/********************************************************************************************** TMS5200/5220 simulator Written for MAME by Frank Palazzolo With help from Neill Corlett Additional tweaking by Aaron Giles TMS6100 Speech Rom support added by Raphael Nabet PRNG code by Jarek Burczynski backported from tms5110.c by Lord Nightmare Chirp/excitation table fixes by Lord Nightmare Various fixes by Lord Nightmare Modularization by Lord Nightmare Sub-interpolation-cycle parameter updating added by Lord Nightmare Much information regarding these lpc encoding comes from US patent 4,209,844 US patent 4,331,836 describes the complete 51xx chip US patent 4,335,277 describes the complete 52xx chip Special Thanks to Larry Brantingham for answering questions regarding the chip details TMS5200/TMS5220/TMS5220C: +-----------------+ D7(d0) | 1 28 | /RS ADD1 | 2 27 | /WS ROMCLK | 3 26 | D6(d1) VDD(-5) | 4 25 | ADD2 VSS(+5) | 5 24 | D5(d2) OSC | 6 23 | ADD4 T11 | 7 22 | D4(d3) SPKR | 8 21 | ADD8/DATA I/O | 9 20 | TEST PROMOUT | 10 19 | D3(d4) VREF(GND)| 11 18 | /READY D2(d5) | 12 17 | /INT D1(d6) | 13 16 | M1 D0(d7) | 14 15 | M0 +-----------------+ Note the standard naming for d* data bits with 7 as MSB and 0 as LSB is in lowercase. TI's naming has D7 as LSB and D0 as MSB and is in uppercase ***********************************************************************************************/ #include "sndintrf.h" #include "streams.h" #include "tms5220.h" #define DEBUG_5220 0 #define MAX_SAMPLE_CHUNK 512 enum _tms5220_variant { variant_tms5220, /* TMS5220_IS_TMS5220, TMS5220_IS_TMS5220C, TMS5220_IS_TSP5220C */ variant_tmc0285 /* TMS5220_IS_TMS5200, TMS5220_IS_CD2501 */ }; typedef enum _tms5220_variant tms5220_variant; /* Pull in the ROM tables */ #include "tms5220r.c" /* Changes by R. Nabet * added Speech ROM support * modified code so that the beast only start speaking at the start of next frame, like the data sheet says */ typedef struct _tms5220_state tms5220_state; struct _tms5220_state { /* these contain data that describes the 128-bit data FIFO */ #define FIFO_SIZE 16 UINT8 fifo[FIFO_SIZE]; UINT8 fifo_head; UINT8 fifo_tail; UINT8 fifo_count; UINT8 fifo_bits_taken; /* these contain global status bits */ /* R Nabet : speak_external is only set when a speak external command is going on. tms5220_speaking is set whenever a speak or speak external command is going on. Note that we really need to do anything in tms5220_process and play samples only when tms5220_speaking is true. Else, we can play nothing as well, which is a speed-up... */ UINT8 tms5220_speaking; /* Speak or Speak External command in progress */ UINT8 speak_external; /* Speak External command in progress */ UINT8 talk_status; /* tms5220 is really currently speaking */ UINT8 first_frame; /* we have just started speaking, and we are to parse the first frame */ UINT8 last_frame; /* we are doing the frame of sound */ UINT8 buffer_low; /* FIFO has less than 8 bytes in it */ UINT8 buffer_empty; /* FIFO is empty*/ UINT8 irq_pin; /* state of the IRQ pin (output) */ void (*irq_func)(const device_config *device, int state); /* called when the state of the IRQ pin changes */ /* these contain data describing the current and previous voice frames */ UINT16 old_energy; UINT16 old_pitch; INT32 old_k[10]; UINT16 new_energy; UINT16 new_pitch; INT32 new_k[10]; /* these are all used to contain the current state of the sound generation */ UINT16 current_energy; UINT16 current_pitch; INT32 current_k[10]; UINT16 target_energy; UINT16 target_pitch; INT32 target_k[10]; UINT16 previous_energy; /* needed for lattice filter to match patent */ UINT8 interp_count; /* number of samples within each sub-interpolation period, ranges from 0-24 */ UINT8 sample_count; /* number of samples within the ENTIRE interpolation period, ranges from 0-199 */ UINT16 pitch_count; /* pitch counter; provides chirp rom address */ INT32 u[11]; INT32 x[10]; INT32 RNG; /* the random noise generator configuration is: 1 + x + x^3 + x^4 + x^13 */ INT8 excitation_data; /* R Nabet : These have been added to emulate speech Roms */ UINT8 schedule_dummy_read; /* set after each load address, so that next read operation is preceded by a dummy read */ UINT8 data_register; /* data register, used by read command */ UINT8 RDB_flag; /* whether we should read data register or status register */ /* flag for variant tmc0285/tms5200 emulation */ /* The TMC0285 AKA TMS5200 is an earlier variant of the TMS5220 used in the early releases of the Speech Module for the TI-99/4(a) computer, in Zaccaria's 'Money Money', and in a few other places. The TMS5200 has a different set of LPC coefficients, and a different chirp table than the 5220 (which is not yet dumped) Due to the vast superiority of the quality of the TMS5220, TI may have sold the remaining stocks of TMS5200s at a discount, and provided a special encoder to use the older tables. Other than those differences, the two chips are identical. Another variant of the TMS5220 is the