// license:BSD-3-Clause // copyright-holders:Ville Linde /* Ricoh RF5C400 emulator Written by Ville Linde Improvements by the hoot development team history - 2007-02-08 hoot development team looping stereo panning 8-bit sample support 2007-02-16 hoot development team envelope fixed volume table */ #include "emu.h" #include "rf5c400.h" static int volume_table[256]; static double pan_table[0x64]; /* envelope parameter (experimental) */ #define ENV_AR_SPEED 0.1 #define ENV_MIN_AR 0x02 #define ENV_MAX_AR 0x80 #define ENV_DR_SPEED 2.0 #define ENV_MIN_DR 0x20 #define ENV_MAX_DR 0x73 #define ENV_RR_SPEED 0.7 #define ENV_MIN_RR 0x20 #define ENV_MAX_RR 0x54 /* PCM type */ enum { TYPE_MASK = 0x00C0, TYPE_16 = 0x0000, TYPE_8LOW = 0x0040, TYPE_8HIGH = 0x0080, }; /* envelope phase */ enum { PHASE_NONE = 0, PHASE_ATTACK, PHASE_DECAY, PHASE_RELEASE, }; // device type definition const device_type RF5C400 = &device_creator; //************************************************************************** // LIVE DEVICE //************************************************************************** //------------------------------------------------- // rf5c400_device - constructor //------------------------------------------------- rf5c400_device::rf5c400_device(const machine_config &mconfig, const char *tag, device_t *owner, UINT32 clock) : device_t(mconfig, RF5C400, "RF5C400", tag, owner, clock, "rf5c400", __FILE__), device_sound_interface(mconfig, *this), m_rom(*this, DEVICE_SELF), m_stream(NULL) { memset(m_env_ar_table, 0, sizeof(double)*0x9f); memset(m_env_dr_table, 0, sizeof(double)*0x9f); memset(m_env_rr_table, 0, sizeof(double)*0x9f); } //------------------------------------------------- // device_start - device-specific startup //------------------------------------------------- void rf5c400_device::device_start() { rf5c400_init_chip(); } //------------------------------------------------- // sound_stream_update - handle a stream update //------------------------------------------------- void rf5c400_device::sound_stream_update(sound_stream &stream, stream_sample_t **inputs, stream_sample_t **outputs, int samples) { int i, ch; INT16 *rom = m_rom; UINT32 end, loop; UINT64 pos; UINT8 vol, lvol, rvol, type; UINT8 env_phase; double env_level, env_step, env_rstep; memset(outputs[0], 0, samples * sizeof(*outputs[0])); memset(outputs[1], 0, samples * sizeof(*outputs[1])); for (ch=0; ch < 32; ch++) { rf5c400_channel *channel = &m_channels[ch]; stream_sample_t *buf0 = outputs[0]; stream_sample_t *buf1 = outputs[1]; // start = ((channel->startH & 0xFF00) << 8) | channel->startL; end = ((channel->endHloopH & 0xFF) << 16) | channel->endL; loop = ((channel->endHloopH & 0xFF00) << 8) | channel->loopL; pos = channel->pos; vol = channel->volume & 0xFF; lvol = channel->pan & 0xFF; rvol = channel->pan >> 8; type = (channel->volume >> 8) & TYPE_MASK; env_phase = channel->env_phase; env_level = channel->env_level; env_step = channel->env_step; env_rstep = env_step * channel->env_scale; for (i=0; i < samples; i++) { INT16 tmp; INT32 sample; if (env_phase == PHASE_NONE) break; tmp = rom[(pos>>16) & m_rommask]; switch ( type ) { case TYPE_16: sample = tmp; break; case TYPE_8LOW: sample = (INT16)(tmp << 8); break; case TYPE_8HIGH: sample = (INT16)(tmp & 0xFF00); break; default: sample = 0; break; } if ( sample & 0x8000 ) { sample ^= 0x7FFF; } env_level += env_rstep; switch (env_phase) { case PHASE_ATTACK: if (env_level >= 1.0) { env_phase = PHASE_DECAY; env_level = 1.0; if (channel->decay & 0x0080) { env_step = 0.0; } else { env_step = m_env_dr_table[decode80(channel->decay >> 8)]; } env_rstep = env_step * channel->env_scale; } break; case PHASE_DECAY: if (env_level <= 0.0) { env_phase = PHASE_NONE; env_level = 0.0; env_step = 0.0; env_rstep = 0.0; } break; case PHASE_RELEASE: if (env_level <= 0.0) { env_phase = PHASE_NONE; env_level = 0.0; env_step = 0.0; env_rstep = 0.0; } break; } sample *= volume_table[vol]; sample = (sample >> 9) * env_level; *buf0++ += sample * pan_table[lvol]; *buf1++ += sample * pan_table[rvol]; pos += channel->step; if ( (pos>>16) > m_rom.length() || (pos>>16) > end) { pos -= loop<<16; pos &= U64(0xFFFFFF0000); } } channel->pos = pos; channel->env_phase = env_phase; channel->env_level = env_level; channel->env_step = env_step; } } /*****************************************************************************/ UINT8 rf5c400_device::decode80(UINT8 val) { if (val & 0x80) { val = (val & 0x7f) + 0x1f; } return val; } void rf5c400_device::rf5c400_init_chip() { int i; // init volume table { double max=255.0; for (i = 0; i < 256; i++) { volume_table[i]=(UINT16)max; max /= pow(10.0,(double)((4.5/(256.0/16.0))/20)); } for(i = 0; i < 0x48; i++) { pan_table[i] = sqrt( (double)(0x47 - i) ) / sqrt( (double)0x47 ); } for(i = 0x48; i < 0x64; i++) { pan_table[i] = 0.0; } } // init envelope table { double r; // attack r = 1.0 / (ENV_AR_SPEED * (clock() / 384)); for (i = 0; i < ENV_MIN_AR; i++) { m_env_ar_table[i] = 1.0; } for (i = ENV_MIN_AR; i < ENV_MAX_AR; i++) { m_env_ar_table[i] = r * (ENV_MAX_AR - i) / (ENV_MAX_AR - ENV_MIN_AR); } for (i = ENV_MAX_AR; i < 0x9f; i++) { m_env_ar_table[i] = 0.0; } // decay r = -5.0 / (ENV_DR_SPEED * (clock() / 384)); for (i = 0; i < ENV_MIN_DR; i++) { m_env_dr_table[i] = r; } for (i = ENV_MIN_DR; i < ENV_MAX_DR; i++) { m_env_dr_table[i] = r * (ENV_MAX_DR - i) / (ENV_MAX_DR - ENV_MIN_DR); } for (i = ENV_MAX_DR; i < 0x9f; i++) { m_env_dr_table[i] = 0.0; } // release r = -5.0 / (ENV_RR_SPEED * (clock() / 384)); for (i = 0; i < ENV_MIN_RR; i++) { m_env_rr_table[i] = r; } for (i = ENV_MIN_RR; i < ENV_MAX_RR; i++) { m_env_rr_table[i] = r * (ENV_MAX_RR - i) / (ENV_MAX_RR - ENV_MIN_RR); } for (i = ENV_MAX_RR; i < 0x9f; i++) { m_env_rr_table[i] = 0.0; } } // init channel info for (i = 0; i < 32; i++) { m_channels[i].env_phase = PHASE_NONE; m_channels[i].env_level = 0.0; m_channels[i].env_step = 0.0; m_channels[i].env_scale = 1.0; } for (i = 0; i < ARRAY_LENGTH(m_channels); i++) { save_item(NAME(m_channels[i].startH), i); save_item(NAME(m_channels[i].startL), i); save_item(NAME(m_channels[i].freq), i); save_item(NAME(m_channels[i].endL), i); save_item(NAME(m_channels[i].endHloopH), i); save_item(NAME(m_channels[i].loopL), i); save_item(NAME(m_channels[i].pan), i); save_item(NAME(m_channels[i].effect), i); save_item(NAME(m_channels[i].volume), i); save_item(NAME(m_channels[i].attack), i); save_item(NAME(m_channels[i].decay), i); save_item(NAME(m_channels[i].release), i); save_item(NAME(m_channels[i].cutoff), i); save_item(NAME(m_channels[i].pos), i); save_item(NAME(m_channels[i].step), i); save_item(NAME(m_channels[i].keyon), i); save_item(NAME(m_channels[i].env_phase), i); save_item(NAME(m_channels[i].env_level), i); save_item(NAME(m_channels[i].env_step), i); save_item(NAME(m_channels[i].env_scale), i); } m_stream = stream_alloc(0, 2, clock()/384); m_rommask = m_rom.length() - 1; } /*****************************************************************************/ static UINT16 rf5c400_status = 