int validate_roms(int drivnum, const machine_config *drv, UINT32 *region_length) { const game_driver *driver = drivers[drivnum]; const rom_entry *romp; const char *last_name = "???"; int cur_region = -1; int error = FALSE; int items_since_region = 1; int bios_flags = 0, last_bios = 0; /* reset region info */ memset(region_length, 0, REGION_MAX * sizeof(*region_length)); /* scan the ROM entries */ for (romp = driver->rom; romp && !ROMENTRY_ISEND(romp); romp++) { /* if this is a region, make sure it's valid, and record the length */ if (ROMENTRY_ISREGION(romp)) { int type = ROMREGION_GETTYPE(romp); /* if we haven't seen any items since the last region, print a warning */ if (items_since_region == 0) mame_printf_warning("%s: %s has empty ROM region (warning)\n", driver->source_file, driver->name); items_since_region = (ROMREGION_ISERASE(romp) || ROMREGION_ISDISPOSE(romp)) ? 1 : 0; /* check for an invalid region */ if (type >= REGION_MAX || type <= REGION_INVALID) { mame_printf_error("%s: %s has invalid ROM_REGION type %x\n", driver->source_file, driver->name, type); error = TRUE; cur_region = -1; } /* check for a duplicate */ else if (region_length[type] != 0) { mame_printf_error("%s: %s has duplicate ROM_REGION type %x\n", driver->source_file, driver->name, type); error = TRUE; cur_region = -1; } /* if all looks good, remember the length and note the region */ else { cur_region = type; region_length[type] = ROMREGION_GETLENGTH(romp); } } /* If this is a system bios, make sure it is using the next available bios number */ else if (ROMENTRY_ISSYSTEM_BIOS(romp)) { bios_flags = ROM_GETBIOSFLAGS(romp); if (last_bios+1 != bios_flags) { const char *name = ROM_GETHASHDATA(romp); mame_printf_error("%s: %s has non-sequential bios %s\n", driver->source_file, driver->name, name); error = TRUE; } last_bios = bios_flags; } /* if this is a file, make sure it is properly formatted */ else if (ROMENTRY_ISFILE(romp)) { const char *hash; const char *s; items_since_region++; /* track the last filename we found */ last_name = ROM_GETNAME(romp); /* make sure it's all lowercase */ for (s = last_name; *s; s++) if (tolower(*s) != *s) { mame_printf_error("%s: %s has upper case ROM name %s\n", driver->source_file, driver->name, last_name); error = TRUE; break; } /* if this is a bios rom, make sure it has the same flags as the last system bios entry */ bios_flags = ROM_GETBIOSFLAGS(romp); if (bios_flags != 0) { if (bios_flags != last_bios) { mame_printf_error("%s: %s has bios rom name %s without preceding matching system bios definition\n", driver->source_file, driver->name, last_name); error = TRUE; } } /* make sure the has is valid */ hash = ROM_GETHASHDATA(romp); if (!hash_verify_string(hash)) { mame_printf_error("%s: rom '%s' has an invalid hash string '%s'\n", driver->name, last_name, hash); error = TRUE; } } /* for any non-region ending entries, make sure they don't extend past the end */ if (!ROMENTRY_ISREGIONEND(romp) && cur_region != -1) { items_since_region++; if (ROM_GETOFFSET(romp) + ROM_GETLENGTH(romp) > region_length[cur_region]) { mame_printf_error("%s: %s has ROM %s extending past the defined memory region\n", driver->source_file, driver->name, last_name); error = TRUE; } } } /* final check for empty regions */ if (items_since_region == 0) mame_printf_warning("%s: %s has empty ROM region (warning)\n", driver->source_file, driver->name); return error; } /************************************* * * Validate CPUs and memory maps * *************************************/ static int validate_cpu(int drivnum, const machine_config *drv, const UINT32 *region_length) { const game_driver *driver = drivers[drivnum]; int error = FALSE; int cpunum; /* loop over all the CPUs */ for (cpunum = 0; cpunum < MAX_CPU; cpunum++) { extern