TMS5220C/TSP5220C, which replaces the X0X0 'NOP' opcode with an opcode to select the number of interpolations per frame to either be defined at each frame, or be fixed at either 8, 6, 4, or 2. The TMS5200/5220 is always fixed at 8. */ tms5220_variant variant; /* The TMS52xx has two different ways of providing output data: the analog speaker pin (which was usually used) and the Digital I/O pin. The internal DAC used to feed the analog pin is only 8 bits, and has the funny clipping/clamping logic, while the digital pin gives full 12? bit resolution of the output data. */ UINT8 digital_select; const device_config *device; const tms5220_interface *intf; sound_stream *stream; int clock; }; INLINE tms5220_state *get_safe_token(const device_config *device) { assert(device != NULL); assert(device->token != NULL); assert(device->type == SOUND); assert(sound_get_type(device) == SOUND_TMS5220 || sound_get_type(device) == SOUND_TMC0285 || sound_get_type(device) == SOUND_TMS5200); return (tms5220_state *)device->token; } /* Static function prototypes */ static void process_command(tms5220_state *tms); static int parse_frame(tms5220_state *tms, int the_first_frame); static void check_buffer_low(tms5220_state *tms); static void set_interrupt_state(tms5220_state *tms, int state); static INT16 lattice_filter(tms5220_state *tms); static INT16 clip_and_wrap(INT16 cliptemp); static STREAM_UPDATE( tms5220_update ); static void register_for_save_states(tms5220_state *tms) { state_save_register_device_item_array(tms->device, 0, tms->fifo); state_save_register_device_item(tms->device, 0, tms->fifo_head); state_save_register_device_item(tms->device, 0, tms->fifo_tail); state_save_register_device_item(tms->device, 0, tms->fifo_count); state_save_register_device_item(tms->device, 0, tms->fifo_bits_taken); state_save_register_device_item(tms->device, 0, tms->tms5220_speaking); state_save_register_device_item(tms->device, 0, tms->speak_external); state_save_register_device_item(tms->device, 0, tms->talk_status); state_save_register_device_item(tms->device, 0, tms->first_frame); state_save_register_device_item(tms->device, 0, tms->last_frame); state_save_register_device_item(tms->device, 0, tms->buffer_low); state_save_register_device_item(tms->device, 0, tms->buffer_empty); state_save_register_device_item(tms->device, 0, tms->irq_pin); state_save_register_device_item(tms->device, 0, tms->old_energy); state_save_register_device_item(tms->device, 0, tms->old_pitch); state_save_register_device_item_array(tms->device, 0, tms->old_k); state_save_register_device_item(tms->device, 0, tms->new_energy); state_save_register_device_item(tms->device, 0, tms->new_pitch); state_save_register_device_item_array(tms->device, 0, tms->new_k); state_save_register_device_item(tms->device, 0, tms->current_energy); state_save_register_device_item(tms->device, 0, tms->current_pitch); state_save_register_device_item_array(tms->device, 0, tms->current_k); state_save_register_device_item(tms->device, 0, tms->target_energy); state_save_register_device_item(tms->device, 0, tms->target_pitch); state_save_register_device_item_array(tms->device, 0, tms->target_k); state_save_register_device_item(tms->device, 0, tms->previous_energy); state_save_register_device_item(tms->device, 0, tms->interp_count); state_save_register_device_item(tms->device, 0, tms->sample_count); state_save_register_device_item(tms->device, 0, tms->pitch_count); state_save_register_device_item_array(tms->device, 0, tms->u); state_save_register_device_item_array(tms->device, 0, tms->x); state_save_register_device_item(tms->device, 0, tms->RNG); state_save_register_device_item(tms->device, 0, tms->excitation_data); state_save_register_device_item(tms->device, 0, tms->schedule_dummy_read); state_save_register_device_item(tms->device, 0, tms->data_register); state_save_register_device_item(tms->device, 0, tms->RDB_flag); state_save_register_device_item(tms->device, 0, tms->digital_select); } /********************************************************************************************** tms5220_data_write -- handle a write to the TMS5220 ***********************************************************************************************/ static void tms5220_data_write(tms5220_state *tms, int data) { /* add this byte to the FIFO */ if (tms->fifo_count < FIFO_SIZE) { tms->fifo[tms->fifo_tail] = data; tms->fifo_tail = (tms->fifo_tail + 1) % FIFO_SIZE; tms->fifo_count++; /* if we were speaking, then we're no longer empty */ if (tms->speak_external) tms->buffer_empty = 0; if (DEBUG_5220) logerror("Added byte to FIFO (size=%2d)\n", tms->fifo_count); } else { if (DEBUG_5220) logerror("Ran out of room in the FIFO!