// license:BSD-3-Clause // copyright-holders:Aaron Giles, Vas Crabb /*************************************************************************** rendlay.c Core rendering layout parser and manager. ***************************************************************************/ #include "emu.h" #include "emuopts.h" #include "render.h" #include "rendfont.h" #include "rendlay.h" #include "rendutil.h" #include "vecstream.h" #include "xmlfile.h" #include #include #include #include #include #include #include #include #include #include #include #include #include /*************************************************************************** STANDARD LAYOUTS ***************************************************************************/ // screenless layouts #include "noscreens.lh" // dual screen layouts #include "dualhsxs.lh" #include "dualhovu.lh" #include "dualhuov.lh" // triple screen layouts #include "triphsxs.lh" // quad screen layouts #include "quadhsxs.lh" namespace { //************************************************************************** // CONSTANTS //************************************************************************** constexpr int LAYOUT_VERSION = 2; enum { LINE_CAP_NONE = 0, LINE_CAP_START = 1, LINE_CAP_END = 2 }; std::locale const f_portable_locale("C"); constexpr layout_group::transform identity_transform{{ {{ 1.0F, 0.0F, 0.0F }}, {{ 0.0F, 1.0F, 0.0F }}, {{ 0.0F, 0.0F, 1.0F }} }}; //************************************************************************** // INLINE HELPERS //************************************************************************** inline void render_bounds_transform(render_bounds &bounds, layout_group::transform const &trans) { bounds = render_bounds{ (bounds.x0 * trans[0][0]) + (bounds.y0 * trans[0][1]) + trans[0][2], (bounds.x0 * trans[1][0]) + (bounds.y0 * trans[1][1]) + trans[1][2], (bounds.x1 * trans[0][0]) + (bounds.y1 * trans[0][1]) + trans[0][2], (bounds.x1 * trans[1][0]) + (bounds.y1 * trans[1][1]) + trans[1][2] }; } constexpr render_color render_color_multiply(render_color const &x, render_color const &y) { return render_color{ x.a * y.a, x.r * y.r, x.g * y.g, x.b * y.b }; } //************************************************************************** // ERROR CLASSES //************************************************************************** class layout_syntax_error : public std::invalid_argument { using std::invalid_argument::invalid_argument; }; class layout_reference_error : public std::out_of_range { using std::out_of_range::out_of_range; }; } // anonymous namespace namespace emu { namespace render { namespace detail { class layout_environment { private: class entry { public: entry(std::string &&name, std::string &&t) : m_name(std::move(name)) , m_text(std::move(t)) , m_text_valid(true) { } entry(std::string &&name, s64 i) : m_name(std::move(name)) , m_int(i) , m_int_valid(true) { } entry(std::string &&name, double f) : m_name(std::move(name)) , m_float(f) , m_float_valid(true) { } entry(std::string &&name, std::string &&t, s64 i, int s) : m_name(std::move(name)) , m_text(std::move(t)) , m_int_increment(i) , m_shift(s) , m_text_valid(true) , m_generator(true) { } entry(std::string &&name, std::string &&t, double i, int s) : m_name(std::move(name)) , m_text(std::move(t)) , m_float_increment(i) , m_shift(s) , m_text_valid(true) , m_generator(true) { } entry(entry &&) = default; entry &operator=(entry &&) = default; void set(std::string &&t) { m_text = std::move(t); m_text_valid = true; m_int_valid = false; m_float_valid = false; } void set(s64 i) { m_int = i; m_text_valid = false; m_int_valid = true; m_float_valid = false; } void set(double f) { m_float = f; m_text_valid = false; m_int_valid = false; m_float_valid = true; } std::string const &name() const { return m_name; } bool is_generator() const { return m_generator; } std::string const &get_text() { if (!m_text_valid) { if (m_float_valid) { m_text = std::to_string(m_float); m_text_valid = true; } else if (m_int_valid) { m_text = std::to_string(m_int); m_text_valid = true; } } return m_text; } void increment() { if (is_generator()) { // apply increment if (m_float_increment) { if (m_int_valid && !m_float_valid) { m_float = m_int; m_float_valid = true; } if (m_text_valid && !m_float_valid) { std::istringstream stream(m_text); stream.imbue(f_portable_locale); if (m_text[0] == '$') { stream.get(); u64 uvalue; stream >> std::hex >> uvalue; m_float = uvalue; } else if ((m_text[0] == '0') && ((m_text[1] == 'x') || (m_text[1] == 'X'))) { stream.get(); stream.get(); u64 uvalue; stream >> std::hex >> uvalue; m_float = uvalue; } else if (m_text[0] == '#') { stream.get(); stream >> m_int; m_float = m_int; } else { stream >> m_float; } m_float_valid = bool(stream); } m_float += m_float_increment; m_int_valid = m_text_valid = false; } else { if (m_text_valid && !m_int_valid && !m_float_valid) { std::istringstream stream(m_text); stream.imbue(f_portable_locale); if (m_text[0] == '$') { stream.get(); u64 uvalue; stream >> std::hex >> uvalue; m_int = s64(uvalue); m_int_valid = bool(stream); } else if ((m_text[0] == '0') && ((m_text[1] == 'x') || (m_text[1] == 'X'))) { stream.get(); stream.get(); u64 uvalue; stream >> std::hex >> uvalue; m_int = s64(uvalue); m_int_valid = bool(stream); } else if (m_text[0] == '#') { stream.get(); stream >> m_int; m_int_valid = bool(stream); } else if (m_text.find_first_of(".eE") != std::string::npos) { stream >> m_float; m_float_valid = bool(stream); } else { stream >> m_int; m_int_valid = bool(stream); } } if (m_float_valid) { m_float += m_int_increment; m_int_valid = m_text_valid = false; } else { m_int += m_int_increment; m_float_valid = m_text_valid = false; } } // apply shift if (m_shift) { if (m_float_valid && !m_int_valid) { m_int = s64(m_float); m_int_valid = true; } if (m_text_valid && !m_int_valid) { std::istringstream stream(m_text); stream.imbue(f_portable_locale); if (m_text[0] == '$') { stream.get(); u64 uvalue; stream >> std::hex >> uvalue; m_int = s64(uvalue); } else if ((m_text[0] == '0') && ((m_text[1] == 'x') || (m_text[1] == 'X'))) { stream.get(); stream.get(); u64 uvalue; stream >> std::hex >> uvalue; m_int = s64(uvalue); } else { if (m_text[0] == '#') stream.get(); stream >> m_int; } m_int_valid = bool(stream); } if (0 > m_shift) m_int >>= -m_shift; else m_int <<= m_shift; m_text_valid = m_float_valid = false; } } } static bool name_less(entry const &lhs, entry const &rhs) { return lhs.name() < rhs.name(); } private: std::string m_name; std::string m_text; s64 m_int = 0, m_int_increment = 0; double m_float = 0.0, m_float_increment = 0.0; int m_shift = 0; bool m_text_valid = false; bool m_int_valid = false; bool m_float_valid = false; bool m_generator = false; }; using entry_vector = std::vector; template void try_insert(T &&name, U &&value) { entry_vector::iterator const pos( std::lower_bound( m_entries.begin(), m_entries.end(), name, [] (entry const &lhs, auto const &rhs) { return lhs.name() < rhs; })); if ((m_entries.end() == pos) || (pos->name() != name)) m_entries.emplace(pos, std::forward(name), std::forward(value)); } template void set(T &&name, U &&value) { entry_vector::iterator const pos( std::lower_bound( m_entries.begin(), m_entries.end(), name, [] (entry const &lhs, auto const &rhs) { return lhs.name() < rhs; })); if ((m_entries.end() == pos) || (pos->name() != name)) m_entries.emplace(pos, std::forward(name), std::forward(value)); else pos->set(std::forward(value)); } void cache_device_entries() { if (!m_next && !m_cached) { try_insert("devicetag", device().tag()); try_insert("devicebasetag", device().basetag()); try_insert("devicename", device().name()); try_insert("deviceshortname", device().shortname()); util::ovectorstream tmp; unsigned i(0U); for (screen_device const &screen : screen_device_iterator(machine().root_device())) { std::pair const physaspect(screen.physical_aspect()); s64 const w(screen.visible_area().width()), h(screen.visible_area().height()); s64 xaspect(w), yaspect(h); util::reduce_fraction(xaspect, yaspect); tmp.seekp(0); util::stream_format(tmp, "scr%uphysicalxaspect", i); tmp.put('\0'); try_insert(&tmp.vec()[0], s64(physaspect.first)); tmp.seekp(0); util::stream_format(tmp, "scr%uphysicalyaspect", i); tmp.put('\0'); try_insert(&tmp.vec()[0], s64(physaspect.second)); tmp.seekp(0); util::stream_format(tmp, "scr%unativexaspect", i); tmp.put('\0'); try_insert(&tmp.vec()[0], xaspect); tmp.seekp(0); util::stream_format(tmp, "scr%unativeyaspect", i); tmp.put('\0'); try_insert(&tmp.vec()[0], yaspect); tmp.seekp(0); util::stream_format(tmp, "scr%uwidth", i); tmp.put('\0'); try_insert(&tmp.vec()[0], w); tmp.seekp(0); util::stream_format(tmp, "scr%uheight", i); tmp.put('\0'); try_insert(&tmp.vec()[0], h); ++i; } m_cached = true; } } entry *find_entry(char const *begin, char const *end) { cache_device_entries(); entry_vector::iterator const pos( std::lower_bound( m_entries.begin(), m_entries.end(), std::make_pair(begin, end - begin), [] (entry const &lhs, std::pair const &rhs) { return 0 > std::strncmp(lhs.name().c_str(), rhs.first, rhs.second); })); if ((m_entries.end() != pos) && (pos->name().length() == (end - begin)) && !std::strncmp(pos->name().c_str(), begin, end - begin)) return &*pos; else return m_next ? m_next->find_entry(begin, end) : nullptr; } template std::tuple get_variable_text(T &&... args) { entry *const found(find_entry(std::forward(args)...)); if (found) { std::string const &text(found->get_text()); char const *const begin(text.c_str()); return std::make_tuple(begin, begin + text.length(), true); } else { return std::make_tuple(nullptr, nullptr, false); } } std::pair expand(char const *begin, char const *end) { // search for candidate variable references char const *start(begin); char const *pos(std::find_if(start, end, is_variable_start)); while (pos != end) { char const *const term(std::find_if(pos + 1, end, [] (char ch) { return !is_variable_char(ch); })); if ((term == end) || !is_variable_end(*term)) { // not a valid variable name - keep searching pos = std::find_if(term, end, is_variable_start); } else { // looks like a variable reference - try to look it up std::tuple const text(get_variable_text(pos + 1, term)); if (std::get<2>(text)) { // variable found if (begin == start) m_buffer.seekp(0); m_buffer.write(start, pos - start); m_buffer.write(std::get<0>(text), std::get<1>(text) - std::get<0>(text)); start = term + 1; pos = std::find_if(start, end, is_variable_start); } else { // variable not found - move on pos = std::find_if(pos + 1, end, is_variable_start); } } } // short-circuit the case where no substitutions were made if (start == begin) { return std::make_pair(begin, end); } else { m_buffer.write(start, pos - start); m_buffer.put('\0'); std::vector const &vec(m_buffer.vec()); if (vec.empty()) return std::make_pair(nullptr, nullptr); else return std::make_pair(&vec[0], &vec[0] + vec.size() - 1); } } std::pair expand(char const *str) { return expand(str, str + strlen(str)); } std::string parameter_name(util::xml::data_node