0; READ16_MEMBER( rf5c400_device::rf5c400_r ) { switch(offset) { case 0x00: { return rf5c400_status; } case 0x04: { return 0; } } return 0; } WRITE16_MEMBER( rf5c400_device::rf5c400_w ) { if (offset < 0x400) { switch(offset) { case 0x00: { rf5c400_status = data; break; } case 0x01: // channel control { int ch = data & 0x1f; switch ( data & 0x60 ) { case 0x60: m_channels[ch].pos = ((m_channels[ch].startH & 0xFF00) << 8) | m_channels[ch].startL; m_channels[ch].pos <<= 16; m_channels[ch].env_phase = PHASE_ATTACK; m_channels[ch].env_level = 0.0; m_channels[ch].env_step = m_env_ar_table[decode80(m_channels[ch].attack >> 8)]; break; case 0x40: if (m_channels[ch].env_phase != PHASE_NONE) { m_channels[ch].env_phase = PHASE_RELEASE; if (m_channels[ch].release & 0x0080) { m_channels[ch].env_step = 0.0; } else { m_channels[ch].env_step = m_env_rr_table[decode80(m_channels[ch].release >> 8)]; } } break; default: m_channels[ch].env_phase = PHASE_NONE; m_channels[ch].env_level = 0.0; m_channels[ch].env_step = 0.0; break; } break; } case 0x08: // relative to env attack (channel no) case 0x09: // relative to env attack (0x0c00/ 0x1c00) case 0x21: // reverb(character).w case 0x32: // reverb(pre-lpf).w case 0x2B: // reverb(level).w case 0x20: // ???.b : reverb(time).b case 0x2C: // chorus(level).w case 0x30: // chorus(rate).w case 0x22: // chorus(macro).w case 0x23: // chorus(depth).w case 0x24: // chorus(macro).w case 0x2F: // chorus(depth).w case 0x27: // chorus(send level to reverb).w default: { //osd_printf_debug("%s:rf5c400_w: %08X, %08X, %08X\n", machine().describe_context(), data, offset, mem_mask); break; } } //osd_printf_debug("%s:rf5c400_w: %08X, %08X, %08X at %08X\n", machine().describe_context(), data, offset, mem_mask); } else { // channel registers int ch = (offset >> 5) & 0x1f; int reg = (offset & 0x1f); rf5c400_channel *channel = &m_channels[ch]; switch (reg) { case 0x00: // sample start address, bits 23 - 16 { channel->startH = data; break; } case 0x01: // sample start address, bits 15 - 0 { channel->startL = data; break; } case 0x02: // sample playing frequency { channel->step = ((data & 0x1fff) << (data >> 13)) * 4; channel->freq = data; break; } case 0x03: // sample end address, bits 15 - 0 { channel->endL = data; break; } case 0x04: // sample end address, bits 23 - 16 , sample loop 23 - 16 { channel->endHloopH = data; break; } case 0x05: // sample loop offset, bits 15 - 0 { channel->loopL = data; break; } case 0x06: // channel volume { channel->pan = data; break; } case 0x07: // effect depth { // 0xCCRR: CC = chorus send depth, RR = reverb send depth channel->effect = data; break; } case 0x08: // volume, flag { channel->volume = data; break; } case 0x09: // env attack { // 0x0100: max speed (in case of attack <= 0x40) // 0xXX40: XX = attack-0x3f (encoded) (in case of attack > 0x40) // channel->attack = data; break; } case 0x0A: // relative to env attack ? { // always 0x0100 break; } case 0x0B: // relative to env decay ? { // always 0x0100 break; } case 0x0C: // env decay { // 0xXX70: XX = decay (encoded) (in case of decay > 0x71) // 0xXX80: XX = decay (encoded) (in case of decay <= 0x71) channel->decay = data; break; } case 0x0D: // relative to env release ? { // always 0x0100 break; } case 0x0E: // env release { // 0xXX70: XX = release-0x1f (encoded) (0x01 if release <= 0x20) channel->release = data; break; } case 0x10: // resonance, cutoff freq. { // bit 15-12: resonance // bit 11-0 : cutoff frequency channel->cutoff = data; break; } } } }