\n"); } /* update the buffer low state */ check_buffer_low(tms); if (! tms->speak_external) /* R Nabet : we parse commands at once. It is necessary for such commands as read. */ process_command (tms/*data*/); } /********************************************************************************************** tms5220_status_read -- read status or data from the TMS5220 From the data sheet: bit D0(bit 7) = TS - Talk Status is active (high) when the VSP is processing speech data. Talk Status goes active at the initiation of a Speak command or after nine bytes of data are loaded into the FIFO following a Speak External command. It goes inactive (low) when the stop code (Energy=1111) is processed, or immediately by a buffer empty condition or a reset command. bit D1(bit 6) = BL - Buffer Low is active (high) when the FIFO buffer is more than half empty. Buffer Low is set when the "Last-In" byte is shifted down past the half-full boundary of the stack. Buffer Low is cleared when data is loaded to the stack so that the "Last-In" byte lies above the half-full boundary and becomes the ninth data byte of the stack. bit D2(bit 5) = BE - Buffer Empty is active (high) when the FIFO buffer has run out of data while executing a Speak External command. Buffer Empty is set when the last bit of the "Last-In" byte is shifted out to the Synthesis Section. This causes Talk Status to be cleared. Speed is terminated at some abnormal point and the Speak External command execution is terminated. ***********************************************************************************************/ static int tms5220_status_read(tms5220_state *tms) { if (tms->RDB_flag) { /* if last command was read, return data register */ tms->RDB_flag = FALSE; return(tms->data_register); } else { /* read status */ /* clear the interrupt pin */ set_interrupt_state(tms, 0); if (DEBUG_5220) logerror("Status read: TS=%d BL=%d BE=%d\n", tms->talk_status, tms->buffer_low, tms->buffer_empty); return (tms->talk_status << 7) | (tms->buffer_low << 6) | (tms->buffer_empty << 5); } } /********************************************************************************************** tms5220_ready_read -- returns the ready state of the TMS5220 ***********************************************************************************************/ static int tms5220_ready_read(tms5220_state *tms) { return (tms->fifo_count < FIFO_SIZE-1); } /********************************************************************************************** tms5220_cycles_to_ready -- returns the number of cycles until ready is asserted ***********************************************************************************************/ static int tms5220_cycles_to_ready(tms5220_state *tms) { int answer; if (tms5220_ready_read(tms)) answer = 0; else { int val; answer = 200-tms->sample_count+8; /* total number of bits available in current byte is (8 - tms->fifo_bits_taken) */ /* if more than 4 are available, we need to check the energy */ if (tms->fifo_bits_taken < 4) { /* read energy */ val = (tms->fifo[tms->fifo_head] >> tms->fifo_bits_taken) & 0xf; if (val == 0) /* 0 -> silence frame: we will only read 4 bits, and we will therefore need to read another frame before the FIFO is not full any more */ answer += 200; /* 15 -> stop frame, we will only read 4 bits, but the FIFO will we cleared */ /* otherwise, we need to parse the repeat flag (1 bit) and the pitch (6 bits), so everything will be OK. */ } } return answer; } /********************************************************************************************** tms5220_int_read -- returns the interrupt state of the TMS5220 ***********************************************************************************************/ static int tms5220_int_read(tms5220_state *tms) { return tms->irq_pin; } /********************************************************************************************** tms5220_process -- fill the buffer with a specific number of samples ***********************************************************************************************/ static void tms5220_process(tms5220_state *tms, INT16 *buffer, unsigned int size) { int buf_count=0; int i, interp_period, bitout; tryagain: /* if we're not speaking, parse commands */ /*while (!tms->speak_external && tms->fifo_count > 0) process_command(tms);*/ /* if we're empty and still not speaking, fill with nothingness */ if ((!tms->tms5220_speaking) && (!tms->last_frame)) goto empty; /* if we're to speak, but haven't started, wait for the 9th byte */ if (!tms->talk_status && tms->speak_external) { if (tms->fifo_count < 9) goto empty; tms->talk_status = 1; tms->first_frame = 1; /* will cause the first frame to be parsed */ tms->buffer_empty = 0; } /* loop until the buffer is full or we've stopped speaking */ while ((size > 0) && tms->talk_status) { /* if we're ready for a new frame */ if ((tms->interp_count == 0) && (tms->sample_count == 0)) { /* Parse a new frame */ if (!parse_frame(tms, tms->first_frame)) break; tms->first_frame = 0; /* Set old target as new start of frame */ tms->current_energy = tms->old_energy; tms->current_pitch = tms->old_pitch; for (i = 0; i < 10; i++) tms->current_k[i] = tms->old_k[i]; /* is this a zero energy frame? */ if (tms->current_energy == 0) { /*mame_printf_debug("processing frame: zero energy\n");*/ tms->target_energy = 0; tms->target_pitch = tms->current_pitch; for (i = 0; i < 10; i++) tms->target_k[i] = tms->current_k[i]; } /* is this a stop frame? */ else if (tms->current_energy == (energytable[15] >> 6)) { /*mame_printf_debug("processing frame: stop frame\n");*/ tms->current_energy = energytable[0] >> 6; tms->target_energy = tms->current_energy; /*tms->interp_count = tms->sample_count =*/ tms->pitch_count = 0; tms->last_frame = 0; if (tms->tms5220_speaking) /* new speech command in progress */ tms->first_frame = 1; else { /* really stop speaking */ tms->talk_status = 0; /* generate an interrupt if necessary */ set_interrupt_state(tms, 1); } /* try to fetch commands again */ goto tryagain; } else { /* is this the ramp down frame? */ if (tms->new_energy == (energytable[15] >> 6)) { /*mame_printf_debug("processing frame: ramp down\n");*/ tms->target_energy = 0; tms->target_pitch = tms->current_pitch; for (i = 0; i < 10; i++) tms->target_k[i] = tms->current_k[i]; } /* Reset the step size */ else { /*mame_printf_debug("processing frame: Normal\n");*/ /*mame_printf_debug("*** Energy = %d\n",tms->current_energy);*/ /*mame_printf_debug("proc: %d %d\n",last_fbuf_head,fbuf_head);*/ tms->target_energy = tms->new_energy; tms->target_pitch = tms->new_pitch; for (i = 0; i < 4; i++) tms->target_k[i] = tms->new_k[i]; if (tms->current_pitch == 0) for (i = 4; i < 10; i++) { tms->target_k[i] = tms->current_k[i] = 0; } else for (i = 4; i < 10; i++) tms->target_k[i] = tms->new_k[i]; } } } else { interp_period = tms->sample_count / 25; switch(tms->interp_count) { /* PC=X X cycle, rendering change (change for next cycle which chip is actually doing) */ case 0: /* PC=0, A cycle, nothing happens (calc energy) */ break; case 1: /* PC=0, B cycle, nothing happens (update energy) */ break; case 2: /* PC=1, A cycle, update energy (calc pitch) */ tms->current_energy += ((tms->target_energy - tms->current_energy) >> interp_coeff[interp_period]); break; case 3: /* PC=1, B cycle, nothing happens (update pitch) */ break; case 4: /* PC=2, A cycle, update pitch (calc K1) */ if (tms->old_pitch != 0) tms->current_pitch += ((tms->target_pitch - tms->current_pitch) >> interp_coeff[interp_period]); break; case 5: /* PC=2, B cycle, nothing happens (update K1) */ break; case 6: /* PC=3, A cycle, update K1 (calc K2) */ tms->current_k[0] += ((tms->target_k[0] - tms->current_k[0]) >> interp_coeff[interp_period]); break; case 7: /* PC=3, B cycle, nothing happens (update K2) */ break; case 8: /* PC=4, A cycle, update K2 (calc K3) */ tms->current_k[1] += ((tms->target_k[1] - tms->current_k[1]) >> interp_coeff[interp_period]); break; case 9: /* PC=4, B cycle, nothing happens (update K3) */ break; case 10: /* PC=5, A cycle, update K3 (calc K4) */ tms->current_k[2] += ((tms->target_k[2] - tms->current_k[2]) >> interp_coeff[interp_period]); break; case 11: /* PC=5, B cycle, nothing happens (update K4) */ break; case 12: /* PC=6, A cycle, update K4 (calc K5) */ tms->current_k[3] += ((tms->target_k[3] - tms->current_k[3]) >> interp_coeff[interp_period]); break; case 13: /* PC=6, B cycle, nothing happens (update K5) */ break; case 14: /* PC=7, A cycle, update K5 (calc K6) */ tms->current_k[4] += ((tms->target_k[4] - tms->current_k[4]) >> interp_coeff[interp_period]); break; case 15: /* PC=7, B cycle, nothing happens (update K6) */ break; case 16: /* PC=8, A cycle, update K6 (calc K7) */ tms->current_k[5] += ((tms->target_k[5] - tms->current_k[5]) >> interp_coeff[interp_period]); break; case 17: /* PC=8, B cycle, nothing happens (update K7) */ break; case 18: /* PC=9, A cycle, update K7 (calc K8) */ tms->current_k[6] += ((tms->target_k[6] - tms->current_k[6]) >> interp_coeff[interp_period]); break; case 19: /* PC=9, B cycle, nothing happens (update K8) */ break; case 20: /* PC=10, A cycle, update K8 (calc K9) */ tms->current_k[7] += ((tms->target_k[7] - tms->current_k[7]) >> interp_coeff[interp_period]); break; case 21: /* PC=10, B cycle, nothing happens (update K9) */ break; case 22: /* PC=11, A cycle, update K9 (calc K10) */ tms->current_k[8] += ((tms->target_k[8] - tms->current_k[8]) >> interp_coeff[interp_period]); break; case 23: /* PC=11, B cycle, nothing happens (update K10) */ break; case 24: /* PC=12, A cycle, update K10 (do nothing) */ tms->current_k[9] += ((tms->target_k[9] - tms->current_k[9]) >> interp_coeff[interp_period]); break; } } if (tms->old_energy == 0) { /* generate silent samples here */ tms->excitation_data = 0x00; /* This is NOT correct, the current_energy is forced to zero when we just passed a zero energy frame because thats what the tables hold for that value. However, this code does no harm. Will be removed later. */ } else if (tms->old_pitch == 0) { /* generate unvoiced samples here */ if (tms->RNG & 1) tms->excitation_data = -0x40; /* according to the patent it is (either + or -) half of the maximum value in the chirp table, so +-64 */ else tms->excitation_data = 0x40; } else { /* generate voiced samples here */ /* US patent 