// license:??? // copyright-holders:Frank Palazzolo, Jarek Burczynski, Aaron Giles, Jonathan Gevaryahu, Couriersud /********************************************************************************************** TMS5110 simulator (modified from TMS5220 by Jarek Burczynski) Written for MAME by Frank Palazzolo With help from Neill Corlett Additional tweaking by Aaron Giles Various fixes by Lord Nightmare Additional enhancements by Couriersud Sub-interpolation-cycle parameter updating added by Lord Nightmare Read-bit and Output fixes by Lord Nightmare Todo: - implement CS - implement missing commands - TMS5110_CMD_TEST_TALK is only partially implemented TMS5100: +-----------------+ TST | 1 28 | CS PDC | 2 27 | CTL8 ROM CK | 3 26 | ADD8 CPU CK | 4 25 | CTL1 VDD | 5 24 | ADD1 CR OSC | 6 23 | CTL2 RC OSC | 7 22 | ADD2 T11 | 8 21 | ADD4 NC | 9 20 | CTL4 I/O | 10 19 | M1 SPK1 | 11 18 | NC SPK2 | 12 17 | NC PROM OUT | 13 16 | NC VSS | 14 15 | M0 +-----------------+ T11: Sync for serial data out M58817 The following connections could be derived from radar scope schematics. The M58817 is not 100% pin compatible to the 5100, but really close. +-----------------+ (NC) | 1 28 | CS PDC | 2 27 | CTL8 ROM CK | 3 26 | ADD8 (to 58819) (NC) | 4 25 | CTL1 (VDD,-5) | 5 24 | ADD1 (to 58819) (GND) | 6 23 | CTL2 Xin | 7 22 | ADD2 (to 58819) Xout | 8 21 | ADD4 (to 58819) (NC) | 9 20 | CTL4 (VDD,-5) | 10 19 | Status back to CPU (NC) | 11 18 | C1 (to 58819) SPKR | 12 17 | (NC) SPKR | 13 16 | C0 (to 58819) (NC) | 14 15 | (5V) +-----------------+ ***********************************************************************************************/ #include "emu.h" #include "tms5110.h" static INT16 clip_analog(INT16 cliptemp); /* *****optional defines***** */ /* Hacky improvements which don't match patent: */ /* Interpolation shift logic: * One of the following two lines should be used, and the other commented * The second line is more accurate mathematically but not accurate to the patent */ #define INTERP_SHIFT >> m_coeff->interp_coeff[m_IP] //define INTERP_SHIFT / (1<interp_coeff[m_IP]) /* Other hacks */ /* HACK?: if defined, outputs the low 4 bits of the lattice filter to the i/o * or clip logic, even though the real hardware doesn't do this, partially verified by decap */ #undef ALLOW_4_LSB /* *****configuration of chip connection stuff***** */ /* must be defined; if 0, output the waveform as if it was tapped on the speaker pin as usual, if 1, output the waveform as if it was tapped on the i/o pin (volume is much lower in the latter case) */ #define FORCE_DIGITAL 0 /* *****debugging defines***** */ #undef VERBOSE // above is general, somewhat obsolete, catch all for debugs which don't fit elsewhere #undef DEBUG_PARSE_FRAME_DUMP // above dumps each frame to stderr: be sure to select one of the options below if you define it! #undef DEBUG_PARSE_FRAME_DUMP_BIN // dumps each speech frame as binary #undef DEBUG_PARSE_FRAME_DUMP_HEX // dumps each speech frame as hex #undef DEBUG_FRAME_ERRORS // above dumps info if a frame ran out of data #undef DEBUG_COMMAND_DUMP // above dumps all command writes and PDC-related state machine changes, plus command writes to VSMs #undef DEBUG_GENERATION // above dumps debug information related to the sample generation loop, i.e. whether interpolation is inhibited or not, and what the current and target values for each frame are. #undef DEBUG_GENERATION_VERBOSE // above dumps MUCH MORE debug information related to the sample generation loop, namely the excitation, energy, pitch, k*, and output values for EVERY SINGLE SAMPLE during a frame. #undef DEBUG_LATTICE // above dumps the lattice filter state data each sample. #undef DEBUG_CLIP // above dumps info to stderr whenever the analog clip hardware is (or would be) clipping the signal. #define MAX_SAMPLE_CHUNK 512 /* 6 Variants, from tms5110r.inc */ #define TMS5110_IS_TMC0281 (1) #define TMS5110_IS_TMC0281D (2) #define TMS5110_IS_CD2801 (3) #define TMS5110_IS_CD2802 (4) #define TMS5110_IS_TMS5110A (5) #define TMS5110_IS_M58817 (6) /* States for CTL */ // ctl bus is input to tms51xx #define CTL_STATE_INPUT (0) // ctl bus is outputting a test talk command on CTL1(bit 0) #define CTL_STATE_TTALK_OUTPUT (1) // ctl bus is switching direction, next will be above #define CTL_STATE_NEXT_TTALK_OUTPUT (2) // ctl bus is outputting a read nybble 'output' command on CTL1,2,4,8 (bits 0-3) #define CTL_STATE_OUTPUT (3) // ctl bus is switching direction, next will be above #define CTL_STATE_NEXT_OUTPUT (4) /* Pull in the ROM tables */ #include "tms5110r.inc" #define DEBUG_5110 0 void tms5110_device::set_variant(int variant) { switch (variant) { case TMS5110_IS_TMC0281: m_coeff = &T0280B_0281A_coeff; break; case TMS5110_IS_TMC0281D: m_coeff = &T0280D_0281D_coeff; break; case TMS5110_IS_CD2801: m_coeff = &T0280F_2801A_coeff; break; case TMS5110_IS_M58817: m_coeff = &M58817_coeff; break; case TMS5110_IS_CD2802: m_coeff = &T0280F_2802_coeff; break; case TMS5110_IS_TMS5110A: m_coeff = &tms5110a_coeff; break; default: fatalerror("Unknown variant in tms5110_create\n"); } m_variant = variant; } void tms5110_device::new_int_write(UINT8 rc, UINT8 m0, UINT8 m1, UINT8 addr) { if (!m_m0_cb.isnull()) m_m0_cb(m0); if (!m_m1_cb.isnull()) m_m1_cb(m1); if (!m_addr_cb.isnull()) m_addr_cb((offs_t)0, addr); if (!m_romclk_cb.isnull()) { //printf("rc %d\n", rc); m_romclk_cb(rc); } } void tms5110_device::new_int_write_addr(UINT8 addr) { new_int_write(1, 0, 1, addr); // romclk 1, m0 0, m1 1, addr bus nybble = xxxx new_int_write(0, 0, 1, addr); // romclk 0, m0 0, m1 1, addr bus nybble = xxxx new_int_write(1, 0, 0, addr); // romclk 1, m0 0, m1 0, addr bus nybble = xxxx new_int_write(0, 0, 0, addr); // romclk 0, m0 0, m1 0, addr bus nybble = xxxx } UINT8 tms5110_device::new_int_read() { new_int_write(1, 1, 0, 0); // romclk 1, m0 1, m1 0, addr bus nybble = 0/open bus new_int_write(0, 1, 0, 0); // romclk 0, m0 1, m1 0, addr bus nybble = 0/open bus new_int_write(1, 0, 0, 0); // romclk 1, m0 0, m1 0, addr bus nybble = 0/open bus new_int_write(0, 0, 0, 0); // romclk 0, m0 0, m1 0, addr bus nybble = 0/open bus if (!m_data_cb.isnull()) return m_data_cb(); if (DEBUG_5110) logerror("WARNING: CALLBACK MISSING, RETURNING 0!