void dummy_get_info(UINT32 state, cpuinfo *info); const cpu_config *cpu = &drv->cpu[cpunum]; int spacenum; /* skip empty entries */ if (cpu->type == CPU_DUMMY) continue; /* checks to see if this driver is using a dummy CPU */ if (cputype_get_interface(cpu->type)->get_info == dummy_get_info) { mame_printf_error("%s: %s uses non-present CPU\n", driver->source_file, driver->name); error = TRUE; continue; } /* check the CPU for incompleteness */ if (!cputype_get_info_fct(cpu->type, CPUINFO_PTR_GET_CONTEXT) || !cputype_get_info_fct(cpu->type, CPUINFO_PTR_SET_CONTEXT) || !cputype_get_info_fct(cpu->type, CPUINFO_PTR_RESET) || !cputype_get_info_fct(cpu->type, CPUINFO_PTR_EXECUTE)) { mame_printf_error("%s: %s uses an incomplete CPU\n", driver->source_file, driver->name); error = TRUE; continue; } /* loop over all address spaces */ for (spacenum = 0; spacenum < ADDRESS_SPACES; spacenum++) { #define SPACE_SHIFT(a) ((addr_shift < 0) ? ((a) << -addr_shift) : ((a) >> addr_shift)) #define SPACE_SHIFT_END(a) ((addr_shift < 0) ? (((a) << -addr_shift) | ((1 << -addr_shift) - 1)) : ((a) >> addr_shift)) static const char *spacename[] = { "program", "data", "I/O" }; int databus_width = cputype_databus_width(cpu->type, spacenum); int addr_shift = cputype_addrbus_shift(cpu->type, spacenum); int alignunit = databus_width/8; address_map addrmap[MAX_ADDRESS_MAP_SIZE*2]; address_map *map; UINT32 flags; /* check to see that the same map is not used twice */ if (cpu->construct_map[spacenum][0] && cpu->construct_map[spacenum][0] == cpu->construct_map[spacenum][1]) { mame_printf_error("%s: %s uses identical memory maps for CPU #%d spacenum %d\n", driver->source_file, driver->name, cpunum, spacenum); error = TRUE; } /* reset the address map, resetting the base address to a non-NULL value */ /* because the AM_REGION macro will query non-existant memory regions and */ /* product valid NULL results */ memset(addrmap, 0, sizeof(addrmap)); /* construct the maps */ map = addrmap; construct_address_map(map, drv, cpunum, spacenum); /* if this is an empty map, just skip it */ if (IS_AMENTRY_END(map)) continue; /* make sure we start with a proper entry */ if (!IS_AMENTRY_EXTENDED(map)) { mame_printf_error("%s: %s wrong MEMORY_READ_START for %s space\n", driver->source_file, driver->name, spacename[spacenum]); error = TRUE; } /* loop over entries and look for errors */ for ( ; !IS_AMENTRY_END(map); map++) if (!IS_AMENTRY_EXTENDED(map)) { int ismatchmask = ((map->flags & AM_FLAGS_MATCH_MASK) != 0); UINT32 start = SPACE_SHIFT(map->start); UINT32 end = ismatchmask ? SPACE_SHIFT(map->end) : SPACE_SHIFT_END(map->end); { /* look for inverted start/end pairs */ if (end < start) { mame_printf_error("%s: %s wrong %s memory read handler start = %08x > end = %08x\n", driver->source_file, driver->name, spacename[spacenum], map->start, map->end); error = TRUE; } /* look for misaligned entries */ if ((start & (alignunit-1)) != 0 || (end & (alignunit-1)) != (alignunit-1)) { mame_printf_error("%s: %s wrong %s memory read handler start = %08x, end = %08x ALIGN = %d\n", driver->source_file, driver->name, spacename[spacenum], map->start, map->end, alignunit); error = TRUE; } /* if this is a program space, auto-assign implicit ROM entries */ if ((FPTR)map->read.handler == STATIC_ROM && !map->region) { map->region = REGION_CPU1 + cpunum; map->region_offs = map->start; } /* if this entry references a memory region, validate it */ if (map->region && map->share == 0) { offs_t length = region_length[map->region]; if (length == 0) { mame_printf_error("%s: %s CPU %d space %d memory map entry %X-%X references non-existant region %d\n", driver->source_file, driver->name, cpunum, spacenum, map->start, map->end, map->region); error = TRUE; } else if (map->region_offs + (end - start + 1) > length) { mame_printf_error("%s: %s CPU %d space %d memory map entry %X-%X extends beyond region %d size (%X)\n", driver->source_file, driver->name, cpunum, spacenum, map->start, map->end, map->region, length); error = TRUE; } } /* If this is a match/mask, make sure the match bits are present in the mask */ if (ismatchmask && (start & end) != start) { mame_printf_error("%s: %s CPU %d space %d memory map entry match %X contains bits not in mask %X for region %d\n", driver->source_file, driver->name, cpunum, spacenum, map->start, map->end, map->region); error = TRUE; } } } else { flags = AM_EXTENDED_FLAGS(map); if (flags & AMEF_SPECIFIES_SPACE) { int val = (flags & AMEF_SPACE_MASK) >> AMEF_SPACE_SHIFT; if (val != spacenum) { mame_printf_error("%s: %s CPU #%d space %d has address space %d handlers!", driver->source_file, driver->name, cpunum, spacenum, val); error = TRUE; } } /* verify the type of memory handlers */ if (flags & AMEF_SPECIFIES_DBITS) { int val = (flags & AMEF_DBITS_MASK) >> AMEF_DBITS_SHIFT; val = (val + 1) * 8; if (val != databus_width) { mame_printf_error("%s: %s cpu #%d uses wrong memory handlers for %s space! (width = %d, memory = %08x)\n", driver->source_file, driver->name, cpunum, spacename[spacenum], databus_width, val); error = TRUE; } } } } } return error; } /************************************* * * Validate display * *************************************/ static int validate_display(int drivnum, const machine_config *drv) { const game_driver *driver = drivers[drivnum]; int palette_modes = FALSE; int error = FALSE; int scrnum; /* loop over screens */ for (scrnum = 0; scrnum < MAX_SCREENS; scrnum++) if (drv->screen[scrnum].tag != NULL) { /* sanity check dimensions */ if ((drv->screen[scrnum].defstate.width <= 0) || (drv->screen[scrnum].defstate.height <= 0)) { mame_printf_error("%s: %s screen %d has invalid display dimensions\n", driver->source_file, driver->name, scrnum); error = TRUE; } /* sanity check screen formats */ if (drv->screen[scrnum].defstate.format != BITMAP_FORMAT_INDEXED16 && drv->screen[scrnum].defstate.format != BITMAP_FORMAT_RGB15 && drv->screen[scrnum].defstate.format != BITMAP_FORMAT_RGB32) { mame_printf_error("%s: %s screen %d has unsupported format\n", driver->source_file, driver->name, scrnum); error = TRUE; } if (drv->screen[scrnum].defstate.format == BITMAP_FORMAT_INDEXED16) palette_modes = TRUE; /* sanity check display area */ if (!(drv->video_attributes & VIDEO_TYPE_VECTOR)) { if ((drv->screen[scrnum].defstate.visarea.max_x < drv->screen[scrnum].defstate.visarea.min_x) || (drv->screen[scrnum].defstate.visarea.max_y < drv->screen[scrnum].defstate.visarea.min_y) || (drv->screen[scrnum].defstate.visarea.max_x >= drv->screen[scrnum].defstate.width) || (drv->screen[scrnum].defstate.visarea.max_y >= drv->screen[scrnum].defstate.height)) { mame_printf_error("%s: %s screen %d has an invalid display area\n", driver->source_file, driver->name, scrnum); error = TRUE; } } /* check for zero frame rate */ if (drv->screen[scrnum].defstate.refresh == 0) { mame_printf_error("%s: %s screen %d has a zero refresh rate\n", driver->source_file, driver->name, scrnum); error = TRUE; } } /* check for empty palette */ if (palette_modes && drv->total_colors == 0) { mame_printf_error("%s: %s has zero palette entries\n", driver->source_file, driver->name); error = TRUE; } return error; } /************************************* * * Validate graphics * *************************************/ static int validate_gfx(int drivnum, const machine_config *drv, const UINT32 *region_length) { const game_driver *driver = drivers[drivnum]; int error = FALSE; int gfxnum; /* bail if no gfx */ if (!drv->gfxdecodeinfo) return FALSE; /* iterate over graphics decoding entries */ for (gfxnum = 0; gfxnum < MAX_GFX_ELEMENTS && drv->gfxdecodeinfo[gfxnum].memory_region != -1; gfxnum++) { const gfx_decode_entry *gfx = &drv->gfxdecodeinfo[gfxnum]; int region = gfx->memory_region; /* if we have a valid region, and we're not using auto-sizing, check the decode against the region length */ if (region && !IS_FRAC(gfx->gfxlayout->total)) { int len, avail, plane, start; /* determine which plane is the largest */ start = 0; for (plane = 0; plane < MAX_GFX_PLANES; plane++) if (gfx->gfxlayout->planeoffset[plane] > start) start = gfx->gfxlayout->planeoffset[plane]; start &= ~(gfx->gfxlayout->charincrement - 1); /* determine the total length based on this info */ len = gfx->gfxlayout->total * gfx->gfxlayout->charincrement; /* do we have enough space in the region to cover the whole decode? */ avail = region_length[region] - (gfx->start & ~(gfx->gfxlayout->charincrement/8-1)); /* if not, this is an error */ if ((start + len) / 8 > avail) { mame_printf_error("%s: %s has gfx[%d] extending past allocated memory\n", driver->source_file, driver->name, gfxnum); error = TRUE; } } } return error; } /************************************* * * Display valid coin order * *************************************/ static void display_valid_coin_order(int drivnum, const input_port_entry *memory) { const game_driver *driver = drivers[drivnum]; const input_port_entry *inp; int coin_list[1024]; int coin_len = 0; int i, j; quark_entry *entry; for (inp = memory; inp->type != IPT_END; inp++) { int strindex = 0; UINT32 crc; if ( !inp->name || inp->name == IP_NAME_DEFAULT ) continue; /* hash the string and look it up in the string table */ crc = quark_string_crc(inp->name); for (entry = first_hash_entry(defstr_table, crc); entry; entry = entry->next) if (entry->crc == crc && !strcmp(inp->name, input_port_string_from_token(INPUT_PORT_UINT32(entry - defstr_table->entry)))) { strindex = entry - defstr_table->entry; break; } /* if its a coin entry, add it to our list, avoiding repetitions */ if ( strindex >= INPUT_STRING_9C_1C && strindex <= INPUT_STRING_1C_9C ) { j = 1; for( i = 0; i < coin_len; i++ ) { if ( coin_list[i] == strindex ) { j = 0; break; } } if ( j ) coin_list[coin_len++] = strindex; } } /* now display the proper coin entry list */ mame_printf_error( "%s: %s proper coin sort order should be:\n", driver->source_file, driver->name ); for (i = INPUT_STRING_9C_1C; i <= INPUT_STRING_1C_9C; i++) for (j = 0; j < coin_len; j++) /* if it's on our list, display it */ if (coin_list[j] == i) mame_printf_error("%s\n", input_port_string_from_token(INPUT_PORT_UINT32(i))); } /************************************* * * Validate input ports * *************************************/ static int validate_inputs(int drivnum, const machine_config *drv, input_port_entry **memory) { const char *demo_sounds = input_port_string_from_token(INPUT_PORT_UINT32(INPUT_STRING_Demo_Sounds)); const char *flipscreen = input_port_string_from_token(INPUT_PORT_UINT32(INPUT_STRING_Flip_Screen)); const input_port_entry *inp, *last_dipname_entry = NULL; const game_driver *driver = drivers[drivnum]; int empty_string_found = FALSE; int last_strindex = 0; quark_entry *entry; int error = FALSE; int coin_error = FALSE; UINT32 crc; /* skip if no ports */ if (!driver->ipt) return FALSE; /* skip if we already validated these ports */ crc = (FPTR)driver->ipt; for (entry = first_hash_entry(inputs_table, crc); entry; entry = entry->next) if (entry->crc == crc && driver->ipt == drivers[entry - inputs_table->entry]->ipt) return FALSE; /* otherwise, add ourself to the list */ add_quark(inputs_table, drivnum, crc); /* allocate the input ports */ *memory = input_port_allocate(driver->ipt, *memory); /* iterate over the results */ for (inp = *memory; inp->type != IPT_END; inp++) { int