4331836 Figure 14B shows, and logic would hold, that a pitch based chirp * function has a chirp/peak and then a long chain of zeroes. * The last entry of the chirp rom is at address 0b110011 (50d), the 51st sample, * and if the address reaches that point the ADDRESS incrementer is * disabled, forcing all samples beyond 50d to be == 50d * (address 50d holds zeroes) */ if (tms->pitch_count > 50) tms->excitation_data = chirptable[50]; else /*tms->pitch_count <= 50*/ tms->excitation_data = chirptable[tms->pitch_count]; } /* Update LFSR *20* times every sample, like patent shows */ for (i=0; i<20; i++) { bitout = ((tms->RNG >> 12) & 1) ^ ((tms->RNG >> 10) & 1) ^ ((tms->RNG >> 9) & 1) ^ ((tms->RNG >> 0) & 1); tms->RNG >>= 1; tms->RNG |= bitout << 12; } buffer[buf_count] = clip_and_wrap(lattice_filter(tms)); /* execute lattice filter and clipping/wrapping */ if (tms->digital_select == 0) /* if digital is NOT selected... */ buffer[buf_count] &= 0xff00; /* mask out all but the 8 dac bits */ /* Update all counts */ size--; tms->sample_count = (tms->sample_count + 1) % 200; if (tms->current_pitch != 0) tms->pitch_count = (tms->pitch_count + 1) % tms->current_pitch; else tms->pitch_count = 0; tms->interp_count = (tms->interp_count + 1) % 25; buf_count++; } empty: while (size > 0) { tms->sample_count = (tms->sample_count + 1) % 200; tms->interp_count = (tms->interp_count + 1) % 25; buffer[buf_count] = 0x00; /* should be (-1 << 8) ??? (cf note in data sheet, p 10, table 4) */ buf_count++; size--; } } /********************************************************************************************** clip_and_wrap -- clips and wraps the 14 bit return value from the lattice filter to its final 10 bit value (-512 to 511), and upshifts this to 16 bits ***********************************************************************************************/ static INT16 clip_and_wrap(INT16 cliptemp) { /* clipping & wrapping, just like the patent shows */ if (cliptemp > 2047) cliptemp = -2048 + (cliptemp-2047); else if (cliptemp < -2048) cliptemp = 2047 - (cliptemp+2048); if (cliptemp > 511) { mame_printf_debug ("cliptemp > 511\n"); return 127<<8; } else if (cliptemp < -512) { mame_printf_debug ("cliptemp < -512\n"); return -128<<8; } else return cliptemp << 6; } /********************************************************************************************** lattice_filter -- executes one 'full run' of the lattice filter on a specific byte of excitation data, and specific values of all the current k constants, and returns the resulting sample. Note: the current_k processing here by dividing the result by 32768 is necessary, as the stored parameters in the lookup table are the 10 bit coefficients but are pre-multiplied by 512 for ease of storage. This is undone on the real chip by a shifter here, after the multiply. ***********************************************************************************************/ static INT16 lattice_filter(tms5220_state *tms) { /* Lattice filter here */ /* Aug/05/07: redone as unrolled loop, for clarity - LN*/ /* Copied verbatim from table I in US patent 4,209,804: notation equivalencies from table: Yn(i) == tms->u[n-1] Kn = tms->current_k[n-1] bn = tms->x[n-1] */ tms->u[10] = (tms->excitation_data * tms->previous_energy) >> 8; /* Y(11) */ tms->u[9] = tms->u[10] - ((tms->current_k[9] * tms->x[9]) / 32768); tms->u[8] = tms->u[9] - ((tms->current_k[8] * tms->x[8]) / 32768); tms->x[9] = tms->x[8] + ((tms->current_k[8] * tms->u[8]) / 32768); tms->u[7] = tms->u[8] - ((tms->current_k[7] * tms->x[7]) / 32768); tms->x[8] = tms->x[7] + ((tms->current_k[7] * tms->u[7]) / 32768); tms->u[6] = tms->u[7] - ((tms->current_k[6] * tms->x[6]) / 32768); tms->x[7] = tms->x[6] + ((tms->current_k[6] * tms->u[6]) / 32768); tms->u[5] = tms->u[6] - ((tms->current_k[5] * tms->x[5]) / 32768); tms->x[6] = tms->x[5] + ((tms->current_k[5] * tms->u[5]) / 32768); tms->u[4] = tms->u[5] - ((tms->current_k[4] * tms->x[4]) / 32768); tms->x[5] = tms->x[4] + ((tms->current_k[4] * tms->u[4]) / 32768); tms->u[3] = tms->u[4] - ((tms->current_k[3] * tms->x[3]) / 32768); tms->x[4] = tms->x[3] + ((tms->current_k[3] * tms->u[3]) / 32768); tms->u[2] = tms->u[3] - ((tms->current_k[2] * tms->x[2]) / 32768); tms->x[3] = tms->x[2] + ((tms->current_k[2] * tms->u[2]) / 32768); tms->u[1] = tms->u[2] - ((tms->current_k[1] * tms->x[1]) / 32768); tms->x[2] = tms->x[1] + ((tms->current_k[1] * tms->u[1]) / 32768); tms->u[0] = tms->u[1] - ((tms->current_k[0] * tms->x[0]) / 32768); tms->x[1] = tms->x[0] + ((tms->current_k[0] * tms->u[0]) / 32768); tms->x[0] = tms->u[0]; tms->previous_energy = tms->current_energy; return tms->u[0]; } /********************************************************************************************** process_command -- extract a byte from the FIFO and interpret it as a command ***********************************************************************************************/ static void process_command(tms5220_state *tms) { unsigned char cmd; /* if