\n"); return 0; } void tms5110_device::register_for_save_states() { save_item(NAME(m_fifo)); save_item(NAME(m_fifo_head)); save_item(NAME(m_fifo_tail)); save_item(NAME(m_fifo_count)); save_item(NAME(m_PDC)); save_item(NAME(m_CTL_pins)); save_item(NAME(m_speaking_now)); save_item(NAME(m_talk_status)); save_item(NAME(m_state)); save_item(NAME(m_address)); save_item(NAME(m_next_is_address)); save_item(NAME(m_schedule_dummy_read)); save_item(NAME(m_addr_bit)); save_item(NAME(m_CTL_buffer)); save_item(NAME(m_OLDE)); save_item(NAME(m_OLDP)); save_item(NAME(m_new_frame_energy_idx)); save_item(NAME(m_new_frame_pitch_idx)); save_item(NAME(m_new_frame_k_idx)); #ifdef PERFECT_INTERPOLATION_HACK save_item(NAME(m_old_frame_energy_idx)); save_item(NAME(m_old_frame_pitch_idx)); save_item(NAME(m_old_frame_k_idx)); #endif save_item(NAME(m_current_energy)); save_item(NAME(m_current_pitch)); save_item(NAME(m_current_k)); save_item(NAME(m_target_energy)); save_item(NAME(m_target_pitch)); save_item(NAME(m_target_k)); save_item(NAME(m_previous_energy)); save_item(NAME(m_subcycle)); save_item(NAME(m_subc_reload)); save_item(NAME(m_PC)); save_item(NAME(m_IP)); save_item(NAME(m_inhibit)); save_item(NAME(m_pitch_count)); save_item(NAME(m_u)); save_item(NAME(m_x)); save_item(NAME(m_RNG)); save_item(NAME(m_excitation_data)); save_item(NAME(m_digital_select)); save_item(NAME(m_speech_rom_bitnum)); save_item(NAME(m_romclk_hack_timer_started)); save_item(NAME(m_romclk_hack_state)); save_item(NAME(m_variant)); } /********************************************************************************************** printbits helper function: takes a long int input and prints the resulting bits to stderr ***********************************************************************************************/ #ifdef DEBUG_PARSE_FRAME_DUMP_BIN static void printbits(long data, int num) { int i; for (i=(num-1); i>=0; i--) fprintf(stderr,"%0ld", (data>>i)&1); } #endif #ifdef DEBUG_PARSE_FRAME_DUMP_HEX static void printbits(long data, int num) { switch((num-1)&0xFC) { case 0: fprintf(stderr,"%0lx", data); break; case 4: fprintf(stderr,"%02lx", data); break; case 8: fprintf(stderr,"%03lx", data); break; case 12: fprintf(stderr,"%04lx", data); break; default: fprintf(stderr,"%04lx", data); break; } } #endif /****************************************************************************************** FIFO_data_write -- handle bit data write to the TMS5110 (as a result of toggling M0 pin) ******************************************************************************************/ void tms5110_device::FIFO_data_write(int data) { /* add this bit to the FIFO */ if (m_fifo_count < FIFO_SIZE) { m_fifo[m_fifo_tail] = (data&1); /* set bit to 1 or 0 */ m_fifo_tail = (m_fifo_tail + 1) % FIFO_SIZE; m_fifo_count++; if (DEBUG_5110) logerror("Added bit to FIFO (size=%2d)\n", m_fifo_count); } else { if (DEBUG_5110) logerror("Ran out of room in the FIFO!\n"); } } /****************************************************************************************** extract_bits -- extract a specific number of bits from the FIFO ******************************************************************************************/ int tms5110_device::extract_bits(int count) { int val = 0; if (DEBUG_5110) logerror("requesting %d bits from fifo: ", count); while (count--) { val = (val << 1) | (m_fifo[m_fifo_head] & 1); m_fifo_count--; m_fifo_head = (m_fifo_head + 1) % FIFO_SIZE; } if (DEBUG_5110) logerror("returning: %02x\n", val); return val; } void tms5110_device::request_bits(int no) { for (int i = 0; i < no; i++) { UINT8 data = new_int_read(); if (DEBUG_5110) logerror("bit added to fifo: %d\n", data); FIFO_data_write(data); } } void tms5110_device::perform_dummy_read() { if (m_schedule_dummy_read) { int data = new_int_read(); if (DEBUG_5110) logerror("TMS5110 performing dummy read; value read = %1i\n", data & 1); m_schedule_dummy_read = FALSE; } } /********************************************************************************************** tms5110_process -- fill the buffer with a specific number of samples ***********************************************************************************************/ void tms5110_device::process(INT16 *buffer, unsigned int size) { int buf_count=0; int i, bitout, zpar; INT32 this_sample; /* if we're not speaking, fill with nothingness */ if (!m_speaking_now) goto empty; /* loop until the buffer is full or we've stopped speaking */ while ((size > 0) && m_speaking_now) { /* if it is the appropriate time to update the old energy/pitch indices, * i.e. when IP=7, PC=12, T=17, subcycle=2, do so. Since IP=7 PC=12 T=17 * is JUST BEFORE the transition to IP=0 PC=0 T=0 sybcycle=(0 or 1), * which happens 4 T-cycles later), we change on the latter. * The indices are updated here ~12 PCs before the new frame is applied. */ if ((m_IP == 0) && (m_PC == 0) && (m_subcycle < 2)) { m_OLDE = (m_new_frame_energy_idx == 0); m_OLDP = (m_new_frame_pitch_idx == 0); } /* if we're ready for a new frame to be applied, i.e. when IP=0, PC=12, Sub=1 * (In reality, the frame was really loaded incrementally during the entire IP=0 * PC=x time period, but it doesn't affect anything until IP=0 PC=12 happens) */ if ((m_IP == 0) && (m_PC == 12) && (m_subcycle == 1)) { // HACK for regression testing, be sure to comment out before release! //m_RNG = 0x1234; // end HACK #ifdef PERFECT_INTERPOLATION_HACK /* remember previous frame energy, pitch, and coefficients */ m_old_frame_energy_idx = m_new_frame_energy_idx; m_old_frame_pitch_idx = m_new_frame_pitch_idx; for (i = 0; i < m_coeff->num_k; i++) m_old_frame_k_idx[i] = m_new_frame_k_idx[i]; #endif /* if the talk status was clear last frame, halt speech now. */ if (m_talk_status == 0) { #ifdef DEBUG_GENERATION fprintf(stderr,"tms5110_process: processing frame: talk status = 0 caused by stop frame or buffer empty, halting speech.