const &node) { char const *const attrib(node.get_attribute_string("name", nullptr)); if (!attrib) throw layout_syntax_error("parameter lacks name attribute"); std::pair const expanded(expand(attrib)); return std::string(expanded.first, expanded.second); } static constexpr bool is_variable_start(char ch) { return '~' == ch; } static constexpr bool is_variable_end(char ch) { return '~' == ch; } static constexpr bool is_variable_char(char ch) { return (('0' <= ch) && ('9' >= ch)) || (('A' <= ch) && ('Z' >= ch)) || (('a' <= ch) && ('z' >= ch)) || ('_' == ch); } entry_vector m_entries; util::ovectorstream m_buffer; device_t &m_device; layout_environment *const m_next = nullptr; bool m_cached = false; public: explicit layout_environment(device_t &device) : m_device(device) { } explicit layout_environment(layout_environment &next) : m_device(next.m_device), m_next(&next) { } layout_environment(layout_environment const &) = delete; device_t &device() { return m_device; } running_machine &machine() { return device().machine(); } bool is_root_device() { return &device() == &machine().root_device(); } void set_parameter(std::string &&name, std::string &&value) { set(std::move(name), std::move(value)); } void set_parameter(std::string &&name, s64 value) { set(std::move(name), value); } void set_parameter(std::string &&name, double value) { set(std::move(name), value); } void set_parameter(util::xml::data_node const &node) { // do basic validation std::string name(parameter_name(node)); if (node.has_attribute("start") || node.has_attribute("increment") || node.has_attribute("lshift") || node.has_attribute("rshift")) throw layout_syntax_error("start/increment/lshift/rshift attributes are only allowed for repeat parameters"); char const *const value(node.get_attribute_string("value", nullptr)); if (!value) throw layout_syntax_error("parameter lacks value attribute"); // expand value and stash std::pair const expanded(expand(value)); set(std::move(name), std::string(expanded.first, expanded.second)); } void set_repeat_parameter(util::xml::data_node const &node, bool init) { // two types are allowed here - static value, and start/increment/lshift/rshift std::string name(parameter_name(node)); char const *const start(node.get_attribute_string("start", nullptr)); if (start) { // simple validity checks if (node.has_attribute("value")) throw layout_syntax_error("start attribute may not be used in combination with value attribute"); int const lshift(node.has_attribute("lshift") ? get_attribute_int(node, "lshift", -1) : 0); int const rshift(node.has_attribute("rshift") ? get_attribute_int(node, "rshift", -1) : 0); if ((0 > lshift) || (0 > rshift)) throw layout_syntax_error("lshift/rshift attributes must be non-negative integers"); // increment is more complex - it may be an integer or a floating-point number s64 intincrement(0); double floatincrement(0); char const *const increment(node.get_attribute_string("increment", nullptr)); if (increment) { std::pair const expanded(expand(increment)); unsigned const hexprefix((expanded.first[0] == '$') ? 1U : ((expanded.first[0] == '0') && ((expanded.first[1] == 'x') || (expanded.first[1] == 'X'))) ? 2U : 0U); unsigned const decprefix((expanded.first[0] == '#') ? 1U : 0U); bool const floatchars(std::find_if(expanded.first, expanded.second, [] (char ch) { return ('.' == ch) || ('e' == ch) || ('E' == ch); }) != expanded.second); std::istringstream stream(std::string(expanded.first + hexprefix + decprefix, expanded.second)); stream.imbue(f_portable_locale); if (!hexprefix && !decprefix && floatchars) { stream >> floatincrement; } else if (hexprefix) { u64 uvalue; stream >> std::hex >> uvalue; intincrement = s64(uvalue); } else { stream >> intincrement; } // reject obviously bad stuff if (!stream) throw layout_syntax_error("increment attribute must be a number"); } // don't allow generator parameters to be redefined if (init) { entry_vector::iterator const pos( std::lower_bound( m_entries.begin(), m_entries.end(), name, [] (entry const &lhs, auto const &rhs) { return lhs.name() < rhs; })); if ((m_entries.end() != pos) && (pos->name() == name)) throw layout_syntax_error("generator parameters must be defined exactly once per scope"); std::pair const expanded(expand(start)); if (floatincrement) m_entries.emplace(pos, std::move(name), std::string(expanded.first, expanded.second), floatincrement, lshift - rshift); else m_entries.emplace(pos, std::move(name), std::string(expanded.first, expanded.second), intincrement, lshift - rshift); } } else if (node.has_attribute("increment") || node.has_attribute("lshift") || node.has_attribute("rshift")) { throw layout_syntax_error("increment/lshift/rshift attributes require start attribute"); } else { char const *const value(node.get_attribute_string("value", nullptr)); if (!value) throw layout_syntax_error("parameter lacks value attribute"); std::pair const expanded(expand(value)); entry_vector::iterator const pos( std::lower_bound( m_entries.begin(), m_entries.end(), name, [] (entry const &lhs, auto const &rhs) { return lhs.name() < rhs; })); if ((m_entries.end() == pos) || (pos->name() != name)) m_entries.emplace(pos, std::move(name), std::string(expanded.first, expanded.second)); else if (pos->is_generator()) throw layout_syntax_error("generator parameters must be defined exactly once per scope"); else pos->set(std::string(expanded.first, expanded.second)); } } void increment_parameters() { m_entries.erase( std::remove_if( m_entries.begin(), m_entries.end(), [] (entry &e) { if (!e.is_generator()) return true; e.increment(); return false; }), m_entries.end()); } char const *get_attribute_string(util::xml::data_node const &node, char const *name, char const *defvalue) { char const *const attrib(node.get_attribute_string(name, nullptr)); return attrib ? expand(attrib).first : defvalue; } int get_attribute_int(util::xml::data_node const &node, const char *name, int defvalue) { char const *const attrib(node.get_attribute_string(name, nullptr)); if (!attrib) return defvalue; // similar to what XML nodes do std::pair const expanded(expand(attrib)); std::istringstream stream; stream.imbue(f_portable_locale); int result; if (expanded.first[0] == '$') { stream.str(std::string(expanded.first + 1, expanded.second)); unsigned uvalue; stream >> std::hex >> uvalue; result = int(uvalue); } else if ((expanded.first[0] == '0') && ((expanded.first[1] == 'x') || (expanded.first[1] == 'X'))) { stream.str(std::string(expanded.first + 2, expanded.second)); unsigned uvalue; stream >> std::hex >> uvalue; result = int(uvalue); } else if (expanded.first[0] == '#') { stream.str(std::string(expanded.first + 1, expanded.second)); stream >> result; } else { stream.str(std::string(expanded.first, expanded.second)); stream >> result; } return stream ? result : defvalue; } float get_attribute_float(util::xml::data_node const &node, char const *name, float defvalue) { char const *const attrib(node.get_attribute_string(name, nullptr)); if (!attrib) return defvalue; // similar to what XML nodes do std::pair const expanded(expand(attrib)); std::istringstream stream(std::string(expanded.first, expanded.second)); stream.imbue(f_portable_locale); float result; return (stream >> result) ? result : defvalue; } void parse_bounds(util::xml::data_node const *node, render_bounds &result) { // default to unit rectangle if (!node) { result.x0 = result.y0 = 0.0F; result.x1 = result.y1 = 1.0F; } else { // parse attributes if (node->has_attribute("left")) { // left/right/top/bottom format result.x0 = get_attribute_float(*node, "left", 0.0F); result.x1 = get_attribute_float(*node, "right", 1.0F); result.y0 = get_attribute_float(*node, "top", 0.0F); result.y1 = get_attribute_float(*node, "bottom", 1.0F); } else if (node->has_attribute("x")) { // x/y/width/height format result.x0 = get_attribute_float(*node, "x", 0.0F); result.x1 = result.x0 + get_attribute_float(*node, "width", 1.0F); result.y0 = get_attribute_float(*node, "y", 0.0F); result.y1 = result.y0 + get_attribute_float(*node, "height", 1.0F); } else { throw layout_syntax_error("bounds element requires either left or x attribute"); } // check for errors if ((result.x0 > result.x1) || (result.y0 > result.y1)) throw layout_syntax_error(util::string_format("illegal bounds (%f-%f)-(%f-%f)", result.x0, result.x1, result.y0, result.y1)); } } render_color parse_color(util::xml::data_node const *node) { // default to opaque white if (!node) return render_color{ 1.0F, 1.0F, 1.0F, 1.0F }; // parse attributes render_color const result{ get_attribute_float(*node, "alpha", 1.0F), get_attribute_float(*node, "red", 1.0F), get_attribute_float(*node, "green", 1.0F), get_attribute_float(*node, "blue", 1.0F) }; // check for errors if ((0.0F > (std::min)({ result.r, result.g, result.b, result.a })) || (1.0F < (std::max)({ result.r, result.g, result.b, result.a }))) throw layout_syntax_error(util::string_format("illegal RGBA color %f,%f,%f,%f", result.r, result.g, result.b, result.a)); return result; } int parse_orientation(util::xml::data_node const *node) { // default to no transform if (!node) return ROT0; // parse attributes int result; int const rotate(get_attribute_int(*node, "rotate", 0)); switch (rotate) { case 0: result = ROT0; break; case 90: result = ROT90; break; case 180: result = ROT180; break; case 270: result = ROT270; break; default: throw layout_syntax_error(util::string_format("invalid rotate attribute %d", rotate)); } if (!std::strcmp("yes", get_attribute_string(*node, "swapxy", "no"))) result ^= ORIENTATION_SWAP_XY; if (!std::strcmp("yes", get_attribute_string(*node, "flipx", "no"))) result ^= ORIENTATION_FLIP_X; if (!std::strcmp("yes", get_attribute_string(*node, "flipy", "no"))) result ^= ORIENTATION_FLIP_Y; return result; } }; } } } // namespace emu::render::detail //************************************************************************** // GLOBAL VARIABLES //************************************************************************** render_screen_list render_target::s_empty_screen_list; //************************************************************************** // LAYOUT ELEMENT //************************************************************************** layout_element::make_component_map const layout_element::s_make_component{ { "image", &make_component }, { "text", &make_component }, { "dotmatrix", &make_dotmatrix_component<8> }, { "dotmatrix5dot", &make_dotmatrix_component<5> }, { "dotmatrixdot", &make_dotmatrix_component<1> }, { "simplecounter", &make_component }, { "reel", &make_component }, { "led7seg", &make_component }, { "led8seg_gts1", &make_component }, { "led14seg", &make_component }, { "led14segsc", &make_component }, { "led16seg", &make_component }, { "led16segsc", &make_component }, { "rect", &make_component }, { "disk", &make_component } }; //------------------------------------------------- // layout_element - constructor //------------------------------------------------- layout_element::layout_element(environment &env, util::xml::data_node const &elemnode, const char *dirname) : m_machine(env.machine()) , m_defstate(0) , m_maxstate(0) { // get the default state m_defstate = env.get_attribute_int(elemnode, "defstate", -1); // parse components in order bool first = true; render_bounds bounds = { 0.0, 0.0, 0.0, 0.0 }; for (util::xml::data_node const *compnode = elemnode.get_first_child(); compnode; compnode = compnode->get_next_sibling()) { make_component_map::const_iterator const make_func(s_make_component.find(compnode->get_name())); if (make_func == s_make_component.end()) throw layout_syntax_error(util::string_format("unknown element component %s", compnode->get_name())); // insert the new component into the list component const &newcomp(**m_complist.emplace(m_complist.end(), make_func->second(env, *compnode, dirname))); // accumulate bounds if (first) bounds = newcomp.bounds(); else union_render_bounds(bounds, newcomp.bounds()); first = false; // determine the maximum state m_maxstate = std::max(m_maxstate, newcomp.maxstate()); } if (!m_complist.empty()) { // determine the scale/offset for normalization float xoffs = bounds.x0; float yoffs = bounds.y0; float xscale = 1.0f / (bounds.x1 - bounds.x0); float yscale = 1.0f / (bounds.y1 - bounds.y0); // normalize all the component bounds for (component::ptr const &curcomp : m_complist) curcomp->normalize_bounds(xoffs, yoffs, xscale, yscale); } // allocate an array of element textures for the states m_elemtex.resize(m_maxstate + 1); } //------------------------------------------------- // ~layout_element - destructor //------------------------------------------------- layout_element::~layout_element() { } //************************************************************************** // LAYOUT GROUP //************************************************************************** //------------------------------------------------- // layout_group - constructor //------------------------------------------------- layout_group::layout_group(util::xml::data_node const &groupnode) : m_groupnode(groupnode) , m_bounds{ 0.0f, 0.0f, 0.0f, 0.0f } , m_bounds_resolved(false) { } //------------------------------------------------- // ~layout_group - destructor //------------------------------------------------- layout_group::~layout_group() { } //------------------------------------------------- // make_transform - create abbreviated transform // matrix for given destination bounds //------------------------------------------------- layout_group::transform layout_group::make_transform(int orientation, render_bounds const &dest) const { assert(m_bounds_resolved); // make orientation matrix transform result{{ {{ 1.0F, 0.0F, 0.0F }}, {{ 0.0F, 1.0F, 0.0F }}, {{ 0.0F, 0.0F, 1.0F }} }}; if (orientation & ORIENTATION_SWAP_XY) { std::swap(result[0][0], result[0][1]); std::swap(result[1][0], result[1][1]); } if (orientation & ORIENTATION_FLIP_X) { result[0][0] = -result[0][0]; result[0][1] = -result[0][1]; } if (orientation & ORIENTATION_FLIP_Y) { result[1][0] = -result[1][0]; result[1][1] = -result[1][1]; } // apply to bounds and force into destination rectangle render_bounds bounds(m_bounds); render_bounds_transform(bounds, result); result[0][0] *= (dest.x1 - dest.x0) / std::fabs(bounds.x1 - bounds.x0); result[0][1] *= (dest.x1 - dest.x0) / std::fabs(bounds.x1 - bounds.x0); result[0][2] = dest.x0 - ((std::min)(bounds.x0, bounds.x1) * (dest.x1 - dest.x0) / std::fabs(bounds.x1 - bounds.x0)); result[1][0] *= (dest.y1 - dest.y0) / std::fabs(bounds.y1 - bounds.y0); result[1][1] *= (dest.y1 - dest.y0) / std::fabs(bounds.y1 - bounds.y0); result[1][2] = dest.y0 - ((std::min)(bounds.y0, bounds.y1) * (dest.y1 - dest.y0) / std::fabs(bounds.y1 - bounds.y0)); return result; } layout_group::transform layout_group::make_transform(int orientation, transform const &trans) const { assert(m_bounds_resolved); render_bounds const dest{ m_bounds.x0, m_bounds.y0, (orientation & ORIENTATION_SWAP_XY) ? (m_bounds.x0 + m_bounds.y1 - m_bounds.y0) : m_bounds.x1, (orientation & ORIENTATION_SWAP_XY) ? (m_bounds.y0 + m_bounds.x1 - m_bounds.x0) : m_bounds.y1 }; return make_transform(orientation, dest, trans); } layout_group::transform layout_group::make_transform(int orientation, render_bounds const &dest, transform const &trans) const { transform const next(make_transform(orientation, dest)); transform result{{ {{ 0.0F, 0.0F, 0.0F }}, {{ 0.0F, 0.0F, 0.0F }}, {{ 0.0F, 0.0F, 0.0F }} }}; for (unsigned y = 0; 3U > y; ++y) { for (unsigned x = 0; 3U > x; ++x) { for (unsigned i = 0; 3U > i; ++i) result[y][x] += trans[y][i] * next[i][x]; } } return result; } //------------------------------------------------- // resolve_bounds - calculate bounds taking // nested groups into consideration //------------------------------------------------- void layout_group::set_bounds_unresolved() { m_bounds_resolved = false; } void layout_group::resolve_bounds(environment &env, group_map &groupmap) { if (!m_bounds_resolved) { std::vector seen; resolve_bounds(env, groupmap, seen); } } void layout_group::resolve_bounds(environment &env, group_map &groupmap, std::vector &seen) { if (seen.end() != std::find(seen.begin(), seen.end(), this)) { // a wild loop appears! std::ostringstream path; for (layout_group const *const group : seen) path << ' ' << group->m_groupnode.get_attribute_string("name", nullptr); path << ' ' << m_groupnode.get_attribute_string("name", nullptr); throw layout_syntax_error(util::string_format("recursively nested groups %s", path.str())); } seen.push_back(this); if (!m_bounds_resolved) { set_render_bounds_xy(m_bounds, 0.0F, 0.0F, 1.0F, 1.0F); environment local(env); resolve_bounds(local, m_groupnode, groupmap, seen, true, false, true); } seen.pop_back(); } void layout_group::resolve_bounds( environment &env, util::xml::data_node const &parentnode, group_map &groupmap, std::vector &seen, bool empty, bool repeat, bool init) { bool envaltered(false); bool unresolved(true); for (util::xml::data_node const *itemnode = parentnode.get_first_child(); !m_bounds_resolved && itemnode; itemnode = itemnode->get_next_sibling()) { if (!strcmp(itemnode->get_name(), "bounds")) { // use explicit bounds env.parse_bounds(itemnode, m_bounds); m_bounds_resolved = true; } else if (!strcmp(itemnode->get_name(), "param")) { envaltered = true; if (!unresolved) { unresolved = true; for (group_map::value_type &group : groupmap) group.second.set_bounds_unresolved(); } if (!repeat) env.set_parameter(*itemnode); else env.set_repeat_parameter(*itemnode, init); } else if (!strcmp(itemnode->get_name(), "element") || !strcmp(itemnode->get_name(), "backdrop") || !strcmp(itemnode->get_name(), "screen") || !strcmp(itemnode->get_name(), "overlay") || !strcmp(itemnode->get_name(), "bezel") || !strcmp(itemnode->get_name(), "cpanel") || !strcmp(itemnode->get_name(), "marquee")) { render_bounds itembounds; env.parse_bounds(itemnode->get_child("bounds"), itembounds); if (empty) m_bounds = itembounds; else union_render_bounds(m_bounds, itembounds); empty = false; } else if (!strcmp(itemnode->get_name(), "group")) { util::xml::data_node const *const itemboundsnode(itemnode->get_child("bounds")); if (itemboundsnode) { render_bounds itembounds; env.parse_bounds(itemboundsnode, itembounds); if (empty) m_bounds = itembounds; else union_render_bounds(m_bounds, itembounds); empty = false; } else { char const *ref(env.get_attribute_string(*itemnode, "ref", nullptr)); if (!ref) throw layout_syntax_error("nested group must have ref attribute"); group_map::iterator const found(groupmap.find(ref)); if (groupmap.end() == found) throw layout_syntax_error(util::string_format("unable to find group %s", ref)); int const orientation(env.parse_orientation(itemnode->get_child("orientation"))); environment local(env); found->second.resolve_bounds(local, groupmap, seen); render_bounds const itembounds{ found->second.m_bounds.x0, found->second.m_bounds.y0, (orientation & ORIENTATION_SWAP_XY) ? (found->second.m_bounds.x0 + found->second.m_bounds.y1 - found->second.m_bounds.y0) : found->second.m_bounds.x1, (orientation & ORIENTATION_SWAP_XY) ? (found->second.m_bounds.y0 + found->second.m_bounds.x1 - found->second.m_bounds.x0) : found->second.m_bounds.y1 }; if (empty) m_bounds = itembounds; else union_render_bounds(m_bounds, itembounds); empty = false; } } else if (!strcmp(itemnode->get_name(), "repeat")) { int const count(env.get_attribute_int(*itemnode, "count", -1)); if (0 >= count) throw layout_syntax_error("repeat must have positive integer count attribute"); environment local(env); for (int i = 0; !m_bounds_resolved && (count > i); ++i) { resolve_bounds(local, *itemnode, groupmap, seen, empty, true, !i); local.increment_parameters(); } } else { throw layout_syntax_error(util::string_format("unknown group element %s", itemnode->get_name())); } } if (envaltered && !unresolved) { bool const resolved(m_bounds_resolved); for (group_map::value_type &group : groupmap) group.second.set_bounds_unresolved(); m_bounds_resolved = resolved; } if (!repeat) m_bounds_resolved = true; } //------------------------------------------------- // state_texture - return a pointer to a // render_texture for the given state, allocating // one if needed //------------------------------------------------- render_texture *layout_element::state_texture(int state) { assert(state <= m_maxstate); if (m_elemtex[state].m_texture == nullptr) { m_elemtex[state].m_element = this; m_elemtex[state].m_state = state; m_elemtex[state].m_texture = machine().render().texture_alloc(element_scale, &m_elemtex[state]); } return m_elemtex[state].m_texture; } //------------------------------------------------- // element_scale - scale an element by rendering // all the components at the appropriate // resolution //------------------------------------------------- void layout_element::element_scale(bitmap_argb32 &dest, bitmap_argb32 &source, const rectangle &sbounds, void *param) { texture *elemtex = (texture *)param; // iterate over components that are part of the current state for (auto &curcomp : elemtex->m_element->m_complist) if (curcomp->state() == -1 || curcomp->state() == elemtex->m_state) { // get the local scaled bounds rectangle bounds( render_round_nearest(curcomp->bounds().x0 * dest.width()), render_round_nearest(curcomp->bounds().x1 * dest.width()), render_round_nearest(curcomp->bounds().y0 * dest.height()), render_round_nearest(curcomp->bounds().y1 * dest.height())); bounds &= dest.cliprect(); // based on the component type, add to the texture curcomp->draw(elemtex->m_element->machine(), dest, bounds, elemtex->m_state); } } // image class layout_element::image_component : public component { public: // construction/destruction image_component(environment &env, util::xml::data_node const &compnode, const char *dirname) : component(env, compnode, dirname) , m_hasalpha(false) { if (dirname != nullptr) m_dirname = dirname; m_imagefile = env.get_attribute_string(compnode, "file", ""); m_alphafile = env.get_attribute_string(compnode, "alphafile", ""); m_file = std::make_unique(env.machine().options().art_path(), OPEN_FLAG_READ); } protected: // overrides virtual void draw(running_machine &machine, bitmap_argb32 &dest, const rectangle &bounds, int state) override { if (!m_bitmap.valid()) load_bitmap(); bitmap_argb32 destsub(dest, bounds); render_resample_argb_bitmap_hq(destsub, m_bitmap, color()); } private: // internal helpers void load_bitmap() { assert(m_file != nullptr); ru_imgformat const format = render_detect_image(*m_file, m_dirname.c_str(), m_imagefile.c_str()); switch (format) { case RENDUTIL_IMGFORMAT_ERROR: break; case RENDUTIL_IMGFORMAT_PNG: // load the basic bitmap m_hasalpha = render_load_png(m_bitmap, *m_file, m_dirname.c_str(), m_imagefile.c_str()); break; default: // try JPG render_load_jpeg(m_bitmap, *m_file, m_dirname.c_str(), m_imagefile.c_str()); break; } // load the alpha bitmap if specified if (m_bitmap.valid() && !m_alphafile.empty()) render_load_png(m_bitmap, *m_file, m_dirname.c_str(), m_alphafile.c_str(), true); // if we can't load the bitmap, allocate a dummy one and report an error if (!m_bitmap.valid()) { // draw some stripes in the bitmap m_bitmap.allocate(100, 100); m_bitmap.fill(0); for (int step = 0; step < 100; step += 25) for (int line = 0; line < 100; line++) m_bitmap.pix32((step + line) % 100, line % 100) = rgb_t(0xff,0xff,0xff,0xff); // log an error if (m_alphafile.empty()) osd_printf_warning("Unable to load component bitmap '%s'\n", m_imagefile); else osd_printf_warning("Unable to load component bitmap '%s'/'%s'\n", m_imagefile, m_alphafile); } } // internal state bitmap_argb32 m_bitmap; // source bitmap for images std::string m_dirname; // directory name of image file (for lazy loading) std::unique_ptr m_file; // file object for reading image/alpha files std::string m_imagefile; // name of the image file (for lazy loading) std::string m_alphafile; // name of the alpha file (for lazy loading) bool m_hasalpha; // is there any alpha component present? }; // rectangle class layout_element::rect_component : public component { public: // construction/destruction rect_component(environment &env, util::xml::data_node const &compnode, const char *dirname) : component(env, compnode, dirname) { } protected: // overrides virtual void draw(running_machine &machine, bitmap_argb32 &dest, const rectangle &bounds, int state) override { // compute premultiplied colors u32 const r = color().r * color().a * 255.0f; u32 const g = color().g * color().a * 255.0f; u32 const b = color().b * color().a * 255.0f; u32 const inva = (1.0f - color().a) * 255.0f; // iterate over X and Y for (u32 y = bounds.top(); y <= bounds.bottom(); y++) { for (u32 x = bounds.left(); x <= bounds.right(); x++) { u32 finalr = r; u32 finalg = g; u32 finalb = b; // if we're translucent, add in the destination pixel contribution if (inva > 0) { rgb_t dpix = dest.pix32(y, x); finalr += (dpix.r() * inva) >> 8; finalg += (dpix.g() * inva) >> 8; finalb += (dpix.b() * inva) >> 8; } // store the target pixel, dividing the RGBA values by the overall scale factor dest.pix32(y, x) = rgb_t(finalr, finalg, finalb); } } } }; // ellipse class layout_element::disk_component : public component { public: // construction/destruction disk_component(environment &env, util::xml::data_node const &compnode, const char *dirname) : component(env, compnode, dirname) { } protected: // overrides virtual void draw(running_machine &machine, bitmap_argb32 &dest, const rectangle &bounds, int state) override { // compute premultiplied colors u32 const r = color().r * color().a * 255.0f; u32 const g = color().g * color().a * 255.0f; u32 const b = color().b * color().a * 255.0f; u32 const inva = (1.0f - color().a) * 255.0f; // find the center float const xcenter = float(bounds.xcenter()); float const ycenter = float(bounds.ycenter()); float const xradius = float(bounds.width()) * 0.5f; float const yradius = float(bounds.height()) * 0.5f; float const ooyradius2 = 1.0f / (yradius * yradius); // iterate over y for (u32 y = bounds.top(); y <= bounds.bottom(); y++) { float ycoord = ycenter - ((float)y + 0.5f); float xval = xradius * sqrtf(1.0f - (ycoord * ycoord) * ooyradius2); // compute left/right coordinates s32 left = s32(xcenter - xval + 0.5f); s32 right = s32(xcenter + xval + 0.5f); // draw this scanline for (u32 x = left; x < right; x++) { u32 finalr = r; u32 finalg = g; u32 finalb = b; // if we're translucent, add in the destination pixel contribution if (inva > 0) { rgb_t dpix = dest.pix32(y, x); finalr += (dpix.r() * inva) >> 8; finalg += (dpix.g() * inva) >> 8; finalb += (dpix.b() * inva) >> 8; } // store the target pixel, dividing the RGBA values by the overall scale factor dest.pix32(y, x) = rgb_t(finalr, finalg, finalb); } } } }; // text string class layout_element::text_component : public component { public: // construction/destruction text_component(environment &env, util::xml::data_node const &compnode, const char *dirname) : component(env, compnode, dirname) { m_string = env.get_attribute_string(compnode, "string", ""); m_textalign = env.get_attribute_int(compnode, "align", 0); } protected: // overrides virtual void draw(running_machine &machine, bitmap_argb32 &dest, const rectangle &bounds, int state) override { render_font *font = machine.render().font_alloc("default"); draw_text(*font, dest, bounds, m_string.c_str(), m_textalign); machine.render().font_free(font); } private: // internal state std::string m_string; // string for text components int m_textalign; // text alignment to box }; // 7-segment LCD class layout_element::led7seg_component : public component { public: // construction/destruction led7seg_component(environment &env, util::xml::data_node const &compnode, const char *dirname) : component(env, compnode, dirname) { } protected: // overrides virtual int maxstate() const override { return 255; } virtual void draw(running_machine &machine, bitmap_argb32 &dest, const rectangle &bounds, int state) override { const rgb_t onpen = rgb_t(0xff,0xff,0xff,0xff); const rgb_t offpen = rgb_t(0x20,0xff,0xff,0xff); // sizes for computation int bmwidth = 250; int bmheight = 400; int segwidth = 40; int skewwidth = 40; // allocate a temporary bitmap for drawing bitmap_argb32 tempbitmap(bmwidth + skewwidth, bmheight); tempbitmap.fill(rgb_t(0x00,0x00,0x00,0x00)); // top bar draw_segment_horizontal(tempbitmap, 0 + 2*segwidth/3, bmwidth - 2*segwidth/3, 0 + segwidth/2, segwidth, BIT(state, 0) ? onpen : offpen); // top-right bar draw_segment_vertical(tempbitmap, 0 + 2*segwidth/3, bmheight/2 - segwidth/3, bmwidth - segwidth/2, segwidth, BIT(state, 1) ? onpen : offpen); // bottom-right bar draw_segment_vertical(tempbitmap, bmheight/2 + segwidth/3, bmheight - 2*segwidth/3, bmwidth - segwidth/2, segwidth, BIT(state, 2) ? onpen : offpen); // bottom bar draw_segment_horizontal(tempbitmap, 0 + 2*segwidth/3, bmwidth - 2*segwidth/3, bmheight - segwidth/2, segwidth, BIT(state, 3) ? onpen : offpen); // bottom-left bar draw_segment_vertical(tempbitmap, bmheight/2 + segwidth/3, bmheight - 2*segwidth/3, 0 + segwidth/2, segwidth, BIT(state, 4) ? onpen : offpen); // top-left bar draw_segment_vertical(tempbitmap, 0 + 2*segwidth/3, bmheight/2 - segwidth/3, 0 + segwidth/2, segwidth, BIT(state, 5) ? onpen : offpen); // middle bar draw_segment_horizontal(tempbitmap, 0 + 2*segwidth/3, bmwidth - 2*segwidth/3, bmheight/2, segwidth, BIT(state, 6) ? onpen : offpen); // apply skew apply_skew(tempbitmap, 40); // decimal point draw_segment_decimal(tempbitmap, bmwidth + segwidth/2, bmheight - segwidth/2, segwidth, BIT(state, 7) ? onpen : offpen); // resample to the target size render_resample_argb_bitmap_hq(dest, tempbitmap, color()); } }; // 8-segment fluorescent (Gottlieb System 1) class layout_element::led8seg_gts1_component : public component { public: // construction/destruction led8seg_gts1_component(environment &env, util::xml::data_node const &compnode, const char *dirname) : component(env, compnode, dirname) { } protected: // overrides virtual int maxstate() const override { return 255; } virtual void draw(running_machine &machine, bitmap_argb32 &dest, const rectangle &bounds, int state) override { const rgb_t onpen = rgb_t(0xff,0xff,0xff,0xff); const rgb_t offpen = rgb_t(0x20,0xff,0xff,0xff); const rgb_t backpen = rgb_t(0x00,0x00,0x00,0x00); // sizes for computation int bmwidth = 250; int bmheight = 400; int segwidth = 40; int skewwidth = 40; // allocate a temporary bitmap for drawing bitmap_argb32 tempbitmap(bmwidth + skewwidth, bmheight); tempbitmap.fill(backpen); // top bar draw_segment_horizontal(tempbitmap, 0 + 2*segwidth/3, bmwidth - 2*segwidth/3, 0 + segwidth/2, segwidth, (state & (1 << 0)) ? onpen : offpen); // top-right bar draw_segment_vertical(tempbitmap, 0 + 2*segwidth/3, bmheight/2 - segwidth/3, bmwidth - segwidth/2, segwidth, (state & (1 << 1)) ? onpen : offpen); // bottom-right bar draw_segment_vertical(tempbitmap, bmheight/2 + segwidth/3, bmheight - 2*segwidth/3, bmwidth - segwidth/2, segwidth, (state & (1 << 2)) ? onpen : offpen); // bottom bar draw_segment_horizontal(tempbitmap, 0 + 2*segwidth/3, bmwidth - 2*segwidth/3, bmheight - segwidth/2, segwidth, (state & (1 << 3)) ? onpen : offpen); // bottom-left bar draw_segment_vertical(tempbitmap, bmheight/2 + segwidth/3, bmheight - 2*segwidth/3, 0 + segwidth/2, segwidth, (state & (1 << 4)) ? onpen : offpen); // top-left bar draw_segment_vertical(tempbitmap, 0 + 2*segwidth/3, bmheight/2 - segwidth/3, 0 + segwidth/2, segwidth, (state & (1 << 5)) ? onpen : offpen); // horizontal bars draw_segment_horizontal(tempbitmap, 0 + 2*segwidth/3, 2*bmwidth/3 - 2*segwidth/3, bmheight/2, segwidth, (state & (1 << 6)) ? onpen : offpen); draw_segment_horizontal(tempbitmap, 0 + 2*segwidth/3 + bmwidth/2, bmwidth - 2*segwidth/3, bmheight/2, segwidth, (state & (1 << 6)) ? onpen : offpen); // vertical bars draw_segment_vertical(tempbitmap, 0 + segwidth/3 - 8, bmheight/2 - segwidth/3 + 2, 2*bmwidth/3 - segwidth/2 - 4, segwidth + 8, backpen); draw_segment_vertical(tempbitmap, 0 + segwidth/3, bmheight/2 - segwidth/3, 2*bmwidth/3 - segwidth/2 - 4, segwidth, (state & (1 << 7)) ? onpen : offpen); draw_segment_vertical(tempbitmap, bmheight/2 + segwidth/3 - 2, bmheight - segwidth/3 + 8, 2*bmwidth/3 - segwidth/2 - 4, segwidth + 8, backpen); draw_segment_vertical(tempbitmap, bmheight/2 + segwidth/3, bmheight - segwidth/3, 2*bmwidth/3 - segwidth/2 - 4, segwidth, (state & (1 << 7)) ? onpen : offpen); // apply skew apply_skew(tempbitmap, 40); // resample to the target size render_resample_argb_bitmap_hq(dest, tempbitmap, color()); } }; // 14-segment LCD class layout_element::led14seg_component : public component { public: // construction/destruction led14seg_component(environment &env, util::xml::data_node const &compnode, const char *dirname) : component(env, compnode, dirname) { } protected: // overrides virtual int maxstate() const override { return 16383; } virtual void draw(running_machine &machine, bitmap_argb32 &dest, const rectangle &bounds, int state) override { const rgb_t onpen = rgb_t(0xff, 0xff, 0xff, 0xff); const rgb_t offpen = rgb_t(0x20, 0xff, 0xff, 0xff); // sizes for computation int bmwidth = 250; int bmheight = 400; int segwidth = 40; int skewwidth = 40; // allocate a temporary bitmap for drawing bitmap_argb32 tempbitmap(bmwidth + skewwidth, bmheight); tempbitmap.fill(rgb_t(0x00, 0x00, 0x00, 0x00)); // top bar draw_segment_horizontal(tempbitmap, 0 + 2*segwidth/3, bmwidth - 2*segwidth/3, 0 + segwidth/2, segwidth, (state & (1 << 0)) ? onpen : offpen); // right-top bar draw_segment_vertical(tempbitmap, 0 + 2*segwidth/3, bmheight/2 - segwidth/3, bmwidth - segwidth/2, segwidth, (state & (1 << 1)) ? onpen : offpen); // right-bottom bar draw_segment_vertical(tempbitmap, bmheight/2 + segwidth/3, bmheight - 2*segwidth/3, bmwidth - segwidth/2, segwidth, (state & (1 << 2)) ? onpen : offpen); // bottom bar draw_segment_horizontal(tempbitmap, 0 + 2*segwidth/3, bmwidth - 2*segwidth/3, bmheight - segwidth/2, segwidth, (state & (1 << 3)) ? onpen : offpen); // left-bottom bar draw_segment_vertical(tempbitmap, bmheight/2 + segwidth/3, bmheight - 2*segwidth/3, 0 + segwidth/2, segwidth, (state & (1 << 4)) ? onpen : offpen); // left-top bar draw_segment_vertical(tempbitmap, 0 + 2*segwidth/3, bmheight/2 - segwidth/3, 0 + segwidth/2, segwidth, (state & (1 << 5)) ? onpen : offpen); // horizontal-middle-left bar draw_segment_horizontal_caps(tempbitmap, 0 + 2*segwidth/3, bmwidth/2 - segwidth/10, bmheight/2, segwidth, LINE_CAP_START, (state & (1 << 6)) ? onpen : offpen); // horizontal-middle-right bar draw_segment_horizontal_caps(tempbitmap, 0 + bmwidth/2 + segwidth/10, bmwidth - 2*segwidth/3, bmheight/2, segwidth, LINE_CAP_END, (state & (1 << 7)) ? onpen : offpen); // vertical-middle-top bar draw_segment_vertical_caps(tempbitmap, 0 + segwidth + segwidth/3, bmheight/2 - segwidth/2 - segwidth/3, bmwidth/2, segwidth, LINE_CAP_NONE, (state & (1 << 8)) ? onpen : offpen); // vertical-middle-bottom bar draw_segment_vertical_caps(tempbitmap, bmheight/2 + segwidth/2 + segwidth/3, bmheight - segwidth - segwidth/3, bmwidth/2, segwidth, LINE_CAP_NONE, (state & (1 << 9)) ? onpen : offpen); // diagonal-left-bottom bar draw_segment_diagonal_1(tempbitmap, 0 + segwidth + segwidth/5, bmwidth/2 - segwidth/2 - segwidth/5, bmheight/2 + segwidth/2 + segwidth/3, bmheight - segwidth - segwidth/3, segwidth, (state & (1 << 10)) ? onpen : offpen); // diagonal-left-top bar draw_segment_diagonal_2(tempbitmap, 0 + segwidth + segwidth/5, bmwidth/2 - segwidth/2 - segwidth/5, 0 + segwidth + segwidth/3, bmheight/2 - segwidth/2 - segwidth/3, segwidth, (state & (1 << 11)) ? onpen : offpen); // diagonal-right-top bar draw_segment_diagonal_1(tempbitmap, bmwidth/2 + segwidth/2 + segwidth/5, bmwidth - segwidth - segwidth/5, 0 + segwidth + segwidth/3, bmheight/2 - segwidth/2 - segwidth/3, segwidth, (state & (1 << 12)) ? onpen : offpen); // diagonal-right-bottom bar draw_segment_diagonal_2(tempbitmap, bmwidth/2 + segwidth/2 + segwidth/5, bmwidth - segwidth - segwidth/5, bmheight/2 + segwidth/2 + segwidth/3, bmheight - segwidth - segwidth/3, segwidth, (state & (1 << 13)) ? onpen : offpen); // apply skew apply_skew(tempbitmap, 40); // resample to the target size render_resample_argb_bitmap_hq(dest, tempbitmap, color()); } }; // 16-segment LCD class layout_element::led16seg_component : public component { public: // construction/destruction led16seg_component(environment &env, util::xml::data_node const &compnode, const char *dirname) : component(env, compnode, dirname) { } protected: // overrides virtual int maxstate() const override { return 65535; } virtual void draw(running_machine &machine, bitmap_argb32 &dest, const rectangle &bounds, int state) override { const rgb_t onpen = rgb_t(0xff, 0xff, 0xff, 0xff); const rgb_t offpen = rgb_t(0x20, 0xff, 0xff, 0xff); // sizes for computation int bmwidth = 250; int bmheight = 400; int segwidth = 40; int skewwidth = 40; // allocate a temporary bitmap for drawing bitmap_argb32 tempbitmap(bmwidth + skewwidth, bmheight); tempbitmap.fill(rgb_t(0x00, 0x00, 0x00, 0x00)); // top-left bar draw_segment_horizontal_caps(tempbitmap, 0 + 2*segwidth/3, bmwidth/2 - segwidth/10, 0 + segwidth/2, segwidth, LINE_CAP_START, (state & (1 << 0)) ? onpen : offpen); // top-right bar draw_segment_horizontal_caps(tempbitmap, 0 + bmwidth/2 + segwidth/10, bmwidth - 2*segwidth/3, 0 + segwidth/2, segwidth, LINE_CAP_END, (state & (1 << 1)) ? onpen : offpen); // right-top bar draw_segment_vertical(tempbitmap, 0 + 2*segwidth/3, bmheight/2 - segwidth/3, bmwidth - segwidth/2, segwidth, (state & (1 << 2)) ? onpen : offpen); // right-bottom bar draw_segment_vertical(tempbitmap, bmheight/2 + segwidth/3, bmheight - 2*segwidth/3, bmwidth - segwidth/2, segwidth, (state & (1 << 3)) ? onpen : offpen); // bottom-right bar draw_segment_horizontal_caps(tempbitmap, 0 + bmwidth/2 + segwidth/10, bmwidth - 2*segwidth/3, bmheight - segwidth/2, segwidth, LINE_CAP_END, (state & (1 << 4)) ? onpen : offpen); // bottom-left bar draw_segment_horizontal_caps(tempbitmap, 0 + 2*segwidth/3, bmwidth/2 - segwidth/10, bmheight - segwidth/2, segwidth, LINE_CAP_START, (state & (1 << 5)) ? onpen : offpen); // left-bottom bar draw_segment_vertical(tempbitmap, bmheight/2 + segwidth/3, bmheight - 2*segwidth/3, 0 + segwidth/2, segwidth, (state & (1 << 6)) ? onpen : offpen); // left-top bar draw_segment_vertical(tempbitmap, 0 + 2*segwidth/3, bmheight/2 - segwidth/3, 0 + segwidth/2, segwidth, (state & (1 << 7)) ? onpen : offpen); // horizontal-middle-left bar draw_segment_horizontal_caps(tempbitmap, 0 + 2*segwidth/3, bmwidth/2 - segwidth/10, bmheight/2, segwidth, LINE_CAP_START, (state & (1 << 8)) ? onpen : offpen); // horizontal-middle-right bar draw_segment_horizontal_caps(tempbitmap, 0 + bmwidth/2 + segwidth/10, bmwidth - 2*segwidth/3, bmheight/2, segwidth, LINE_CAP_END, (state & (1 << 9)) ? onpen : offpen); // vertical-middle-top bar draw_segment_vertical_caps(tempbitmap, 0 + segwidth + segwidth/3, bmheight/2 - segwidth/2 - segwidth/3, bmwidth/2, segwidth, LINE_CAP_NONE, (state & (1 << 10)) ? onpen : offpen); // vertical-middle-bottom bar draw_segment_vertical_caps(tempbitmap, bmheight/2 + segwidth/2 + segwidth/3, bmheight - segwidth - segwidth/3, bmwidth/2, segwidth, LINE_CAP_NONE, (state & (1 << 11)) ? onpen : offpen); // diagonal-left-bottom bar draw_segment_diagonal_1(tempbitmap, 0 + segwidth + segwidth/5, bmwidth/2 - segwidth/2 - segwidth/5, bmheight/2 + segwidth/2 + segwidth/3, bmheight - segwidth - segwidth/3, segwidth, (state & (1 << 12)) ? onpen : offpen); // diagonal-left-top bar draw_segment_diagonal_2(tempbitmap, 0 + segwidth + segwidth/5, bmwidth/2 - segwidth/2 - segwidth/5, 0 + segwidth + segwidth/3, bmheight/2 - segwidth/2 - segwidth/3, segwidth, (state & (1 << 13)) ? onpen : offpen); // diagonal-right-top bar draw_segment_diagonal_1(tempbitmap, bmwidth/2 + segwidth/2 + segwidth/5, bmwidth - segwidth - segwidth/5, 0 + segwidth + segwidth/3, bmheight/2 - segwidth/2 - segwidth/3, segwidth, (state & (1 << 14)) ? onpen : offpen); // diagonal-right-bottom bar draw_segment_diagonal_2(tempbitmap, bmwidth/2 + segwidth/2 + segwidth/5, bmwidth - segwidth - segwidth/5, bmheight/2 + segwidth/2 + segwidth/3, bmheight - segwidth - segwidth/3, segwidth, (state & (1 << 15)) ? onpen : offpen); // apply skew apply_skew(tempbitmap, 40); // resample to the target size render_resample_argb_bitmap_hq(dest, tempbitmap, color()); } }; // 14-segment LCD with semicolon (2 extra segments) class layout_element::led14segsc_component : public component { public: // construction/destruction led14segsc_component(environment &env, util::xml::data_node const &compnode, const char *dirname) : component(env, compnode, dirname) { } protected: // overrides virtual int maxstate() const override { return 65535; } virtual void draw(running_machine &machine, bitmap_argb32 &dest, const rectangle &bounds, int state) override { const rgb_t onpen = rgb_t(0xff, 0xff, 0xff, 0xff); const rgb_t offpen = rgb_t(0x20, 0xff, 0xff, 0xff); // sizes for computation int bmwidth = 250; int bmheight = 400; int segwidth = 40; int skewwidth = 40; // allocate a temporary bitmap for drawing, adding some extra space for the tail bitmap_argb32 tempbitmap(bmwidth + skewwidth, bmheight + segwidth); tempbitmap.fill(rgb_t(0x00, 0x00, 0x00, 0x00)); // top bar draw_segment_horizontal(tempbitmap, 0 + 2*segwidth/3, bmwidth - 2*segwidth/3, 0 + segwidth/2, segwidth, (state & (1 << 0)) ? onpen : offpen); // right-top bar draw_segment_vertical(tempbitmap, 0 + 2*segwidth/3, bmheight/2 - segwidth/3, bmwidth - segwidth/2, segwidth, (state & (1 << 1)) ? onpen : offpen); // right-bottom bar draw_segment_vertical(tempbitmap, bmheight/2 + segwidth/3, bmheight - 2*segwidth/3, bmwidth - segwidth/2, segwidth, (state & (1 << 2)) ? onpen : offpen); // bottom bar draw_segment_horizontal(tempbitmap, 0 + 2*segwidth/3, bmwidth - 2*segwidth/3, bmheight - segwidth/2, segwidth, (state & (1 << 3)) ? onpen : offpen); // left-bottom bar draw_segment_vertical(tempbitmap, bmheight/2 + segwidth/3, bmheight - 2*segwidth/3, 0 + segwidth/2, segwidth, (state & (1 << 4)) ? onpen : offpen); // left-top bar draw_segment_vertical(tempbitmap, 0 + 2*segwidth/3, bmheight/2 - segwidth/3, 0 + segwidth/2, segwidth, (state & (1 << 5)) ? onpen : offpen); // horizontal-middle-left bar draw_segment_horizontal_caps(tempbitmap, 0 + 2*segwidth/3, bmwidth/2 - segwidth/10, bmheight/2, segwidth, LINE_CAP_START, (state & (1 << 6)) ? onpen : offpen); // horizontal-middle-right bar draw_segment_horizontal_caps(tempbitmap, 0 + bmwidth/2 + segwidth/10, bmwidth - 2*segwidth/3, bmheight/2, segwidth, LINE_CAP_END, (state & (1 << 7)) ? onpen : offpen); // vertical-middle-top bar draw_segment_vertical_caps(tempbitmap, 0 + segwidth + segwidth/3, bmheight/2 - segwidth/2 - segwidth/3, bmwidth/2, segwidth, LINE_CAP_NONE, (state & (1 << 8)) ? onpen : offpen); // vertical-middle-bottom bar draw_segment_vertical_caps(tempbitmap, bmheight/2 + segwidth/2 + segwidth/3, bmheight - segwidth - segwidth/3, bmwidth/2, segwidth, LINE_CAP_NONE, (state & (1 << 9)) ? onpen : offpen); // diagonal-left-bottom bar draw_segment_diagonal_1(tempbitmap, 0 + segwidth + segwidth/5, bmwidth/2 - segwidth/2 - segwidth/5, bmheight/2 + segwidth/2 + segwidth/3, bmheight - segwidth - segwidth/3, segwidth, (state & (1 << 10)) ? onpen : offpen); // diagonal-left-top bar draw_segment_diagonal_2(tempbitmap, 0 + segwidth + segwidth/5, bmwidth/2 - segwidth/2 - segwidth/5, 0 + segwidth + segwidth/3, bmheight/2 - segwidth/2 - segwidth/3, segwidth, (state & (1 << 11)) ? onpen : offpen); // diagonal-right-top bar draw_segment_diagonal_1(tempbitmap, bmwidth/2 + segwidth/2 + segwidth/5, bmwidth - segwidth - segwidth/5, 0 + segwidth + segwidth/3, bmheight/2 - segwidth/2 - segwidth/3, segwidth, (state & (1 << 12)) ? onpen : offpen); // diagonal-right-bottom bar draw_segment_diagonal_2(tempbitmap, bmwidth/2 + segwidth/2 + segwidth/5, bmwidth - segwidth - segwidth/5, bmheight/2 + segwidth/2 + segwidth/3, bmheight - segwidth - segwidth/3, segwidth, (state & (1 << 13)) ? onpen : offpen); // apply skew apply_skew(tempbitmap, 40); // comma tail draw_segment_diagonal_1(tempbitmap, bmwidth - (segwidth/2), bmwidth + segwidth, bmheight - (segwidth), bmheight + segwidth*1.5, segwidth/2, (state & (1 << 15)) ? onpen : offpen); // decimal point draw_segment_decimal(tempbitmap, bmwidth + segwidth/2, bmheight - segwidth/2, segwidth, (state & (1 << 14)) ? onpen : offpen); // resample to the target size render_resample_argb_bitmap_hq(dest, tempbitmap, color()); } }; // 16-segment LCD with semicolon (2 extra segments) class layout_element::led16segsc_component : public component { public: // construction/destruction led16segsc_component(environment &env, util::xml::data_node const &compnode, const char *dirname) : component(env, compnode, dirname) { } protected: // overrides virtual int maxstate() const override { return 262143; } virtual void draw(running_machine &machine, bitmap_argb32 &dest, const rectangle &bounds, int state) override { const rgb_t onpen = rgb_t(0xff, 0xff, 0xff, 0xff); const rgb_t offpen = rgb_t(0x20, 0xff, 0xff, 0xff); // sizes for computation int bmwidth = 250; int bmheight = 400; int segwidth = 40; int skewwidth = 40; // allocate a temporary bitmap for drawing bitmap_argb32 tempbitmap(bmwidth + skewwidth, bmheight + segwidth); tempbitmap.fill(rgb_t(0x00, 0x00, 0x00, 0x00)); // top-left bar draw_segment_horizontal_caps(tempbitmap, 0 + 2*segwidth/3, bmwidth/2 - segwidth/10, 0 + segwidth/2, segwidth, LINE_CAP_START, (state & (1 << 0)) ? onpen : offpen); // top-right bar draw_segment_horizontal_caps(tempbitmap, 0 + bmwidth/2 + segwidth/10, bmwidth - 2*segwidth/3, 0 + segwidth/2, segwidth, LINE_CAP_END, (state & (1 << 1)) ? onpen : offpen); // right-top bar draw_segment_vertical(tempbitmap, 0 + 2*segwidth/3, bmheight/2 - segwidth/3, bmwidth - segwidth/2, segwidth, (state & (1 << 2)) ? onpen : offpen); // right-bottom bar draw_segment_vertical(tempbitmap, bmheight/2 + segwidth/3, bmheight - 2*segwidth/3, bmwidth - segwidth/2, segwidth, (state & (1 << 3)) ? onpen : offpen); // bottom-right bar draw_segment_horizontal_caps(tempbitmap, 0 + bmwidth/2 + segwidth/10, bmwidth - 2*segwidth/3, bmheight - segwidth/2, segwidth, LINE_CAP_END, (state & (1 << 4)) ? onpen : offpen); // bottom-left bar draw_segment_horizontal_caps(tempbitmap, 0 + 2*segwidth/3, bmwidth/2 - segwidth/10, bmheight - segwidth/2, segwidth, LINE_CAP_START, (state & (1 << 5)) ? onpen : offpen); // left-bottom bar draw_segment_vertical(tempbitmap, bmheight/2 + segwidth/3, bmheight - 2*segwidth/3, 0 + segwidth/2, segwidth, (state & (1 << 6)) ? onpen : offpen); // left-top bar draw_segment_vertical(tempbitmap, 0 + 2*segwidth/3, bmheight/2 - segwidth/3, 0 + segwidth/2, segwidth, (state & (1 << 7)) ? onpen : offpen); // horizontal-middle-left bar draw_segment_horizontal_caps(tempbitmap, 0 + 2*segwidth/3, bmwidth/2 - segwidth/10, bmheight/2, segwidth, LINE_CAP_START, (state & (1 << 8)) ? onpen : offpen); // horizontal-middle-right bar draw_segment_horizontal_caps(tempbitmap, 0 + bmwidth/2 + segwidth/10, bmwidth - 2*segwidth/3, bmheight/2, segwidth, LINE_CAP_END, (state & (1 << 9)) ? onpen : offpen); // vertical-middle-top bar draw_segment_vertical_caps(tempbitmap, 0 + segwidth + segwidth/3, bmheight/2 - segwidth/2 - segwidth/3, bmwidth/2, segwidth, LINE_CAP_NONE, (state & (1 << 10)) ? onpen : offpen); // vertical-middle-bottom bar draw_segment_vertical_caps(tempbitmap, bmheight/2 + segwidth/2 + segwidth/3, bmheight - segwidth - segwidth/3, bmwidth/2, segwidth, LINE_CAP_NONE, (state & (1 << 11)) ? onpen : offpen); // diagonal-left-bottom bar draw_segment_diagonal_1(tempbitmap, 0 + segwidth + segwidth/5, bmwidth/2 - segwidth/2 - segwidth/5, bmheight/2 + segwidth/2 + segwidth/3, bmheight - segwidth - segwidth/3, segwidth, (state & (1 << 12)) ? onpen : offpen); // diagonal-left-top bar draw_segment_diagonal_2(tempbitmap, 0 + segwidth + segwidth/5, bmwidth/2 - segwidth/2 - segwidth/5, 0 + segwidth + segwidth/3, bmheight/2 - segwidth/2 - segwidth/3, segwidth, (state & (1 << 13)) ? onpen : offpen); // diagonal-right-top bar draw_segment_diagonal_1(tempbitmap, bmwidth/2 + segwidth/2 + segwidth/5, bmwidth - segwidth - segwidth/5, 0 + segwidth + segwidth/3, bmheight/2 - segwidth/2 - segwidth/3, segwidth, (state & (1 << 14)) ? onpen : offpen); // diagonal-right-bottom bar draw_segment_diagonal_2(tempbitmap, bmwidth/2 + segwidth/2 + segwidth/5, bmwidth - segwidth - segwidth/5, bmheight/2 + segwidth/2 + segwidth/3, bmheight - segwidth - segwidth/3, segwidth, (state & (1 << 15)) ? onpen : offpen); // comma tail draw_segment_diagonal_1(tempbitmap, bmwidth - (segwidth/2), bmwidth + segwidth, bmheight - (segwidth), bmheight + segwidth*1.5, segwidth/2, (state & (1 << 17)) ? onpen : offpen); // decimal point (draw last for priority) draw_segment_decimal(tempbitmap, bmwidth + segwidth/2, bmheight - segwidth/2, segwidth, (state & (1 << 16)) ? onpen : offpen); // apply skew apply_skew(tempbitmap, 40); // resample to the target size render_resample_argb_bitmap_hq(dest, tempbitmap, color()); } }; // row of dots for a dotmatrix class layout_element::dotmatrix_component : public component { public: // construction/destruction dotmatrix_component(int dots, environment &env, util::xml::data_node const &compnode, const char *dirname) : component(env, compnode, dirname) , m_dots(dots) { } protected: // overrides virtual int maxstate() const override { return (1 << m_dots) - 1; } virtual void draw(running_machine &machine, bitmap_argb32 &dest, const rectangle &bounds, int state) override { const rgb_t onpen = rgb_t(0xff, 0xff, 0xff, 0xff); const rgb_t offpen = rgb_t(0xff, 0x20, 0x20, 0x20); // sizes for computation int bmheight = 300; int dotwidth = 250; // allocate a temporary bitmap for drawing bitmap_argb32 tempbitmap(dotwidth*m_dots, bmheight); tempbitmap.fill(rgb_t(0xff, 0x00, 0x00, 0x00)); for (int i = 0; i < m_dots; i++) draw_segment_decimal(tempbitmap, ((dotwidth / 2) + (i * dotwidth)), bmheight / 2, dotwidth, BIT(state, i) ? onpen : offpen); // resample to the target size render_resample_argb_bitmap_hq(dest, tempbitmap, color()); } private: // internal state int m_dots; }; // simple counter class layout_element::simplecounter_component : public component { public: // construction/destruction simplecounter_component(environment &env, util::xml::data_node const &compnode, const char *dirname) : component(env, compnode, dirname) , m_digits(env.get_attribute_int(compnode, "digits", 2)) , m_textalign(env.get_attribute_int(compnode, "align", 0)) , m_maxstate(env.get_attribute_int(compnode, "maxstate", 999)) { } protected: // overrides virtual int maxstate() const override { return m_maxstate; } virtual void draw(running_machine &machine, bitmap_argb32 &dest, const rectangle &bounds, int state) override { render_font *font = machine.render().font_alloc("default"); std::string temp = string_format("%0*d", m_digits, state); draw_text(*font, dest, bounds, temp.c_str(), m_textalign); machine.render().font_free(font); } private: // internal state int const m_digits; // number of digits for simple counters int const m_textalign; // text alignment to box int const m_maxstate; }; // fruit machine reel class layout_element::reel_component : public component { static constexpr unsigned MAX_BITMAPS = 32; public: // construction/destruction reel_component(environment &env, util::xml::data_node const &compnode, const char *dirname) : component(env, compnode, dirname) { for (auto & elem : m_hasalpha) elem = false; std::string symbollist = env.get_attribute_string(compnode, "symbollist", "0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15"); // split out position names from string and figure out our number of symbols int location; m_numstops = 0; location=symbollist.find(","); while (location!=-1) { m_stopnames[m_numstops] = symbollist; m_stopnames[m_numstops] = m_stopnames[m_numstops].substr(0, location); symbollist = symbollist.substr(location+1, symbollist.length()-(location-1)); m_numstops++; location=symbollist.find(","); } m_stopnames[m_numstops++] = symbollist; // careful, dirname is nullptr if we're coming from internal layout, and our string assignment doesn't like that if (dirname != nullptr) m_dirname = dirname; for (int i=0;i(env.machine().options().art_path(), OPEN_FLAG_READ); } else { //m_imagefile[i] = 0; //m_alphafile[i] = 0; m_file[i].reset(); } } m_stateoffset = env.get_attribute_int(compnode, "stateoffset", 0); m_numsymbolsvisible = env.get_attribute_int(compnode, "numsymbolsvisible", 3); m_reelreversed = env.get_attribute_int(compnode, "reelreversed", 0); m_beltreel = env.get_attribute_int(compnode, "beltreel", 0); } protected: // overrides virtual int maxstate() const override { return 65535; } virtual void draw(running_machine &machine, bitmap_argb32 &dest, const rectangle &bounds, int state) override { if (m_beltreel) { draw_beltreel(machine, dest, bounds, state); return; } // state is a normalized value between 0 and 65536 so that we don't need to worry about how many motor steps here or in the .lay, only the number of symbols const int max_state_used = 0x10000; // shift the reels a bit based on this param, allows fine tuning int use_state = (state + m_stateoffset) % max_state_used; // compute premultiplied colors u32 r = color().r * 255.0f; u32 g = color().g * 255.0f; u32 b = color().b * 255.0f; u32 a = color().a * 255.0f; // get the width of the string render_font *font = machine.render().font_alloc("default"); float aspect = 1.0f; s32 width; int curry = 0; int num_shown = m_numsymbolsvisible; int ourheight = bounds.height(); for (int fruit = 0;fruit bounds.bottom()) basey -= ((max_state_used)*(ourheight/num_shown)/(max_state_used/m_numstops)); int endpos = basey+ourheight/num_shown; // only render the symbol / text if it's atually in view because the code is SLOW if ((endpos >= bounds.top()) && (basey <= bounds.bottom())) { while (1) { width = font->string_width(ourheight / num_shown, aspect, m_stopnames[fruit].c_str()); if (width < bounds.width()) break; aspect *= 0.9f; } s32 curx; curx = bounds.left() + (bounds.width() - width) / 2; if (m_file[fruit]) if (!m_bitmap[fruit].valid()) load_reel_bitmap(fruit); if (m_file[fruit]) // render gfx { bitmap_argb32 tempbitmap2(dest.width(), ourheight/num_shown); if (m_bitmap[fruit].valid()) { render_resample_argb_bitmap_hq(tempbitmap2, m_bitmap[fruit], color()); for (int y = 0; y < ourheight/num_shown; y++) { int effy = basey + y; if (effy >= bounds.top() && effy <= bounds.bottom()) { u32 *src = &tempbitmap2.pix32(y); u32 *d = &dest.pix32(effy); for (int x = 0; x < dest.width(); x++) { int effx = x; if (effx >= bounds.left() && effx <= bounds.right()) { u32 spix = rgb_t(src[x]).a(); if (spix != 0) { d[effx] = src[x]; } } } } } } } else // render text (fallback) { // allocate a temporary bitmap bitmap_argb32 tempbitmap(dest.width(), dest.height()); const char *origs = m_stopnames[fruit].c_str(); const char *ends = origs + strlen(origs); const char *s = origs; char32_t