strindex = 0; if (port_type_is_analog(inp->type)) { INT32 analog_max = inp->analog.max; INT32 analog_min = inp->analog.min; int shift; if (inp->type == IPT_POSITIONAL || inp->type == IPT_POSITIONAL_V) { for (shift = 0; (shift <= 31) && (~inp->mask & (1 << shift)); shift++); /* convert the positional max value to be in the bitmask for testing */ analog_max = (analog_max - 1) << shift; /* positional port size must fit in bits used */ if (((inp->mask >> shift) + 1) < inp->analog.max) { mame_printf_error("%s: %s has an analog port with a positional port size bigger then the mask size\n", driver->source_file, driver->name); error = TRUE; } } else { /* only positional controls use PORT_WRAPS */ if (inp->analog.wraps) { mame_printf_error("%s: %s only positional analog ports use PORT_WRAPS\n", driver->source_file, driver->name); error = TRUE; } } /* analog ports must have a valid sensitivity */ if (inp->analog.sensitivity == 0) { mame_printf_error("%s: %s has an analog port with zero sensitivity\n", driver->source_file, driver->name); error = TRUE; } /* check that the default falls in the bitmask range */ if (inp->default_value & ~inp->mask) { mame_printf_error("%s: %s has an analog port with a default value out of the bitmask range\n", driver->source_file, driver->name); error = TRUE; } /* tests for absolute devices */ if (port_type_is_analog_absolute(inp->type)) { INT32 default_value = inp->default_value; /* adjust for signed values */ if (analog_min > analog_max) { analog_min = -analog_min; if (default_value > analog_max) default_value = -default_value; } /* check that the default falls in the MINMAX range */ if (default_value < analog_min || default_value > analog_max) { mame_printf_error("%s: %s has an analog port with a default value out PORT_MINMAX range\n", driver->source_file, driver->name); error = TRUE; } /* check that the MINMAX falls in the bitmask range */ /* we use the unadjusted min for testing */ if (inp->analog.min & ~inp->mask || analog_max & ~inp->mask) { mame_printf_error("%s: %s has an analog port with a PORT_MINMAX value out of the bitmask range\n", driver->source_file, driver->name); error = TRUE; } /* absolute analog ports do not use PORT_RESET */ if (inp->analog.reset) { mame_printf_error("%s: %s - absolute analog ports do not use PORT_RESET\n", driver->source_file, driver->name); error = TRUE; } } else /* tests for relative devices */ { /* tests for non IPT_POSITIONAL relative devices */ if (inp->type != IPT_POSITIONAL && inp->type != IPT_POSITIONAL_V) { /* relative devices do not use PORT_MINMAX */ if (inp->analog.min || inp->analog.max != inp->mask) { mame_printf_error("%s: %s - relative ports do not use PORT_MINMAX\n", driver->source_file, driver->name); error = TRUE; } /* relative devices do not use a default value */ /* the counter is at 0 on power up */ if (inp->default_value) { mame_printf_error("%s: %s - relative ports do not use a default value other then 0\n", driver->source_file, driver->name); error = TRUE; } } } } /* clear the DIP switch tracking when we hit the first non-DIP entry */ if (last_dipname_entry && inp->type != IPT_DIPSWITCH_SETTING) last_dipname_entry = NULL; /* look for invalid (0) types which should be mapped to IPT_OTHER */ if (inp->type == IPT_INVALID) { mame_printf_error("%s: %s has an input port with an invalid type (0); use IPT_OTHER instead\n", driver->source_file, driver->name); error = TRUE; } /* if this entry doesn't have a name, we don't care about the rest of this stuff */ if (!inp->name || inp->name == IP_NAME_DEFAULT) { /* not allowed for dipswitches */ if (inp->type == IPT_DIPSWITCH_NAME || inp->type == IPT_DIPSWITCH_SETTING) { mame_printf_error("%s: %s has a DIP switch name or setting with no name\n", driver->source_file, driver->name); error = TRUE; } last_strindex = 0; continue; } /* check for empty string */ if (!inp->name[0] && !empty_string_found) { mame_printf_error("%s: %s has an input with an empty string\n", driver->source_file, driver->name); error = TRUE; empty_string_found = TRUE; } /* check for trailing spaces */ if (inp->name[0] && inp->name[strlen(inp->name) - 1] == ' ') { mame_printf_error("%s: %s input '%s' has trailing spaces\n", driver->source_file, driver->name, inp->name); error = TRUE; } /* check for invalid UTF-8 */ if (!utf8_is_valid_string(inp->name)) { mame_printf_error("%s: %s input '%s' has invalid characters\n", driver->source_file, driver->name, inp->name); error = TRUE; } /* hash the string and look it up in the string table */ crc = quark_string_crc(inp->name); for (entry = first_hash_entry(defstr_table, crc); entry; entry = entry->next) if (entry->crc == crc && !strcmp(inp->name, input_port_string_from_token(INPUT_PORT_UINT32(entry - defstr_table->entry)))) { strindex = entry - defstr_table->entry; break; } /* check for strings that should be DEF_STR */ if (strindex != 0 && inp->name != input_port_string_from_token(INPUT_PORT_UINT32(strindex))) { mame_printf_error("%s: %s must use DEF_STR( %s )\n", driver->source_file, driver->name, inp->name); error = TRUE; } /* track the last dipswitch we encountered */ if (inp->type == IPT_DIPSWITCH_NAME) last_dipname_entry = inp; /* check for dipswitch ordering against the last entry */ if (inp[0].type == IPT_DIPSWITCH_SETTING && inp[-1].type == IPT_DIPSWITCH_SETTING && last_strindex != 0 && strindex != 0) { /* check for inverted off/on dispswitch order */ if (last_strindex == INPUT_STRING_On && strindex == INPUT_STRING_Off) { mame_printf_error("%s: %s has inverted Off/On dipswitch order\n", driver->source_file, driver->name); error = TRUE; } /* check for inverted yes/no dispswitch order */ else if (last_strindex == INPUT_STRING_Yes && strindex == INPUT_STRING_No) { mame_printf_error("%s: %s has inverted No/Yes dipswitch order\n", driver->source_file, driver->name); error = TRUE; } /* check for inverted upright/cocktail dispswitch order */ else if (last_strindex == INPUT_STRING_Cocktail && strindex == INPUT_STRING_Upright) { mame_printf_error("%s: %s has inverted Upright/Cocktail dipswitch order\n", driver->source_file, driver->name); error = TRUE; } /* check for proper coin ordering */ else if (last_strindex >= INPUT_STRING_9C_1C && last_strindex <= INPUT_STRING_1C_9C && strindex >= INPUT_STRING_9C_1C && strindex <= INPUT_STRING_1C_9C && last_strindex >= strindex && !memcmp(&inp[-1].condition, &inp[0].condition, sizeof(inp[-1].condition))) { mame_printf_error("%s: %s has unsorted coinage %s > %s\n", driver->source_file, driver->name, inp[-1].name, inp[0].name); error = TRUE; coin_error = TRUE; } } /* check for invalid DIP switch entries */ if (last_dipname_entry && inp->type == IPT_DIPSWITCH_SETTING) { /* make sure demo sounds default to on */ if (last_dipname_entry->name == demo_sounds && strindex == INPUT_STRING_On && last_dipname_entry->default_value != inp->default_value) { mame_printf_error("%s: %s Demo Sounds must default to On\n", driver->source_file, driver->name); error = TRUE; } /* check for bad flip screen options */ if (last_dipname_entry->name == flipscreen && (strindex == INPUT_STRING_Yes || strindex == INPUT_STRING_No)) { mame_printf_error("%s: %s has wrong Flip Screen option %s (must be Off/On)\n", driver->source_file, driver->name, inp->name); error = TRUE; } /* check for bad demo sounds options */ if (last_dipname_entry->name == demo_sounds && (strindex == INPUT_STRING_Yes || strindex == INPUT_STRING_No)) { mame_printf_error("%s: %s has wrong Demo Sounds option %s (must be Off/On)\n", driver->source_file, driver->name, inp->name); error = TRUE; } } /* remember the last string index */ last_strindex = strindex; } if ( coin_error ) display_valid_coin_order(drivnum, *memory); return error; } /************************************* * * Validate sound and speakers * *************************************/ static int validate_sound(int drivnum, const machine_config *drv) { const game_driver *driver = drivers[drivnum]; int speaknum, sndnum; int error = FALSE; /* make sure the speaker layout makes sense */ for (speaknum = 0; speaknum < MAX_SPEAKER && drv->speaker[speaknum].tag; speaknum++) { int check; /* check for duplicate tags */ for (check = 0; check < MAX_SPEAKER && drv->speaker[check].tag; check++) if (speaknum != check && drv->speaker[check].tag && !strcmp(drv->speaker[speaknum].tag, drv->speaker[check].tag)) { mame_printf_error("%s: %s has multiple speakers tagged as '%s'\n", driver->source_file, driver->name, drv->speaker[speaknum].tag); error = TRUE; } /* make sure there are no sound chips with the same tag */ for (check = 0; check < MAX_SOUND && drv->sound[check].type != SOUND_DUMMY; check++) if (drv->sound[check].tag && !strcmp(drv->speaker[speaknum].tag, drv->sound[check].tag)) { mame_printf_error("%s: %s has both a speaker and a sound chip tagged as '%s'\n", driver->source_file, driver->name, drv->speaker[speaknum].tag); error = TRUE; } } /* make sure the sounds are wired to the speakers correctly */ for (sndnum = 0; sndnum < MAX_SOUND && drv->sound[sndnum].type != SOUND_DUMMY; sndnum++) { int routenum; /* loop over all the routes */ for (routenum = 0; routenum < drv->sound[sndnum].routes; routenum++) { /* find a speaker with the requested tag */ for (speaknum = 0; speaknum < MAX_SPEAKER && drv->speaker[speaknum].tag; speaknum++) if (!strcmp(drv->sound[sndnum].route[routenum].target, drv->speaker[speaknum].tag)) break; /* if we didn't find one, look for another sound chip with the tag */ if (speaknum >= MAX_SPEAKER || !drv->speaker[speaknum].tag) { int check; for (check = 0; check < MAX_SOUND && drv->sound[check].type != SOUND_DUMMY; check++) if (check != sndnum && drv->sound[check].tag && !strcmp(drv->sound[check].tag, drv->sound[sndnum].route[routenum].target)) break; /* if we didn't find one, it's an error */ if (check >= MAX_SOUND || drv->sound[check].type == SOUND_DUMMY) { mame_printf_error("%s: %s attempting to route sound to non-existant speaker '%s'\n", driver->source_file, driver->name, drv->sound[sndnum].route[routenum].target); error = TRUE; } } } } return error; } /************************************* * * Master validity checker * *************************************/ int mame_validitychecks(const game_driver *curdriver) { osd_ticks_t prep = 0; osd_ticks_t expansion = 0; osd_ticks_t driver_checks = 0; osd_ticks_t rom_checks = 0; osd_ticks_t cpu_checks = 0; osd_ticks_t gfx_checks = 0; osd_ticks_t display_checks = 0; osd_ticks_t input_checks = 0; osd_ticks_t sound_checks = 0; #ifdef MESS osd_ticks_t mess_checks = 0; #endif input_port_entry *inputports = NULL; int drivnum; int error = FALSE; UINT16 lsbtest; UINT8 a, b; /* basic system checks */ a = 0xff; b = a + 1; if (b > a) { mame_printf_error("UINT8 must be 8 bits\n"); error = TRUE; } if (sizeof(INT8) != 1) { mame_printf_error("INT8 must be 8 bits\n"); error = TRUE; } if (sizeof(UINT8) != 1) { mame_printf_error("UINT8 must be 8 bits\n"); error = TRUE; } if (sizeof(INT16) != 2) { mame_printf_error("INT16 must be 16 bits\n"); error = TRUE; } if (sizeof(UINT16) != 2) { mame_printf_error("UINT16 must be 16 bits\n"); error = TRUE; } if (sizeof(INT32) != 4) { mame_printf_error("INT32 must be 32 bits\n"); error = TRUE; } if (sizeof(UINT32) != 4) { mame_printf_error("UINT32 must be 32 bits\n"); error = TRUE; } if (sizeof(INT64) != 8) { mame_printf_error("INT64 must be 64 