\n"); #endif if (m_speaking_now == 1) // we're done, set all coeffs to idle state but keep going for a bit... { m_new_frame_energy_idx = 0; m_new_frame_pitch_idx = 0; for (i = 0; i < 4; i++) m_new_frame_k_idx[i] = 0; for (i = 4; i < 7; i++) m_new_frame_k_idx[i] = 0xF; for (i = 7; i < m_coeff->num_k; i++) m_new_frame_k_idx[i] = 0x7; m_speaking_now = 2; // wait 8 extra interp periods before shutting down so we can interpolate everything to zero state } else // m_speaking_now == 2 // now we're really done. { m_speaking_now = 0; // finally halt speech goto empty; } //m_speaking_now = 0; // finally halt speech //goto empty; } /* Parse a new frame into the new_target_energy, new_target_pitch and new_target_k[], * but only if we're not just about to end speech */ if (m_speaking_now == 1) parse_frame(); #ifdef DEBUG_PARSE_FRAME_DUMP fprintf(stderr,"\n"); #endif /* if the new frame is a stop frame, unset talk status */ /** TODO: investigate this later! **/ if (NEW_FRAME_STOP_FLAG == 1) m_talk_status = 0; /* in all cases where interpolation would be inhibited, set the inhibit flag; otherwise clear it. Interpolation inhibit cases: * Old frame was voiced, new is unvoiced * Old frame was silence/zero energy, new has nonzero energy * Old frame was unvoiced, new is voiced (note this is the case on the patent but may not be correct on the real final chip) */ if ( ((OLD_FRAME_UNVOICED_FLAG == 0) && (NEW_FRAME_UNVOICED_FLAG == 1)) || ((OLD_FRAME_UNVOICED_FLAG == 1) && (NEW_FRAME_UNVOICED_FLAG == 0)) /* this line needs further investigation, starwars tie fighters may sound better without it */ || ((OLD_FRAME_SILENCE_FLAG == 1) && (NEW_FRAME_SILENCE_FLAG == 0)) ) m_inhibit = 1; else // normal frame, normal interpolation m_inhibit = 0; /* load new frame targets from tables, using parsed indices */ m_target_energy = m_coeff->energytable[m_new_frame_energy_idx]; m_target_pitch = m_coeff->pitchtable[m_new_frame_pitch_idx]; zpar = NEW_FRAME_UNVOICED_FLAG; // find out if parameters k5-k10 should be zeroed for (i = 0; i < 4; i++) m_target_k[i] = m_coeff->ktable[i][m_new_frame_k_idx[i]]; for (i = 4; i < m_coeff->num_k; i++) m_target_k[i] = (m_coeff->ktable[i][m_new_frame_k_idx[i]] * (1-zpar)); #ifdef DEBUG_GENERATION /* Debug info for current parsed frame */ fprintf(stderr, "OLDE: %d; OLDP: %d; ", m_OLDE, m_OLDP); fprintf(stderr,"Processing frame: "); if (m_inhibit == 0) fprintf(stderr, "Normal Frame\n"); else fprintf(stderr,"Interpolation Inhibited\n"); fprintf(stderr,"*** current Energy, Pitch and Ks = %04d, %04d, %04d, %04d, %04d, %04d, %04d, %04d, %04d, %04d, %04d, %04d\n",m_current_energy, m_current_pitch, m_current_k[0], m_current_k[1], m_current_k[2], m_current_k[3], m_current_k[4], m_current_k[5], m_current_k[6], m_current_k[7], m_current_k[8], m_current_k[9]); fprintf(stderr,"*** target Energy(idx), Pitch, and Ks = %04d(%x),%04d, %04d, %04d, %04d, %04d, %04d, %04d, %04d, %04d, %04d, %04d\n",m_target_energy, m_new_frame_energy_idx, m_target_pitch, m_target_k[0], m_target_k[1], m_target_k[2], m_target_k[3], m_target_k[4], m_target_k[5], m_target_k[6], m_target_k[7], m_target_k[8], m_target_k[9]); #endif /* if TS is now 0, ramp the energy down to 0. Is this really correct to hardware? */ if (m_talk_status == 0) { #ifdef DEBUG_GENERATION fprintf(stderr,"Talk status is 0, forcing target energy to 0\n"); #endif m_target_energy = 0; } } else // Not a new frame, just interpolate the existing frame. { int inhibit_state = ((m_inhibit==1)&&(m_IP != 0)); // disable inhibit when reaching the last interp period, but don't overwrite the m_inhibit value #ifdef PERFECT_INTERPOLATION_HACK int samples_per_frame = m_subc_reload?175:266; // either (13 A cycles + 12 B cycles) * 7 interps for normal SPEAK/SPKEXT, or (13*2 A cycles + 12 B cycles) * 7 interps for SPKSLOW //int samples_per_frame = m_subc_reload?200:304; // either (13 A cycles + 12 B cycles) * 8 interps for normal SPEAK/SPKEXT, or (13*2 A cycles + 12 B cycles) * 8 interps for SPKSLOW int current_sample = (m_subcycle - m_subc_reload)+(m_PC*(3-m_subc_reload))+((m_subc_reload?25:38)*((m_IP-1)&7)); zpar = OLD_FRAME_UNVOICED_FLAG; //fprintf(stderr, "CS: %03d", current_sample); // reset the current energy, pitch, etc to what it was at frame start m_current_energy = m_coeff->energytable[m_old_frame_energy_idx]; m_current_pitch = m_coeff->pitchtable[m_old_frame_pitch_idx]; for (i = 0; i < 4; i++) m_current_k[i] = m_coeff->ktable[i][m_old_frame_k_idx[i]]; for (i = 4; i < m_coeff->num_k; i++) m_current_k[i] = (m_coeff->ktable[i][m_old_frame_k_idx[i]] * (1-zpar)); // now adjust each value to be exactly correct for each of the samples per frame if (m_IP != 0) // if we're still interpolating... { m_current_energy += (((m_target_energy - m_current_energy)*(1-inhibit_state))*current_sample)/samples_per_frame; m_current_pitch += (((m_target_pitch - m_current_pitch)*(1-inhibit_state))*current_sample)/samples_per_frame; for (i = 0; i < m_coeff->num_k; i++) m_current_k[i] += (((m_target_k[i] - m_current_k[i])*(1-inhibit_state))*current_sample)/samples_per_frame; } else // we're done, play this frame for 1/8 frame. { m_current_energy = m_target_energy; m_current_pitch = m_target_pitch; for (i = 0; i < m_coeff->num_k; i++) m_current_k[i] = m_target_k[i]; } #else //Updates to parameters only happen on subcycle '2' (B cycle) of PCs. if (m_subcycle == 2) { switch(m_PC) { case 0: /* PC = 0, B cycle, write updated energy */ m_current_energy += (((m_target_energy - m_current_energy)*(1-inhibit_state)) INTERP_SHIFT); break; case 1: /* PC = 1, B cycle, write updated pitch */ m_current_pitch += (((m_target_pitch - m_current_pitch)*(1-inhibit_state)) INTERP_SHIFT); break; case 2: case 3: case 4: case 5: case 6: case 7: case 8: case 9: case 10: case 11: /* PC = 2 through 11, B cycle, write updated K1 through K10 */ m_current_k[m_PC-2] += (((m_target_k[m_PC-2] - m_current_k[m_PC-2])*(1-inhibit_state)) INTERP_SHIFT); break; case 12: /* PC = 12, do nothing */ break; } } #endif } // calculate the output if (OLD_FRAME_UNVOICED_FLAG == 1) { // generate unvoiced samples here if (m_RNG & 1) m_excitation_data = ~0x3F; /* according to the patent it is (either + or -) half of the maximum value in the chirp table, so either 01000000(0x40) or 11000000(0xC0)*/ else m_excitation_data = 0x40; } else /* (OLD_FRAME_UNVOICED_FLAG == 0) */ { // generate voiced samples here /* US patent 4331836 Figure 14B shows, and logic would hold, that a pitch based chirp * function has a chirp/peak and then a long chain of zeroes. * The last entry of the chirp rom is at address 0b110011 (51d), the 52nd sample, * and if the address reaches that point the ADDRESS incrementer is * disabled, forcing all samples beyond 51d to be == 51d */ if (m_pitch_count >= 51) m_excitation_data = (INT8)m_coeff->chirptable[51]; else /*m_pitch_count < 51*/ m_excitation_data = (INT8)m_coeff->chirptable[m_pitch_count]; } // Update LFSR *20* times