schar; // loop over characters while (*s != 0) { int scharcount = uchar_from_utf8(&schar, s, ends - s); if (scharcount == -1) break; // get the font bitmap rectangle chbounds; font->get_scaled_bitmap_and_bounds(tempbitmap, ourheight/num_shown, aspect, schar, chbounds); // copy the data into the target for (int y = 0; y < chbounds.height(); y++) { int effy = basey + y; if (effy >= bounds.top() && effy <= bounds.bottom()) { u32 *src = &tempbitmap.pix32(y); u32 *d = &dest.pix32(effy); for (int x = 0; x < chbounds.width(); x++) { int effx = curx + x + chbounds.left(); if (effx >= bounds.left() && effx <= bounds.right()) { u32 spix = rgb_t(src[x]).a(); if (spix != 0) { rgb_t dpix = d[effx]; u32 ta = (a * (spix + 1)) >> 8; u32 tr = (r * ta + dpix.r() * (0x100 - ta)) >> 8; u32 tg = (g * ta + dpix.g() * (0x100 - ta)) >> 8; u32 tb = (b * ta + dpix.b() * (0x100 - ta)) >> 8; d[effx] = rgb_t(tr, tg, tb); } } } } } // advance in the X direction curx += font->char_width(ourheight/num_shown, aspect, schar); s += scharcount; } } } curry += ourheight/num_shown; } // free the temporary bitmap and font machine.render().font_free(font); } private: // internal helpers void draw_beltreel(running_machine &machine, bitmap_argb32 &dest, const rectangle &bounds, int state) { const int max_state_used = 0x10000; // shift the reels a bit based on this param, allows fine tuning int use_state = (state + m_stateoffset) % max_state_used; // compute premultiplied colors u32 r = color().r * 255.0f; u32 g = color().g * 255.0f; u32 b = color().b * 255.0f; u32 a = color().a * 255.0f; // get the width of the string render_font *font = machine.render().font_alloc("default"); float aspect = 1.0f; s32 width; int currx = 0; int num_shown = m_numsymbolsvisible; int ourwidth = bounds.width(); for (int fruit = 0;fruit bounds.right()) basex -= ((max_state_used)*(ourwidth/num_shown)/(max_state_used/m_numstops)); int endpos = basex+(ourwidth/num_shown); // only render the symbol / text if it's atually in view because the code is SLOW if ((endpos >= bounds.left()) && (basex <= bounds.right())) { while (1) { width = font->string_width(dest.height(), aspect, m_stopnames[fruit].c_str()); if (width < bounds.width()) break; aspect *= 0.9f; } s32 curx; curx = bounds.left(); if (m_file[fruit]) if (!m_bitmap[fruit].valid()) load_reel_bitmap(fruit); if (m_file[fruit]) // render gfx { bitmap_argb32 tempbitmap2(ourwidth/num_shown, dest.height()); if (m_bitmap[fruit].valid()) { render_resample_argb_bitmap_hq(tempbitmap2, m_bitmap[fruit], color()); for (int y = 0; y < dest.height(); y++) { int effy = y; if (effy >= bounds.top() && effy <= bounds.bottom()) { u32 *src = &tempbitmap2.pix32(y); u32 *d = &dest.pix32(effy); for (int x = 0; x < ourwidth/num_shown; x++) { int effx = basex + x; if (effx >= bounds.left() && effx <= bounds.right()) { u32 spix = rgb_t(src[x]).a(); if (spix != 0) { d[effx] = src[x]; } } } } } } } else // render text (fallback) { // allocate a temporary bitmap bitmap_argb32 tempbitmap(dest.width(), dest.height()); const char *origs = m_stopnames[fruit].c_str(); const char *ends = origs + strlen(origs); const char *s = origs; char32_t schar; // loop over characters while (*s != 0) { int scharcount = uchar_from_utf8(&schar, s, ends - s); if (scharcount == -1) break; // get the font bitmap rectangle chbounds; font->get_scaled_bitmap_and_bounds(tempbitmap, dest.height(), aspect, schar, chbounds); // copy the data into the target for (int y = 0; y < chbounds.height(); y++) { int effy = y; if (effy >= bounds.top() && effy <= bounds.bottom()) { u32 *src = &tempbitmap.pix32(y); u32 *d = &dest.pix32(effy); for (int x = 0; x < chbounds.width(); x++) { int effx = basex + curx + x; if (effx >= bounds.left() && effx <= bounds.right()) { u32 spix = rgb_t(src[x]).a(); if (spix != 0) { rgb_t dpix = d[effx]; u32 ta = (a * (spix + 1)) >> 8; u32 tr = (r * ta + dpix.r() * (0x100 - ta)) >> 8; u32 tg = (g * ta + dpix.g() * (0x100 - ta)) >> 8; u32 tb = (b * ta + dpix.b() * (0x100 - ta)) >> 8; d[effx] = rgb_t(tr, tg, tb); } } } } } // advance in the X direction curx += font->char_width(dest.height(), aspect, schar); s += scharcount; } } } currx += ourwidth/num_shown; } // free the temporary bitmap and font machine.render().font_free(font); } void load_reel_bitmap(int number) { // load the basic bitmap assert(m_file != nullptr); /*m_hasalpha[number] = */ render_load_png(m_bitmap[number], *m_file[number], m_dirname.c_str(), m_imagefile[number].c_str()); // load the alpha bitmap if specified //if (m_bitmap[number].valid() && m_alphafile[number]) // render_load_png(m_bitmap[number], *m_file[number], m_dirname, m_alphafile[number], true); // if we can't load the bitmap just use text rendering if (!m_bitmap[number].valid()) { // fallback to text rendering m_file[number].reset(); } } // internal state bitmap_argb32 m_bitmap[MAX_BITMAPS]; // source bitmap for images std::string m_dirname; // directory name of image file (for lazy loading) std::unique_ptr m_file[MAX_BITMAPS]; // file object for reading image/alpha files std::string m_imagefile[MAX_BITMAPS]; // name of the image file (for lazy loading) std::string m_alphafile[MAX_BITMAPS]; // name of the alpha file (for lazy loading) bool m_hasalpha[MAX_BITMAPS]; // is there any alpha component present? // basically made up of multiple text strings / gfx int m_numstops; std::string m_stopnames[MAX_BITMAPS]; int m_stateoffset; int m_reelreversed; int m_numsymbolsvisible; int m_beltreel; }; //------------------------------------------------- // make_component - create component of given type //------------------------------------------------- template layout_element::component::ptr layout_element::make_component(environment &env, util::xml::data_node const &compnode, const char *dirname) { return std::make_unique(env, compnode, dirname); } //------------------------------------------------- // make_component - create dotmatrix component // with given vertical resolution //------------------------------------------------- template layout_element::component::ptr layout_element::make_dotmatrix_component(environment &env, util::xml::data_node const &compnode, const char *dirname) { return std::make_unique(D, env, compnode, dirname); } //************************************************************************** // LAYOUT ELEMENT TEXTURE //************************************************************************** //------------------------------------------------- // texture - constructors //------------------------------------------------- layout_element::texture::texture() : m_element(nullptr) , m_texture(nullptr) , m_state(0) { } layout_element::texture::texture(texture &&that) : texture() { operator=(std::move(that)); } //------------------------------------------------- // ~texture - destructor //------------------------------------------------- layout_element::texture::~texture() { if (m_element != nullptr) m_element->machine().render().texture_free(m_texture); } //------------------------------------------------- // opearator= - move assignment //------------------------------------------------- layout_element::texture &layout_element::texture::operator=(texture &&that) { using std::swap; swap(m_element, that.m_element); swap(m_texture, that.m_texture); swap(m_state, that.m_state); return *this; } //************************************************************************** // LAYOUT ELEMENT COMPONENT //************************************************************************** //------------------------------------------------- // component - constructor //------------------------------------------------- layout_element::component::component(environment &env, util::xml::data_node const &compnode, const char *dirname) : m_state(env.get_attribute_int(compnode, "state", -1)) , m_color(env.parse_color(compnode.get_child("color"))) { env.parse_bounds(compnode.get_child("bounds"), m_bounds); } //------------------------------------------------- // normalize_bounds - normalize component bounds //------------------------------------------------- void layout_element::component::normalize_bounds(float xoffs, float yoffs, float xscale, float yscale) { m_bounds.x0 = (m_bounds.x0 - xoffs) * xscale; m_bounds.x1 = (m_bounds.x1 - xoffs) * xscale; m_bounds.y0 = (m_bounds.y0 - yoffs) * yscale; m_bounds.y1 = (m_bounds.y1 - yoffs) * yscale; } //------------------------------------------------- // draw_text - draw text in the specified color //------------------------------------------------- void layout_element::component::draw_text(render_font &font, bitmap_argb32 &dest, const rectangle &bounds, const char *str, int align) { // compute premultiplied colors u32 r = color().r * 255.0f; u32 g = color().g * 255.0f; u32 b = color().b * 255.0f; u32 a = color().a * 255.0f; // get the width of the string float aspect = 1.0f; s32 width; while (1) { width = font.string_width(bounds.height(), aspect, str); if (width < bounds.width()) break; aspect *= 0.9f; } // get alignment s32 curx; switch (align) { // left case 1: curx = bounds.left(); break; // right case 2: curx = bounds.right() - width; break; // default to center default: curx = bounds.left() + (bounds.width() - width) / 2; break; } // allocate a temporary bitmap bitmap_argb32 tempbitmap(dest.width(), dest.height()); // loop over characters const char *origs = str; const char *ends = origs + strlen(origs); const char *s = origs; char32_t schar; // loop over characters while (*s != 0) { int scharcount = uchar_from_utf8(&schar, s, ends - s); if (scharcount == -1) break; // get the font bitmap rectangle chbounds; font.get_scaled_bitmap_and_bounds(tempbitmap, bounds.height(), aspect, schar, chbounds); // copy the data into the target for (int y = 0; y < chbounds.height(); y++) { int effy = bounds.top() + y; if (effy >= bounds.top() && effy <= bounds.bottom()) { u32 *src = &tempbitmap.pix32(y); u32 *d = &dest.pix32(effy); for (int x = 0; x < chbounds.width(); x++) { int effx = curx + x + chbounds.left(); if (effx >= bounds.left() && effx <= bounds.right()) { u32 spix = rgb_t(src[x]).a(); if (spix != 0) { rgb_t dpix = d[effx]; u32 ta = (a * (spix + 1)) >> 8; u32 tr = (r * ta + dpix.r() * (0x100 - ta)) >> 8; u32 tg = (g * ta + dpix.g() * (0x100 - ta)) >> 8; u32 tb = (b * ta + dpix.b() * (0x100 - ta)) >> 8; d[effx] = rgb_t(tr, tg, tb); } } } } } // advance in the X direction curx += font.char_width(bounds.height(), aspect, schar); s += scharcount; } } //------------------------------------------------- // draw_segment_horizontal_caps - draw a // horizontal LED segment with definable end // and start points //------------------------------------------------- void layout_element::component::draw_segment_horizontal_caps(bitmap_argb32 &dest, int minx, int maxx, int midy, int width, int caps, rgb_t color) { // loop over the width of the segment for (int y = 0; y < width / 2; y++) { u32 *d0 = &dest.pix32(midy - y); u32 *d1 = &dest.pix32(midy + y); int ty = (y < width / 8) ? width / 8 : y; // loop over the length of the