there are stray bits, ignore them */ if (tms->fifo_bits_taken) { tms->fifo_bits_taken = 0; tms->fifo_count--; tms->fifo_head = (tms->fifo_head + 1) % FIFO_SIZE; } /* grab a full byte from the FIFO */ if (tms->fifo_count > 0) { cmd = tms->fifo[tms->fifo_head]; tms->fifo_count--; tms->fifo_head = (tms->fifo_head + 1) % FIFO_SIZE; /* parse the command */ switch (cmd & 0x70) { case 0x10 : /* read byte */ if (tms->schedule_dummy_read) { tms->schedule_dummy_read = FALSE; if (tms->intf->read) (*tms->intf->read)(tms->device, 1); } if (tms->intf->read) tms->data_register = (*tms->intf->read)(tms->device, 8); /* read one byte from speech ROM... */ tms->RDB_flag = TRUE; break; case 0x30 : /* read and branch */ if (DEBUG_5220) logerror("read and branch command received\n"); tms->RDB_flag = FALSE; if (tms->intf->read_and_branch) (*tms->intf->read_and_branch)(tms->device); break; case 0x40 : /* load address */ /* tms5220 data sheet says that if we load only one 4-bit nibble, it won't work. This code does not care about this. */ if (tms->intf->load_address) (*tms->intf->load_address)(tms->device, cmd & 0x0f); tms->schedule_dummy_read = TRUE; break; case 0x50 : /* speak */ if (tms->schedule_dummy_read) { tms->schedule_dummy_read = FALSE; if (tms->intf->read) (*tms->intf->read)(tms->device, 1); } tms->tms5220_speaking = 1; tms->speak_external = 0; if (! tms->last_frame) { tms->first_frame = 1; } tms->talk_status = 1; /* start immediately */ break; case 0x60 : /* speak external */ tms->tms5220_speaking = tms->speak_external = 1; tms->RDB_flag = FALSE; /* according to the datasheet, this will cause an interrupt due to a BE condition */ if (!tms->buffer_empty) { tms->buffer_empty = 1; set_interrupt_state(tms, 1); } tms->talk_status = 0; /* wait to have 8 bytes in buffer before starting */ break; case 0x70 : /* reset */ if (tms->schedule_dummy_read) { tms->schedule_dummy_read = FALSE; if (tms->intf->read) (*tms->intf->read)(tms->device, 1); } device_reset(tms->device); break; } } /* update the buffer low state */ check_buffer_low(tms); } /********************************************************************************************** extract_bits -- extract a specific number of bits from the FIFO ***********************************************************************************************/ static int extract_bits(tms5220_state *tms, int count) { int val = 0; if (tms->speak_external) { /* extract from FIFO */ while (count--) { val = (val << 1) | ((tms->fifo[tms->fifo_head] >> tms->fifo_bits_taken) & 1); tms->fifo_bits_taken++; if (tms->fifo_bits_taken >= 8) { tms->fifo_count--; tms->fifo_head = (tms->fifo_head + 1) % FIFO_SIZE; tms->fifo_bits_taken = 0; } } } else { /* extract from speech ROM */ if (tms->intf->read) val = (* tms->intf->read)(tms->device, count); } return val; } /********************************************************************************************** parse_frame -- parse a new frame's worth of data; returns 0 if not enough bits in buffer ***********************************************************************************************/ static int parse_frame(tms5220_state *tms, int the_first_frame) { int bits = 0; /* number of bits in FIFO (speak external only) */ int indx, i, rep_flag; if (! the_first_frame) { /* remember previous frame */ tms->old_energy = tms->new_energy; tms->old_pitch = tms->new_pitch; for (i = 0; i < 10; i++) tms->old_k[i] = tms->new_k[i]; } /* clear out the new frame */ tms->new_energy = 0; tms->new_pitch = 0; for (i = 0; i < 10; i++) tms->new_k[i] = 0; /* if the previous frame was a stop frame, don't do anything */ if ((! the_first_frame) && (tms->old_energy == (energytable[15] >> 6))) return 1; // WARNING: This code below breaks Victory's power-on test! If you change it // make sure you test Victory. // { // if (DEBUG_5220) logerror("Buffer Empty set - Last frame stop frame\n"); // tms->buffer_empty = 1; // return 1; // } if (tms->speak_external) /* count the total number of bits available */ bits = tms->fifo_count * 8 - tms->fifo_bits_taken; /* attempt to extract the energy index */ if (tms->speak_external) { bits -= 4; if (bits < 0) goto ranout; } indx = extract_bits(tms, 4); tms->new_energy = energytable[indx] >> 6; /* if the index is 0 or 15, we're done */ if (indx == 0 || indx == 15) { if (DEBUG_5220) logerror(" (4-bit energy=%d frame)\n",tms->new_energy); /* clear tms->fifo if stop frame encountered */ if (indx == 15) { tms->fifo_head = tms->fifo_tail = tms->fifo_count = tms->fifo_bits_taken = 0; tms->speak_external = tms->tms5220_speaking = 0; tms->last_frame = 1; } goto done; } /* attempt to extract the repeat flag */ if (tms->speak_external) { bits -= 1; if (bits < 0) goto ranout; } rep_flag = extract_bits(tms, 1); /* attempt to extract the pitch */ if (tms->speak_external) { bits -= 6; if (bits < 0) goto ranout; } indx = extract_bits(tms, 6); tms->new_pitch = pitchtable[indx] / 256; /* if this is a repeat frame, just copy the k's */ if (rep_flag) { for (i = 0; i < 