every sample (once per T cycle), like patent shows for (i=0; i<20; i++) { bitout = ((m_RNG >> 12) & 1) ^ ((m_RNG >> 3) & 1) ^ ((m_RNG >> 2) & 1) ^ ((m_RNG >> 0) & 1); m_RNG <<= 1; m_RNG |= bitout; } this_sample = lattice_filter(); /* execute lattice filter */ #ifdef DEBUG_GENERATION_VERBOSE //fprintf(stderr,"C:%01d; ",m_subcycle); fprintf(stderr,"IP:%01d PC:%02d X:%04d E:%03d P:%03d Pc:%03d ",m_IP, m_PC, m_excitation_data, m_current_energy, m_current_pitch, m_pitch_count); //fprintf(stderr,"X:%04d E:%03d P:%03d Pc:%03d ", m_excitation_data, m_current_energy, m_current_pitch, m_pitch_count); for (i=0; i<10; i++) fprintf(stderr,"K%d:%04d ", i+1, m_current_k[i]); fprintf(stderr,"Out:%06d", this_sample); fprintf(stderr,"\n"); #endif /* next, force result to 14 bits (since its possible that the addition at the final (k1) stage of the lattice overflowed) */ while (this_sample > 16383) this_sample -= 32768; while (this_sample < -16384) this_sample += 32768; if (m_digital_select == 0) // analog SPK pin output is only 8 bits, with clipping buffer[buf_count] = clip_analog(this_sample); else // digital I/O pin output is 12 bits { #ifdef ALLOW_4_LSB // input: ssss ssss ssss ssss ssnn nnnn nnnn nnnn // N taps: ^ = 0x2000; // output: ssss ssss ssss ssss snnn nnnn nnnn nnnN buffer[buf_count] = (this_sample<<1)|((this_sample&0x2000)>>13); #else this_sample &= ~0xF; // input: ssss ssss ssss ssss ssnn nnnn nnnn 0000 // N taps: ^^ ^^^ = 0x3E00; // output: ssss ssss ssss ssss snnn nnnn nnnN NNNN buffer[buf_count] = (this_sample<<1)|((this_sample&0x3E00)>>9); #endif } // Update all counts m_subcycle++; if ((m_subcycle == 2) && (m_PC == 12)) { /* Circuit 412 in the patent acts a reset, resetting the pitch counter to 0 * if INHIBIT was true during the most recent frame transition. * The exact time this occurs is betwen IP=7, PC=12 sub=0, T=t12 * and m_IP = 0, PC=0 sub=0, T=t12, a period of exactly 20 cycles, * which overlaps the time OLDE and OLDP are updated at IP=7 PC=12 T17 * (and hence INHIBIT itself 2 t-cycles later). We do it here because it is * convenient and should make no difference in output. */ if ((m_IP == 7)&&(m_inhibit==1)) m_pitch_count = 0; m_subcycle = m_subc_reload; m_PC = 0; m_IP++; m_IP&=0x7; } else if (m_subcycle == 3) { m_subcycle = m_subc_reload; m_PC++; } m_pitch_count++; if (m_pitch_count >= m_current_pitch) m_pitch_count = 0; m_pitch_count &= 0x1FF; buf_count++; size--; } empty: while (size > 0) { m_subcycle++; if ((m_subcycle == 2) && (m_PC == 12)) { m_subcycle = m_subc_reload; m_PC = 0; m_IP++; m_IP&=0x7; } else if (m_subcycle == 3) { m_subcycle = m_subc_reload; m_PC++; } buffer[buf_count] = -1; /* should be just -1; actual chip outputs -1 every idle sample; (cf note in data sheet, p 10, table 4) */ buf_count++; size--; } } /********************************************************************************************** clip_analog -- clips the 14 bit return value from the lattice filter to its final 10 bit value (-512 to 511), and upshifts/range extends this to 16 bits ***********************************************************************************************/ static INT16 clip_analog(INT16 cliptemp) { /* clipping, just like the patent shows: * the top 10 bits of this result are visible on the digital output IO pin. * next, if the top 3 bits of the 14 bit result are all the same, the lowest of those 3 bits plus the next 7 bits are the signed analog output, otherwise the low bits are all forced to match the inverse of the topmost bit, i.e.: * 1x xxxx xxxx xxxx -> 0b10000000 * 11 1bcd efgh xxxx -> 0b1bcdefgh * 00 0bcd efgh xxxx -> 0b0bcdefgh * 0x xxxx xxxx xxxx -> 0b01111111 */ #ifdef DEBUG_CLIP if ((cliptemp > 2047) || (cliptemp < -2048)) fprintf(stderr,"clipping cliptemp to range; was %d\n", cliptemp); #endif if (cliptemp > 2047) cliptemp = 2047; else if (cliptemp < -2048) cliptemp = -2048; /* at this point the analog output is tapped */ #ifdef ALLOW_4_LSB // input: ssss snnn nnnn nnnn // N taps: ^^^ ^ = 0x0780 // output: snnn nnnn nnnn NNNN return (cliptemp << 4)|((cliptemp&0x780)>>7); // upshift and range adjust #else cliptemp &= ~0xF; // input: ssss snnn nnnn 0000 // N taps: ^^^ ^^^^ = 0x07F0 // P taps: ^ = 0x0400 // output: snnn nnnn NNNN NNNP return (cliptemp << 4)|((cliptemp&0x7F0)>>3)|((cliptemp&0x400)>>10); // upshift and range adjust #endif } /********************************************************************************************** matrix_multiply -- does the proper multiply and shift a is the k coefficient and is clamped to 10 bits (9 bits plus a sign) b is the running result and is clamped to 14 bits. output is 14 bits, but note the result LSB bit is always 1. Because the low 4 bits of the result are trimmed off before output, this makes almost no difference in the computation. **********************************************************************************************/ static INT32 matrix_multiply(INT32 a, INT32 b) { INT32 result; while (a>511) { a-=1024; } while (a<-512) { a+=1024; } while (b>16383) { b-=32768; } while (b<-16384) { b+=32768; } result = ((a*b)>>9)|1;//&(~1); #ifdef VERBOSE if (result>16383) fprintf(stderr,"matrix multiplier overflowed! a: %x, b: %x, result: %x", a, b, result); if (result<-16384) fprintf(stderr,"matrix multiplier underflowed! a: %x, b: %x, result: %x", a, b, result); #endif return result; } /********************************************************************************************** lattice_filter -- executes one 'full run' of the lattice filter on a specific byte of excitation data, and specific values of all the current k constants, and returns the resulting sample. ***********************************************************************************************/ INT32 tms5110_device::lattice_filter() { // Lattice filter here // Aug/05/07: redone as unrolled loop, for clarity - LN /* Originally Copied verbatim from table I in US patent 4,209,804, now updated to be in same order as the actual chip does it, not that it matters. notation equivalencies from table: Yn(i) == m_u[n-1] Kn = m_current_k[n-1] bn = m_x[n-1] */ /* int ep = matrix_multiply(m_previous_energy, (m_excitation_data<<6)); //Y(11) m_u[10] = ep; for (int i = 0; i < 10; i++) { int ii = 10-i; // for m = 10, this would be 11 - i, and since i is from 1 to 10, then ii ranges from 10 to 1 //int jj = ii+1; // this variable, even on the fortran version, is never used. it probably was intended to be used on the two lines below the next one to save some redundant additions on each. ep = ep - (((m_current_k[ii-1] * m_x[ii-1])>>9)|1); // subtract reflection from lower stage 'top of lattice' m_u[ii-1] = ep; m_x[ii] = m_x[ii-1] + (((m_current_k[ii-1] * ep)>>9)|1); // add reflection from upper stage 'bottom of lattice' } m_x[0] = ep; // feed the last section of the top of the lattice directly to the bottom of the lattice */ m_u[10] = matrix_multiply(m_previous_energy, (m_excitation_data<<6)); //Y(11) m_u[9] = m_u[10] - matrix_multiply(m_current_k[9], m_x[9]); m_u[8] = m_u[9] - matrix_multiply(m_current_k[8], m_x[8]); m_u[7] = m_u[8] - matrix_multiply(m_current_k[7], m_x[7]); m_u[6] = m_u[7] - matrix_multiply(m_current_k[6], m_x[6]); m_u[5] = m_u[6] - matrix_multiply(m_current_k[5], m_x[5]); m_u[4] = m_u[5] - matrix_multiply(m_current_k[4], m_x[4]); m_u[3] = m_u[4] - matrix_multiply(m_current_k[3], m_x[3]); m_u[2] = m_u[3] - matrix_multiply(m_current_k[2], m_x[2]); m_u[1] = m_u[2] - matrix_multiply(m_current_k[1], m_x[1]); m_u[0] = m_u[1] - matrix_multiply(m_current_k[0], m_x[0]); m_x[9] = m_x[8] + matrix_multiply(m_current_k[8], m_u[8]); m_x[8] = m_x[7] + matrix_multiply(m_current_k[7], m_u[7]); m_x[7] = m_x[6] + matrix_multiply(m_current_k[6], m_u[6]); m_x[6] = m_x[5] + matrix_multiply(m_current_k[5], m_u[5]); m_x[5] = m_x[4] + matrix_multiply(m_current_k[4], m_u[4]); m_x[4] = m_x[3] + matrix_multiply(m_current_k[3], m_u[3]); m_x[3] = m_x[2] + matrix_multiply(m_current_k[2], m_u[2]); m_x[2] = m_x[1] + matrix_multiply(m_current_k[1], m_u[1]); m_x[1] = m_x[0] + matrix_multiply(m_current_k[0], m_u[0]); m_x[0] = m_u[0]; m_previous_energy = m_current_energy; #ifdef DEBUG_LATTICE int i; fprintf(stderr,"V:%04d ", m_u[10]); for (i = 9; i >= 0; i--) { fprintf(stderr,"Y%d:%04d ", i+1, m_u[i]); fprintf(stderr,"b%d:%04d ", i+1, m_x[i]); if ((i % 5) == 0) fprintf(stderr,"\n"); } #endif return m_u[0]; } /****************************************************************************************** PDC_set -- set Processor Data Clock. Execute CTL_pins command on hi-lo transition. ******************************************************************************************/ void tms5110_device::PDC_set(int data) { int i; if (m_PDC != (data & 0x1) ) { m_PDC = data & 0x1; if (m_PDC == 0) /* toggling 1->0 processes command on CTL_pins */ { #ifdef DEBUG_COMMAND_DUMP fprintf(stderr,"PDC falling edge(%02X): ",m_state); #endif /* first pdc toggles output, next toggles input */ switch (m_state) { case CTL_STATE_INPUT: /* continue */ break; case CTL_STATE_NEXT_TTALK_OUTPUT: #ifdef DEBUG_COMMAND_DUMP fprintf(stderr,"Switching CTL bus direction to output for Test Talk\n"); #endif m_state = CTL_STATE_TTALK_OUTPUT; return; case CTL_STATE_TTALK_OUTPUT: #ifdef DEBUG_COMMAND_DUMP fprintf(stderr,"Switching CTL bus direction back to input from Test Talk\n"); #endif m_state = CTL_STATE_INPUT; return; case CTL_STATE_NEXT_OUTPUT: #ifdef DEBUG_COMMAND_DUMP fprintf(stderr,"Switching CTL bus direction for Read Bit Buffer Output\n"); #endif m_state = CTL_STATE_OUTPUT; return; case CTL_STATE_OUTPUT: #ifdef DEBUG_COMMAND_DUMP fprintf(stderr,"Switching CTL bus direction back to input from Read Bit Buffer Output\n"); #endif m_state = CTL_STATE_INPUT; return; } /* the only real commands we handle now are SPEAK and RESET */ if (m_next_is_address) { #ifdef DEBUG_COMMAND_DUMP fprintf(stderr,"Loading address nybble %02x to VSMs\n", m_CTL_pins); #endif m_next_is_address = FALSE; m_address = m_address | ((m_CTL_pins & 0x0F)<num_k; i++) m_new_frame_k_idx[i] = 0x7; break; case TMS5110_CMD_READ_BIT: #ifdef DEBUG_COMMAND_DUMP fprintf(stderr,"READ BIT\n"); #endif if (m_schedule_dummy_read) perform_dummy_read(); else { #ifdef DEBUG_COMMAND_DUMP fprintf(stderr,"actually reading a bit now\n"); #endif request_bits(1); m_CTL_buffer >>= 1; m_CTL_buffer |= (extract_bits(1)<<3); m_CTL_buffer &= 0xF; } break; case TMS5110_CMD_SPEAK: #ifdef DEBUG_COMMAND_DUMP fprintf(stderr,"SPEAK\n"); #endif perform_dummy_read(); m_speaking_now = 1; m_talk_status = 1; /* start immediately */ /* clear out variables before speaking */ m_subc_reload = 1; // SPEAK means this is 1 m_subcycle = m_subc_reload; m_PC = 0; m_IP = 0; m_new_frame_energy_idx = 0; m_new_frame_pitch_idx = 0; for (i = 0; i < 4; i++) m_new_frame_k_idx[i] = 0; for (i = 4; i < 7; i++) m_new_frame_k_idx[i] = 0xF; for (i = 7; i < m_coeff->num_k; i++) m_new_frame_k_idx[i] = 0x7; break; case TMS5110_CMD_READ_BRANCH: #ifdef DEBUG_COMMAND_DUMP fprintf(stderr,"READ AND BRANCH\n"); #endif new_int_write(0,1,1,0); new_int_write(1,1,1,0); new_int_write(0,1,1,0); new_int_write(0,0,0,0); new_int_write(1,0,0,0); new_int_write(0,0,0,0); m_schedule_dummy_read = FALSE; break; case TMS5110_CMD_TEST_TALK: #ifdef DEBUG_COMMAND_DUMP fprintf(stderr,"TEST TALK\n"); #endif m_state = CTL_STATE_NEXT_TTALK_OUTPUT; break; default: #ifdef DEBUG_COMMAND_DUMP fprintf(stderr,"tms5110.c: unknown command: 0x%02x\n", m_CTL_pins); #endif break; } } } } } /****************************************************************************************** parse_frame -- parse a new frame's worth of data; returns 0 if not enough bits in buffer ******************************************************************************************/ void tms5110_device::parse_frame() { int bits, i, rep_flag; /** TODO: get rid of bits handling here and move into extract_bits (as in tms5220.c) **/ /* count the total number of bits available */ bits = m_fifo_count; /* attempt to extract the energy index */ bits -= m_coeff->energy_bits; if (bits < 0) { request_bits( -bits ); /* toggle M0 to receive needed bits */ bits = 0; } // attempt to extract the energy index m_new_frame_energy_idx = extract_bits(m_coeff->energy_bits); #ifdef DEBUG_PARSE_FRAME_DUMP printbits(m_new_frame_energy_idx,m_coeff->energy_bits); fprintf(stderr," "); #endif /* if the energy index is 0 or 15, we're done if ((indx == 0) || (indx == 15)) { if (DEBUG_5110) logerror(" (4-bit energy=%d frame)\n",m_new_energy); // clear the k's if (indx == 0) { for (i = 0; i < m_coeff->num_k; i++) m_new_k[i] = 0; } // clear fifo if stop frame encountered if (indx == 15) { if (DEBUG_5110) logerror(" (4-bit energy=%d STOP frame)\n",m_new_energy); m_fifo_head = m_fifo_tail = m_fifo_count = 0; } return; }*/ // if the energy index is 0 or 15, we're done if ((m_new_frame_energy_idx == 0) || (m_new_frame_energy_idx == 15)) return; /* attempt to extract the repeat flag */ bits -= 1; if (bits < 0) { request_bits( -bits ); /* toggle M0 to receive needed bits */ bits = 0; } rep_flag = extract_bits(1); #ifdef DEBUG_PARSE_FRAME_DUMP printbits(rep_flag, 1); fprintf(stderr," "); #endif /* attempt to extract the pitch */ bits -= m_coeff->pitch_bits; if (bits < 0) { request_bits( -bits ); /* toggle M0 to receive needed bits */ bits = 0; } m_new_frame_pitch_idx = extract_bits(m_coeff->pitch_bits); #ifdef DEBUG_PARSE_FRAME_DUMP printbits(m_new_frame_pitch_idx,m_coeff->pitch_bits); fprintf(stderr," "); #endif // if this is a repeat frame, just do nothing, it will reuse the old coefficients if (rep_flag) return; // extract first 4 K coefficients for (i = 0; i < 4; i++) { /* attempt to extract 4 K's */ bits -= m_coeff->kbits[i]; if (bits < 0) { request_bits( -bits ); /* toggle M0 to receive needed bits */ bits = 0; } m_new_frame_k_idx[i] = extract_bits(m_coeff->kbits[i]); #ifdef DEBUG_PARSE_FRAME_DUMP printbits(m_new_frame_k_idx[i],m_coeff->kbits[i]); fprintf(stderr," "); #endif } // if the pitch index was zero, we only need 4 K's... if (m_new_frame_pitch_idx == 0) { /* and the rest of the coefficients are zeroed, but that's done in the generator code */ return; } // If we got here, we need the remaining 6 K's for (i = 4; i < m_coeff->num_k; i++) { bits -= m_coeff->kbits[i]; if (bits < 0) { request_bits( -bits ); /* toggle M0 to receive needed bits */ bits = 0; } m_new_frame_k_idx[i] = extract_bits(m_coeff->kbits[i]); #ifdef DEBUG_PARSE_FRAME_DUMP printbits(m_new_frame_k_idx[i],m_coeff->kbits[i]); fprintf(stderr," "); #endif } #ifdef VERBOSE if (m_speak_external) logerror("Parsed a frame successfully in FIFO - %d bits remaining\n", (m_fifo_count*8)-(m_fifo_bits_taken)); else logerror("Parsed a frame successfully in ROM\n"); #endif return; } #if 0 /*This is an example word TEN taken from the TMS5110A datasheet*/ static const unsigned int example_word_TEN[619]={ /* 1*/1,0,0,0, 0, 0,0,0,0,0, 1,1,0,0,0, 0,0,0,1,0, 0,1,1,1, 0,1,0,1, /* 2*/1,0,0,0, 0, 0,0,0,0,0, 1,0,0,1,0, 0,0,1,1,0, 0,0,1,1, 0,1,0,1, /* 3*/1,1,0,0, 0, 1,0,0,0,0, 1,0,1,0,0, 0,1,0,1,0, 0,1,0,0, 1,0,1,0, 1,0,0,0, 1,0,0,1, 0,1,0,1, 0,0,1, 0,1,0, 0,1,1, /* 4*/1,1,1,0, 0, 0,1,1,1,1, 1,0,1,0,1, 0,1,1,1,0, 0,1,0,1, 0,1,1,1, 0,1,1,1, 1,0,1,1, 1,0,1,0, 0,1,1, 0,1,0, 0,1,1, /* 5*/1,1,1,0, 0, 1,0,0,0,0, 1,0,1,0,0, 0,1,1,1,0, 0,1,0,1, 1,0,1,0, 1,0,0,0, 1,1,0,0, 1,0,1,1, 1,0,0, 0,1,0, 0,1,1, /* 6*/1,1,1,0, 0, 1,0,0,0,1, 1,0,1,0,1, 0,1,1,0,1, 0,1,1,0, 0,1,1,1, 0,1,1,1, 1,0,1,0, 1,0,1,0, 1,1,0, 0,0,1, 1,0,0, /* 7*/1,1,1,0, 0, 1,0,0,1,0, 1,0,1,1,1, 0,1,1,1,0, 0,1,1,1, 0,1,1,1, 0,1,0,1, 0,1,1,0, 1,0,0,1, 1,1,0, 0,1,0, 0,1,1, /* 8*/1,1,1,0, 1, 1,0,1,0,1, /* 9*/1,1,1,0, 0, 1,1,0,0,1, 1,0,1,1,1, 0,1,0,1,1, 1,0,1,1, 0,1,1,1, 0,1,0,0, 1,0,0,0, 1,0,0,0, 1,1,0, 0,1,1, 0,1,1, /*10*/1,1,0,1, 0, 1,1,0,1,0, 1,0,1,0,1, 0,1,1,0,1, 1,0,1,1, 0,1,0,1, 0,1,0,0, 1,0,0,0, 1,0,1,0, 1,1,0, 0,1,0, 1,0,0, /*11*/1,0,1,1, 0, 1,1,0,1,1, 1,0,0,1,1, 1,0,0,1,0, 0,1,1,0, 0,0,1,1, 0,1,0,1, 1,0,0,1, 1,0,1,0, 1,0,0, 0,1,1, 0,1,1, /*12*/1,0,0,0, 0, 1,1,1,0,0, 1,0,0,1,1, 0,0,1,1,0, 0,1,0,0, 0,1,1,0, 1,1,0,0, 0,1,0,1, 1,0,0,0, 1,0,0, 0,1,0, 1,0,1, /*13*/0,1,1,1, 1, 1,1,1,0,1, /*14*/0,1,1,1, 0, 1,1,1,1,0, 1,0,0,1,1, 0,0,1,1,1, 0,1,0,1, 0,1,0,1, 1,1,0,0, 0,1,1,1, 1,0,0,0, 1,0,0, 0,1,0, 1,0,1, /*15*/0,1,1,0, 0, 1,1,1,1,0, 1,0,1,0,1, 0,0,1,1,0, 0,1,0,0, 0,0,1,1, 1,1,0,0, 1,0,0,1, 0,1,1,1, 1,0,1, 0,1,0, 1,0,1, /*16*/1,1,1,1 }; #endif //------------------------------------------------- // device_start - device-specific startup //------------------------------------------------- void tms5110_device::device_start() { m_table = region()->base(); set_variant(TMS5110_IS_TMS5110A); /* resolve lines */ m_m0_cb.resolve(); m_m1_cb.resolve(); m_romclk_cb.resolve(); m_addr_cb.resolve(); m_data_cb.resolve(); /* initialize a stream */ m_stream = machine().sound().stream_alloc(*this, 0, 1, clock() / 80); m_state = CTL_STATE_INPUT; /* most probably not defined */ m_romclk_hack_timer = timer_alloc(0); register_for_save_states(); } //------------------------------------------------- // device_start - device-specific startup //------------------------------------------------- void tms5100_device::device_start() { tms5110_device::device_start(); set_variant(TMS5110_IS_TMC0281); } //------------------------------------------------- // device_start - device-specific startup //------------------------------------------------- void tmc0281_device::device_start() { tms5110_device::device_start(); set_variant(TMS5110_IS_TMC0281); } //------------------------------------------------- // device_start - device-specific startup //------------------------------------------------- void tms5100a_device::device_start() { tms5110_device::device_start(); set_variant(TMS5110_IS_TMC0281D); } //------------------------------------------------- // device_start - device-specific startup //------------------------------------------------- void tmc0281d_device::device_start() { tms5110_device::device_start(); set_variant(TMS5110_IS_TMC0281D); } //------------------------------------------------- // device_start - device-specific startup //------------------------------------------------- void cd2801_device::device_start() { tms5110_device::device_start(); set_variant(TMS5110_IS_CD2801); } //------------------------------------------------- // device_start - device-specific startup //------------------------------------------------- void cd2802_device::device_start() { tms5110_device::device_start(); set_variant(TMS5110_IS_CD2802); } //------------------------------------------------- // device_start - device-specific startup //------------------------------------------------- void tms5110a_device::device_start() { tms5110_device::device_start(); set_variant(TMS5110_IS_TMS5110A); } //------------------------------------------------- // device_start - device-specific startup //------------------------------------------------- void m58817_device::device_start() { tms5110_device::device_start(); set_variant(TMS5110_IS_M58817); } //------------------------------------------------- // device_reset - device-specific reset //------------------------------------------------- void tms5110_device::device_reset() { m_digital_select = FORCE_DIGITAL; // assume analog output /* initialize the FIFO */ memset(m_fifo, 0, sizeof(m_fifo)); m_fifo_head = m_fifo_tail = m_fifo_count = 0; /* initialize the chip state */ m_speaking_now = m_talk_status = 0; m_CTL_pins = 0; m_RNG = 0x1fff; m_CTL_buffer = 0; m_PDC = 0; /* initialize the energy/pitch/k states */ #ifdef PERFECT_INTERPOLATION_HACK m_old_frame_energy_idx = m_old_frame_pitch_idx = 0; memset(m_old_frame_k_idx, 0, sizeof(m_old_frame_k_idx)); #endif m_new_frame_energy_idx = m_current_energy = m_target_energy = m_previous_energy = 0; m_new_frame_pitch_idx = m_current_pitch = m_target_pitch = 0; memset(m_new_frame_k_idx, 0, sizeof(m_new_frame_k_idx)); memset(m_current_k, 0, sizeof(m_current_k)); memset(m_target_k, 0, sizeof(m_target_k)); /* initialize the sample generators */ m_inhibit = 1; m_subcycle = m_pitch_count = m_PC = 0; m_subc_reload = 1; m_OLDE = m_OLDP = 1; m_IP = 0; m_RNG = 0x1FFF; memset(m_u, 0, sizeof(m_u)); memset(m_x, 0, sizeof(m_x)); if (m_table != NULL) { /* legacy interface */ m_schedule_dummy_read = TRUE; } else { /* no dummy read! This makes bagman and ad2083 speech fail * with the new cycle and transition exact interfaces */ m_schedule_dummy_read = FALSE; } m_next_is_address = FALSE; m_address = 0; m_addr_bit = 0; } /****************************************************************************** tms5110_ctl_w -- write Control Command to the sound chip commands like Speech, Reset, etc., are loaded into the chip via the CTL pins ******************************************************************************/ WRITE8_MEMBER( tms5110_device::ctl_w ) { /* bring up to date first */ m_stream->update(); m_CTL_pins = data & 0xf; } /****************************************************************************** tms5110_pdc_w -- write to PDC pin on the sound chip ******************************************************************************/ WRITE_LINE_MEMBER( tms5110_device::pdc_w ) { /* bring up to date first */ m_stream->update(); PDC_set(state); } /****************************************************************************** tms5110_ctl_r -- read from the VSP (51xx) control bus The CTL bus can be in three states: 1. Test talk output: bit 0 = TS - Talk Status is active (high) when the VSP is processing speech data. Talk Status goes active at the initiation of a SPEAK command. It goes inactive (low) when the stop code (Energy=1111) is processed, or immediately(?????? not TMS5110) by a RESET command. other bits may be open bus 2. 'read bit' buffer contents output: bits 0-3 = buffer contents 3. Input 'open bus' state: bits 0-3 = high-z ******************************************************************************/ READ8_MEMBER( tms5110_device::ctl_r ) { /* bring up to date first */ m_stream->update(); if (m_state == CTL_STATE_TTALK_OUTPUT) { if (DEBUG_5110) logerror("Status read while outputting Test Talk (status=%2d)\n", m_talk_status); return (m_talk_status << 0); /*CTL1 = still talking ? */ } else if (m_state == CTL_STATE_OUTPUT) { if (DEBUG_5110) logerror("Status read while outputting buffer (buffer=%2d)\n", m_CTL_buffer); return (m_CTL_buffer); } else // we're reading with the bus in input mode! just return the last thing written to the bus { if (DEBUG_5110) logerror("Status read (not in output mode), returning %02x\n", m_CTL_pins); return (m_CTL_pins); } } READ8_MEMBER( m58817_device::status_r ) { /* bring up to date first */ m_stream->update(); return (m_talk_status << 0); /*CTL1 = still talking ? */ } /****************************************************************************** tms5110_romclk_hack_r -- read status of romclk ******************************************************************************/ void tms5110_device::device_timer(emu_timer &timer, device_timer_id id, int param, void *ptr) { m_romclk_hack_state = !m_romclk_hack_state; } READ8_MEMBER( tms5110_device::romclk_hack_r ) { /* bring up to date first */ m_stream->update(); /* create and start timer if necessary */ if (!m_romclk_hack_timer_started) { m_romclk_hack_timer_started = TRUE; m_romclk_hack_timer->adjust(attotime::from_hz(clock() / 40), 0, attotime::from_hz(clock() / 40)); } return m_romclk_hack_state; } /****************************************************************************** tms5110_ready_r -- return the not ready status from the sound chip ******************************************************************************/ int tms5110_device::ready_r() { /* bring up to date first */ m_stream->update(); return (m_fifo_count < FIFO_SIZE-1); } /****************************************************************************** tms5110_update -- update the sound chip so that it is in sync with CPU execution ******************************************************************************/ //------------------------------------------------- // sound_stream_update - handle a stream update //------------------------------------------------- void tms5110_device::sound_stream_update(sound_stream &stream, stream_sample_t **inputs, stream_sample_t **outputs, int samples) { INT16 sample_data[MAX_SAMPLE_CHUNK]; stream_sample_t *buffer = outputs[0]; /* loop while we still have samples to generate */ while (samples) { int length = (samples > MAX_SAMPLE_CHUNK) ? MAX_SAMPLE_CHUNK : samples; int index; /* generate the samples and copy to the target buffer */ process(sample_data, length); for (index = 0; index < length; index++) *buffer++ = sample_data[index]; /* account for the samples */ samples -= length; } } /****************************************************************************** tms5110_set_frequency -- adjusts the playback frequency TODO: kill this function; we should be adjusting the tms51xx device clock itself, not setting it here! ******************************************************************************/ void tms5110_device::set_frequency(int frequency) { m_stream->set_sample_rate(frequency / 80); } /* from here on in this file is a VSM 'Emulator' circuit used by bagman and ad2083 */ /* * * General Interface design (Bagman) * * +------------------------------------------------------------------------+ * | | * +-------------+ | +-------------+ +-------------+ +-------------+ | * | TMS5100 | | | Counters | | Rom(s) | | Decoder | | * | ADD8 |<--+ | LS393s | | | | | | * | | | | | | | Out |--+ * | M0 |---+ | Address |======>| Address | | IN1 | * | | | | | | Data |======>| ... | * M | | +---------->| Clk | | | | IN8 | * A-->| CTL1 | | | | | | | * P-->| CTL2 | +--->| Reset | | | | | * P-->| CTL3 | | | | | | | A B C | * E-->| CTL4 | | +-------------+ +-------------+ +-------------+ * D-->| PDC | | ^ ^ ^ * | | +-------------------------------------------------+ | | | * | | | Bit Select * | ROMCLK |---+ +-------------+ +-------------+ | * | | | | Counter | | PROM | | * +-------------+ | | LS393 | | D1 | M --+ Reset Bit * | | Q0 |------>| A0 | A * +---------->| Clk Q1 |------>| A1 | P ==> CTL1 ... CTL4 * | Q2 |------>| A2 | P --> PDC * | Reset Q3 |------>| A3 | E --+ Stop Bit * | | +-->| A4 D8 | D | * +-------------+ | +-------------+ | * | | * | +---+ | * | | |<-----------------+ * +---| & | * | |<-------- Enable * +---+ * */ /****************************************************************************** device_start( tmsprom ) -- allocate buffers initialize ******************************************************************************/ void tmsprom_device::register_for_save_states() { save_item(NAME(m_address)); save_item(NAME(m_base_address)); save_item(NAME(m_bit)); save_item(NAME(m_enable)); save_item(NAME(m_prom_cnt)); save_item(NAME(m_m0)); } void tmsprom_device::update_prom_cnt() { UINT8 prev_val = m_prom[m_prom_cnt] | 0x0200; if (m_enable && (prev_val & (1<> m_pdc_bit) & 0x01); } //------------------------------------------------- // device_start - device-specific startup //------------------------------------------------- void tmsprom_device::device_start() { /* resolve lines */ m_pdc_cb.resolve_safe(); m_ctl_cb.resolve_safe(); m_rom = region()->base(); assert_always(m_rom != NULL, "Error creating TMSPROM chip: No rom region found"); m_prom = owner()->memregion(m_prom_region)->base(); assert_always(m_prom != NULL, "Error creating TMSPROM chip: No prom region found"); m_romclk_timer = timer_alloc(0); m_romclk_timer->adjust(attotime::zero, 0, attotime::from_hz(clock())); m_bit = 0; m_base_address = 0; m_address = 0; m_enable = 0; m_m0 = 0; m_prom_cnt = 0; register_for_save_states(); } WRITE_LINE_MEMBER( tmsprom_device::m0_w ) { /* falling edge counts */ if (m_m0 && !state) { m_address += 1; m_address &= (m_rom_size-1); } m_m0 = state; } READ_LINE_MEMBER( tmsprom_device::data_r ) { return (m_rom[m_base_address + m_address] >> m_bit) & 0x01; } WRITE8_MEMBER( tmsprom_device::rom_csq_w ) { if (!data) m_base_address = offset * m_rom_size; } WRITE8_MEMBER( tmsprom_device::bit_w ) { m_bit = data; } WRITE_LINE_MEMBER( tmsprom_device::enable_w ) { if (state != m_enable) { m_enable = state; update_prom_cnt(); /* the following is needed for ad2084. * It is difficult to derive the actual connections from * pcb pictures but the reset pin of the LS393 driving * the prom address line is connected somewhere. * * This does not affect bagman. It just simulates that a * write to ads3 is always happening when the four lower * counter bits are 0! */ if (state) m_prom_cnt &= 0x10; } } /*------------------------------------------------- TMS 5110 device definition -------------------------------------------------*/ const device_type TMS5110 = &device_creator; tms5110_device::tms5110_device(const machine_config &mconfig, const char *tag, device_t *owner, UINT32 clock) : device_t(mconfig, TMS5110, "TMS5110", tag, owner, clock, "tms5110", __FILE__), device_sound_interface(mconfig, *this), m_m0_cb(*this), m_m1_cb(*this), m_addr_cb(*this), m_data_cb(*this), m_romclk_cb(*this) { } tms5110_device::tms5110_device(const machine_config &mconfig, device_type type, const char *name, const char *tag, device_t *owner, UINT32 clock, const char *shortname, const char *source) : device_t(mconfig, type, name, tag, owner, clock, shortname, source), device_sound_interface(mconfig, *this), m_m0_cb(*this), m_m1_cb(*this), m_addr_cb(*this), m_data_cb(*this), m_romclk_cb(*this) { } const device_type TMS5100 = &device_creator; tms5100_device::tms5100_device(const machine_config &mconfig, const char *tag, device_t *owner, UINT32 clock) : tms5110_device(mconfig, TMS5100, "TMS5100", tag, owner, clock, "tms5100", __FILE__) { } const device_type TMC0281 = &device_creator; tmc0281_device::tmc0281_device(const machine_config &mconfig, const char *tag, device_t *owner, UINT32 clock) : tms5110_device(mconfig, TMC0281, "TMC0281", tag, owner, clock, "tmc0281", __FILE__) { } const device_type TMS5100A = &device_creator; tms5100a_device::tms5100a_device(const machine_config &mconfig, const char *tag, device_t *owner, UINT32 clock) : tms5110_device(mconfig, TMS5100A, "TMS5100A", tag, owner, clock, "tms5100a", __FILE__) { } const device_type TMC0281D = &device_creator; tmc0281d_device::tmc0281d_device(const machine_config &mconfig, const char *tag, device_t *owner, UINT32 clock) : tms5110_device(mconfig, TMC0281D, "TMC0281D", tag, owner, clock, "tmc0281d", __FILE__) { } const device_type CD2801 = &device_creator; cd2801_device::cd2801_device(const machine_config &mconfig, const char *tag, device_t *owner, UINT32 clock) : tms5110_device(mconfig, CD2801, "CD2801", tag, owner, clock, "cd2801", __FILE__) { } const device_type CD2802 = &device_creator; cd2802_device::cd2802_device(const machine_config &mconfig, const char *tag, device_t *owner, UINT32 clock) : tms5110_device(mconfig, CD2802, "CD2802", tag, owner, clock, "cd2802", __FILE__) { } const device_type TMS5110A = &device_creator; tms5110a_device::tms5110a_device(const machine_config &mconfig, const char *tag, device_t *owner, UINT32 clock) : tms5110_device(mconfig, TMS5110A, "TMS5110A", tag, owner, clock, "tms5110a", __FILE__) { } const device_type M58817 = &device_creator; m58817_device::m58817_device(const machine_config &mconfig, const char *tag, device_t *owner, UINT32 clock) : tms5110_device(mconfig, M58817, "M58817", tag, owner, clock, "m58817", __FILE__) { } const device_type TMSPROM = &device_creator; tmsprom_device::tmsprom_device(const machine_config &mconfig, const char *tag, device_t *owner, UINT32 clock) : device_t(mconfig, TMSPROM, "TMSPROM", tag, owner, clock, "tmsprom", __FILE__), m_prom_region(""), m_rom_size(0), m_pdc_bit(0), m_ctl1_bit(0), m_ctl2_bit(0), m_ctl4_bit(0), m_ctl8_bit(0), m_reset_bit(0), m_stop_bit(0), m_pdc_cb(*this), m_ctl_cb(*this) { }