bits\n"); error = TRUE; } if (sizeof(UINT64) != 8) { mame_printf_error("UINT64 must be 64 bits\n"); error = TRUE; } #ifdef PTR64 if (sizeof(void *) != 8) { mame_printf_error("PTR64 flag enabled, but was compiled for 32-bit target\n"); error = TRUE; } #else if (sizeof(void *) != 4) { mame_printf_error("PTR64 flag not enabled, but was compiled for 64-bit target\n"); error = TRUE; } #endif lsbtest = 0; *(UINT8 *)&lsbtest = 0xff; #ifdef LSB_FIRST if (lsbtest == 0xff00) { mame_printf_error("LSB_FIRST specified, but running on a big-endian machine\n"); error = TRUE; } #else if (lsbtest == 0x00ff) { mame_printf_error("LSB_FIRST not specified, but running on a little-endian machine\n"); error = TRUE; } #endif /* validate inline function behavior */ error = validate_inlines() || error; /* make sure the CPU and sound interfaces are up and running */ cpuintrf_init(NULL); sndintrf_init(NULL); init_resource_tracking(); begin_resource_tracking(); osd_profiling_ticks(); /* prepare by pre-scanning all the drivers and adding their info to hash tables */ prep -= osd_profiling_ticks(); build_quarks(); prep += osd_profiling_ticks(); /* iterate over all drivers */ for (drivnum = 0; drivers[drivnum]; drivnum++) { const game_driver *driver = drivers[drivnum]; UINT32 region_length[REGION_MAX]; machine_config drv; /* ASG -- trying this for a while to see if submission failures increase */ #if 1 /* non-debug builds only care about games in the same driver */ if (curdriver != NULL && strcmp(curdriver->source_file, driver->source_file) != 0) continue; #endif /* expand the machine driver */ expansion -= osd_profiling_ticks(); expand_machine_driver(driver->drv, &drv); expansion += osd_profiling_ticks(); /* validate the driver entry */ driver_checks -= osd_profiling_ticks(); error = validate_driver(drivnum, &drv) || error; driver_checks += osd_profiling_ticks(); /* validate the ROM information */ rom_checks -= osd_profiling_ticks(); error = validate_roms(drivnum, &drv, region_length) || error; rom_checks += osd_profiling_ticks(); /* validate the CPU information */ cpu_checks -= osd_profiling_ticks(); error = validate_cpu(drivnum, &drv, region_length) || error; cpu_checks += osd_profiling_ticks(); /* validate the display */ display_checks -= osd_profiling_ticks(); error = validate_display(drivnum, &drv) || error; display_checks += osd_profiling_ticks(); /* validate the graphics decoding */ gfx_checks -= osd_profiling_ticks(); error = validate_gfx(drivnum, &drv, region_length) || error; gfx_checks += osd_profiling_ticks(); /* validate input ports */ input_checks -= osd_profiling_ticks(); error = validate_inputs(drivnum, &drv, &inputports) || error; input_checks += osd_profiling_ticks(); /* validate sounds and speakers */ sound_checks -= osd_profiling_ticks(); error = validate_sound(drivnum, &drv) || error; sound_checks += osd_profiling_ticks(); } #ifdef MESS mess_checks -= osd_profiling_ticks(); if (mess_validitychecks()) error = TRUE; mess_checks += osd_profiling_ticks(); #endif /* MESS */ #if (REPORT_TIMES) mame_printf_info("Prep: %8dm\n", (int)(prep / 1000000)); mame_printf_info("Expansion: %8dm\n", (int)(expansion / 1000000)); mame_printf_info("Driver: %8dm\n", (int)(driver_checks / 1000000)); mame_printf_info("ROM: %8dm\n", (int)(rom_checks / 1000000)); mame_printf_info("CPU: %8dm\n", (int)(cpu_checks / 1000000)); mame_printf_info("Display: %8dm\n", (int)(display_checks / 1000000)); mame_printf_info("Graphics: %8dm\n", (int)(gfx_checks / 1000000)); mame_printf_info("Input: %8dm\n", (int)(input_checks / 1000000)); mame_printf_info("Sound: %8dm\n", (int)(sound_checks / 1000000)); #ifdef MESS mame_printf_info("MESS: %8dm\n", (int)(mess_checks / 1000000)); #endif #endif end_resource_tracking(); exit_resource_tracking(); return error; }