10; i++) tms->new_k[i] = tms->old_k[i]; if (DEBUG_5220) logerror(" (11-bit energy=%d pitch=%d rep=%d frame)\n", tms->new_energy, tms->new_pitch, rep_flag); goto done; } /* if the pitch index was zero, we need 4 k's */ if (indx == 0) { /* attempt to extract 4 K's */ if (tms->speak_external) { bits -= 18; if (bits < 0) goto ranout; } tms->new_k[0] = k1table[extract_bits(tms, 5)]; tms->new_k[1] = k2table[extract_bits(tms, 5)]; tms->new_k[2] = k3table[extract_bits(tms, 4)]; if (tms->variant == variant_tmc0285) tms->new_k[3] = k3table[extract_bits(tms, 4)]; /* ??? */ else tms->new_k[3] = k4table[extract_bits(tms, 4)]; if (DEBUG_5220) logerror(" (29-bit energy=%d pitch=%d rep=%d 4K frame)\n", tms->new_energy, tms->new_pitch, rep_flag); goto done; } /* else we need 10 K's */ if (tms->speak_external) { bits -= 39; if (bits < 0) goto ranout; } tms->new_k[0] = k1table[extract_bits(tms, 5)]; tms->new_k[1] = k2table[extract_bits(tms, 5)]; tms->new_k[2] = k3table[extract_bits(tms, 4)]; if (tms->variant == variant_tmc0285) tms->new_k[3] = k3table[extract_bits(tms, 4)]; /* ??? */ else tms->new_k[3] = k4table[extract_bits(tms, 4)]; tms->new_k[4] = k5table[extract_bits(tms, 4)]; tms->new_k[5] = k6table[extract_bits(tms, 4)]; tms->new_k[6] = k7table[extract_bits(tms, 4)]; tms->new_k[7] = k8table[extract_bits(tms, 3)]; tms->new_k[8] = k9table[extract_bits(tms, 3)]; tms->new_k[9] = k10table[extract_bits(tms, 3)]; if (DEBUG_5220) logerror(" (50-bit energy=%d pitch=%d rep=%d 10K frame)\n", tms->new_energy, tms->new_pitch, rep_flag); done: if (DEBUG_5220) { if (tms->speak_external) logerror("Parsed a frame successfully in FIFO - %d bits remaining\n", bits); else logerror("Parsed a frame successfully in ROM\n"); } if (the_first_frame) { /* if this is the first frame, no previous frame to take as a starting point */ tms->old_energy = tms->new_energy; tms->old_pitch = tms->new_pitch; for (i = 0; i < 10; i++) tms->old_k[i] = tms->new_k[i]; } /* update the tms->buffer_low status */ check_buffer_low(tms); return 1; ranout: if (DEBUG_5220) logerror("Ran out of bits on a parse!\n"); /* this is an error condition; mark the buffer empty and turn off speaking */ tms->buffer_empty = 1; tms->talk_status = tms->speak_external = tms->tms5220_speaking = the_first_frame = tms->last_frame = 0; tms->fifo_count = tms->fifo_head = tms->fifo_tail = 0; tms->RDB_flag = FALSE; /* generate an interrupt if necessary */ set_interrupt_state(tms, 1); return 0; } /********************************************************************************************** check_buffer_low -- check to see if the buffer low flag should be on or off ***********************************************************************************************/ static void check_buffer_low(tms5220_state *tms) { /* did we just become low? */ if (tms->fifo_count <= 8) { /* generate an interrupt if necessary */ if (!tms->buffer_low) set_interrupt_state(tms, 1); tms->buffer_low = 1; if (DEBUG_5220) logerror("Buffer low set\n"); } /* did we just become full? */ else { tms->buffer_low = 0; if (DEBUG_5220) logerror("Buffer low cleared\n"); } } /********************************************************************************************** set_interrupt_state -- generate an interrupt ***********************************************************************************************/ static void set_interrupt_state(tms5220_state *tms, int state) { if (tms->intf->irq && state != tms->irq_pin) tms->intf->irq(tms->device, state); tms->irq_pin = state; } /********************************************************************************************** DEVICE_START( tms5220 ) -- allocate buffers and reset the 5220 ***********************************************************************************************/ static DEVICE_START( tms5220 ) { static const tms5220_interface dummy = { 0 }; tms5220_state *tms = get_safe_token(device); /* set the interface and device */ tms->intf = device->static_config ? (const tms5220_interface *)device->static_config : &dummy; tms->device = device; tms->clock = device->clock; /* initialize a stream */ tms->stream = stream_create(device, 0, 1, device->clock / 80, tms, tms5220_update); register_for_save_states(tms); } static DEVICE_START( tmc0285 ) { tms5220_state *tms = get_safe_token(device); DEVICE_START_CALL( tms5220 ); tms->variant = variant_tmc0285; } static DEVICE_START( tms5200 ) { tms5220_state *tms = get_safe_token(device); DEVICE_START_CALL( tms5220 ); tms->variant = variant_tmc0285; } static DEVICE_RESET( tms5220 ) { tms5220_state *tms = get_safe_token(device); /* initialize the FIFO */ /*memset(tms->fifo, 0, sizeof(tms->fifo));*/ tms->fifo_head = tms->fifo_tail = tms->fifo_count = tms->fifo_bits_taken = 0; /* initialize the chip state */ /* Note that we do not actually clear IRQ on start-up : IRQ is even raised if tms->buffer_empty or tms->buffer_low are 0 */ tms->tms5220_speaking = tms->speak_external = tms->talk_status = tms->first_frame = tms->last_frame = tms->irq_pin = 0; if (tms->intf->irq) tms->intf->irq(tms->device, 0); tms->buffer_empty = tms->buffer_low = 1; tms->RDB_flag = FALSE; /* initialize the energy/pitch/k states */ tms->old_energy = tms->new_energy = tms->current_energy = tms->target_energy = 0; tms->old_pitch = tms->new_pitch = tms->current_pitch = tms->target_pitch = 0; memset(tms->old_k, 0, sizeof(tms->old_k)); memset(tms->new_k, 0, sizeof(tms->new_k)); memset(tms->current_k, 0, sizeof(tms->current_k)); memset(tms->target_k, 0, sizeof(tms->target_k)); /* initialize the sample generators */ tms->interp_count = tms->sample_count = tms->pitch_count = 0; tms->RNG = 0x1FFF; memset(tms->u, 0, sizeof(tms->u)); memset(tms->x, 0, sizeof(tms->x)); if (tms->intf->load_address) (*tms->intf->load_address)(tms->device, 0); tms->schedule_dummy_read = TRUE; } /********************************************************************************************** tms5220_data_w -- write data to the sound chip ***********************************************************************************************/ WRITE8_DEVICE_HANDLER( tms5220_data_w ) { tms5220_state *tms = get_safe_token(device); /* bring up to date first */ stream_update(tms->stream); tms5220_data_write(tms, data); } /********************************************************************************************** tms5220_status_r -- read status or data from the sound chip ***********************************************************************************************/ READ8_DEVICE_HANDLER( tms5220_status_r ) { tms5220_state *tms = get_safe_token(device); /* bring up to date first */ stream_update(tms->stream); return tms5220_status_read(tms); } /********************************************************************************************** tms5220_ready_r -- return the not ready status from the sound chip ***********************************************************************************************/ int tms5220_ready_r(const device_config *device) { tms5220_state *tms = get_safe_token(device); /* bring up to date first */ stream_update(tms->stream); return tms5220_ready_read(tms); } /********************************************************************************************** tms5220_time_to_ready -- return the time in seconds until the ready line is asserted ***********************************************************************************************/ double tms5220_time_to_ready(const device_config *device) { tms5220_state *tms = get_safe_token(device); double cycles; /* bring up to date first */ stream_update(tms->stream); cycles = tms5220_cycles_to_ready(tms); return cycles * 80.0 / tms->clock; } /********************************************************************************************** tms5220_int_r -- return the int status from the sound chip ***********************************************************************************************/ int tms5220_int_r(const device_config *device) { tms5220_state *tms = get_safe_token(device); /* bring up to date first */ stream_update(tms->stream); return tms5220_int_read(tms); } /********************************************************************************************** tms5220_update -- update the sound chip so that it is in sync with CPU execution ***********************************************************************************************/ static STREAM_UPDATE( tms5220_update ) { tms5220_state *tms = (tms5220_state *)param; INT16 sample_data[MAX_SAMPLE_CHUNK]; stream_sample_t *buffer = outputs[0]; /* loop while we still have samples to generate */ while (samples) { int length = (samples > MAX_SAMPLE_CHUNK) ? MAX_SAMPLE_CHUNK : samples; int index; /* generate the samples and copy to the target buffer */ tms5220_process(tms, sample_data, length); for (index = 0; index < length; index++) *buffer++ = sample_data[index]; /* account for the samples */ samples -= length; } } /********************************************************************************************** tms5220_set_frequency -- adjusts the playback frequency ***********************************************************************************************/ void tms5220_set_frequency(const device_config *device, int frequency) { tms5220_state *tms = get_safe_token(device); stream_set_sample_rate(tms->stream, frequency / 80); tms->clock = frequency; } /*------------------------------------------------- device definition -------------------------------------------------*/ static const char DEVTEMPLATE_SOURCE[] = __FILE__; #define DEVTEMPLATE_ID(p,s) p##tms5220##s #define DEVTEMPLATE_FEATURES DT_HAS_START | DT_HAS_RESET #define DEVTEMPLATE_NAME "TMS5220" #define DEVTEMPLATE_FAMILY "TI Speech" #include "devtempl.h" #define DEVTEMPLATE_DERIVED_ID(p,s) p##tmc0285##s #define DEVTEMPLATE_DERIVED_FEATURES DT_HAS_START #define DEVTEMPLATE_DERIVED_NAME "TMC0285" #include "devtempl.h" #define DEVTEMPLATE_DERIVED_ID(p,s) p##tms5200##s #define DEVTEMPLATE_DERIVED_FEATURES DT_HAS_START #define DEVTEMPLATE_DERIVED_NAME "TMS5200" #include "devtempl.h"