segment for (int x = minx + ((caps & LINE_CAP_START) ? ty : 0); x < maxx - ((caps & LINE_CAP_END) ? ty : 0); x++) d0[x] = d1[x] = color; } } //------------------------------------------------- // draw_segment_horizontal - draw a horizontal // LED segment //------------------------------------------------- void layout_element::component::draw_segment_horizontal(bitmap_argb32 &dest, int minx, int maxx, int midy, int width, rgb_t color) { draw_segment_horizontal_caps(dest, minx, maxx, midy, width, LINE_CAP_START | LINE_CAP_END, color); } //------------------------------------------------- // draw_segment_vertical_caps - draw a // vertical LED segment with definable end // and start points //------------------------------------------------- void layout_element::component::draw_segment_vertical_caps(bitmap_argb32 &dest, int miny, int maxy, int midx, int width, int caps, rgb_t color) { // loop over the width of the segment for (int x = 0; x < width / 2; x++) { u32 *d0 = &dest.pix32(0, midx - x); u32 *d1 = &dest.pix32(0, midx + x); int tx = (x < width / 8) ? width / 8 : x; // loop over the length of the segment for (int y = miny + ((caps & LINE_CAP_START) ? tx : 0); y < maxy - ((caps & LINE_CAP_END) ? tx : 0); y++) d0[y * dest.rowpixels()] = d1[y * dest.rowpixels()] = color; } } //------------------------------------------------- // draw_segment_vertical - draw a vertical // LED segment //------------------------------------------------- void layout_element::component::draw_segment_vertical(bitmap_argb32 &dest, int miny, int maxy, int midx, int width, rgb_t color) { draw_segment_vertical_caps(dest, miny, maxy, midx, width, LINE_CAP_START | LINE_CAP_END, color); } //------------------------------------------------- // draw_segment_diagonal_1 - draw a diagonal // LED segment that looks like a backslash //------------------------------------------------- void layout_element::component::draw_segment_diagonal_1(bitmap_argb32 &dest, int minx, int maxx, int miny, int maxy, int width, rgb_t color) { // compute parameters width *= 1.5; float ratio = (maxy - miny - width) / (float)(maxx - minx); // draw line for (int x = minx; x < maxx; x++) if (x >= 0 && x < dest.width()) { u32 *d = &dest.pix32(0, x); int step = (x - minx) * ratio; for (int y = maxy - width - step; y < maxy - step; y++) if (y >= 0 && y < dest.height()) d[y * dest.rowpixels()] = color; } } //------------------------------------------------- // draw_segment_diagonal_2 - draw a diagonal // LED segment that looks like a forward slash //------------------------------------------------- void layout_element::component::draw_segment_diagonal_2(bitmap_argb32 &dest, int minx, int maxx, int miny, int maxy, int width, rgb_t color) { // compute parameters width *= 1.5; float ratio = (maxy - miny - width) / (float)(maxx - minx); // draw line for (int x = minx; x < maxx; x++) if (x >= 0 && x < dest.width()) { u32 *d = &dest.pix32(0, x); int step = (x - minx) * ratio; for (int y = miny + step; y < miny + step + width; y++) if (y >= 0 && y < dest.height()) d[y * dest.rowpixels()] = color; } } //------------------------------------------------- // draw_segment_decimal - draw a decimal point //------------------------------------------------- void layout_element::component::draw_segment_decimal(bitmap_argb32 &dest, int midx, int midy, int width, rgb_t color) { // compute parameters width /= 2; float ooradius2 = 1.0f / (float)(width * width); // iterate over y for (u32 y = 0; y <= width; y++) { u32 *d0 = &dest.pix32(midy - y); u32 *d1 = &dest.pix32(midy + y); float xval = width * sqrt(1.0f - (float)(y * y) * ooradius2); s32 left, right; // compute left/right coordinates left = midx - s32(xval + 0.5f); right = midx + s32(xval + 0.5f); // draw this scanline for (u32 x = left; x < right; x++) d0[x] = d1[x] = color; } } //------------------------------------------------- // draw_segment_comma - draw a comma tail //------------------------------------------------- void layout_element::component::draw_segment_comma(bitmap_argb32 &dest, int minx, int maxx, int miny, int maxy, int width, rgb_t color) { // compute parameters width *= 1.5; float ratio = (maxy - miny - width) / (float)(maxx - minx); // draw line for (int x = minx; x < maxx; x++) { u32 *d = &dest.pix32(0, x); int step = (x - minx) * ratio; for (int y = maxy; y < maxy - width - step; y--) d[y * dest.rowpixels()] = color; } } //------------------------------------------------- // apply_skew - apply skew to a bitmap //------------------------------------------------- void layout_element::component::apply_skew(bitmap_argb32 &dest, int skewwidth) { for (int y = 0; y < dest.height(); y++) { u32 *destrow = &dest.pix32(y); int offs = skewwidth * (dest.height() - y) / dest.height(); for (int x = dest.width() - skewwidth - 1; x >= 0; x--) destrow[x + offs] = destrow[x]; for (int x = 0; x < offs; x++) destrow[x] = 0; } } //************************************************************************** // LAYOUT VIEW //************************************************************************** struct layout_view::layer_lists { item_list backdrops, screens, overlays, bezels, cpanels, marquees; }; //------------------------------------------------- // layout_view - constructor //------------------------------------------------- layout_view::layout_view( environment &env, util::xml::data_node const &viewnode, element_map &elemmap, group_map &groupmap) : m_name(make_name(env, viewnode)) , m_aspect(1.0f) , m_scraspect(1.0f) , m_items() , m_has_art(false) { // parse the layout m_expbounds.x0 = m_expbounds.y0 = m_expbounds.x1 = m_expbounds.y1 = 0; environment local(env); layer_lists layers; local.set_parameter("viewname", std::string(m_name)); add_items(layers, local, viewnode, elemmap, groupmap, ROT0, identity_transform, render_color{ 1.0F, 1.0F, 1.0F, 1.0F }, true, false, true); // deal with legacy element groupings if (!layers.overlays.empty() || (layers.backdrops.size() <= 1)) { // screens (-1) + overlays (RGB multiply) + backdrop (add) + bezels (alpha) + cpanels (alpha) + marquees (alpha) for (item &backdrop : layers.backdrops) backdrop.set_blend_mode(BLENDMODE_ADD); m_items.splice(m_items.end(), layers.screens); m_items.splice(m_items.end(), layers.overlays); m_items.splice(m_items.end(), layers.backdrops); m_items.splice(m_items.end(), layers.bezels); m_items.splice(m_items.end(), layers.cpanels); m_items.splice(m_items.end(), layers.marquees); } else { // multiple backdrop pieces and no overlays (Golly! Ghost! mode): // backdrop (alpha) + screens (add) + bezels (alpha) + cpanels (alpha) + marquees (alpha) for (item &screen : layers.screens) { if (screen.blend_mode() == -1) screen.set_blend_mode(BLENDMODE_ADD); } m_items.splice(m_items.end(), layers.backdrops); m_items.splice(m_items.end(), layers.screens); m_items.splice(m_items.end(), layers.bezels); m_items.splice(m_items.end(), layers.cpanels); m_items.splice(m_items.end(), layers.marquees); } // calculate metrics recompute(render_layer_config()); for (group_map::value_type &group : groupmap) group.second.set_bounds_unresolved(); } //------------------------------------------------- // layout_view - destructor //------------------------------------------------- layout_view::~layout_view() { } //------------------------------------------------- // recompute - recompute the bounds and aspect // ratio of a view and all of its contained items //------------------------------------------------- void layout_view::recompute(render_layer_config layerconfig) { // reset the bounds m_bounds.x0 = m_bounds.y0 = m_bounds.x1 = m_bounds.y1 = 0.0f; m_scrbounds.x0 = m_scrbounds.y0 = m_scrbounds.x1 = m_scrbounds.y1 = 0.0f; m_screens.reset(); // loop over all layers bool first = true; bool scrfirst = true; for (item &curitem : m_items) { // accumulate bounds if (first) m_bounds = curitem.m_rawbounds; else union_render_bounds(m_bounds, curitem.m_rawbounds); first = false; // accumulate screen bounds if (curitem.m_screen) { if (scrfirst) m_scrbounds = curitem.m_rawbounds; else union_render_bounds(m_scrbounds, curitem.m_rawbounds); scrfirst = false; // accumulate the screens in use while we're scanning m_screens.add(*curitem.m_screen); } } // if we have an explicit bounds, override it if (m_expbounds.x1 > m_expbounds.x0) m_bounds = m_expbounds; // if we're handling things normally, the target bounds are (0,0)-(1,1) render_bounds target_bounds; if (!layerconfig.zoom_to_screen() || m_screens.count() == 0) { // compute the aspect ratio of the view m_aspect = (m_bounds.x1 - m_bounds.x0) / (m_bounds.y1 - m_bounds.y0); target_bounds.x0 = target_bounds.y0 = 0.0f; target_bounds.x1 = target_bounds.y1 = 1.0f; } // if we're cropping, we want the screen area to fill (0,0)-(1,1) else { // compute the aspect ratio of the screen m_scraspect = (m_scrbounds.x1 - m_scrbounds.x0) / (m_scrbounds.y1 - m_scrbounds.y0); float targwidth = (m_bounds.x1 - m_bounds.x0) / (m_scrbounds.x1 - m_scrbounds.x0); float targheight = (m_bounds.y1 - m_bounds.y0) / (m_scrbounds.y1 - m_scrbounds.y0); target_bounds.x0 = (m_bounds.x0 - m_scrbounds.x0) / (m_bounds.x1 - m_bounds.x0) * targwidth; target_bounds.y0 = (m_bounds.y0 - m_scrbounds.y0) / (m_bounds.y1 - m_bounds.y0) * targheight; target_bounds.x1 = target_bounds.x0 + targwidth; target_bounds.y1 = target_bounds.y0 + targheight; } // determine the scale/offset for normalization float xoffs = m_bounds.x0; float yoffs = m_bounds.y0; float xscale = (target_bounds.x1 - target_bounds.x0) / (m_bounds.x1 - m_bounds.x0); float yscale = (target_bounds.y1 - target_bounds.y0) / (m_bounds.y1 - m_bounds.y0); // normalize all the item bounds for (item &curitem : items()) { curitem.m_bounds.x0 = target_bounds.x0 + (curitem.m_rawbounds.x0 - xoffs) * xscale; curitem.m_bounds.x1 = target_bounds.x0 + (curitem.m_rawbounds.x1 - xoffs) * xscale; curitem.m_bounds.y0 = target_bounds.y0 + (curitem.m_rawbounds.y0 - yoffs) * yscale; curitem.m_bounds.y1 = target_bounds.y0 + (curitem.m_rawbounds.y1 - yoffs) * yscale; } } //------------------------------------------------- // resolve_tags - resolve tags //------------------------------------------------- void layout_view::resolve_tags() { for (item &curitem : items()) curitem.resolve_tags(); } //------------------------------------------------- // add_items - add items, recursing for groups //------------------------------------------------- void layout_view::add_items( layer_lists &layers, environment &env, util::xml::data_node const &parentnode, element_map &elemmap, group_map &groupmap, int orientation, layout_group::transform const &trans, render_color const &color, bool root, bool repeat, bool init) { bool envaltered(false); bool unresolved(true); for (util::xml::data_node const *itemnode = parentnode.get_first_child(); itemnode; itemnode = itemnode->get_next_sibling()) { if (!strcmp(itemnode->get_name(), "bounds")) { // set explicit bounds if (root) env.parse_bounds(itemnode, m_expbounds); } else if (!strcmp(itemnode->get_name(), "param")) { envaltered = true; if (!unresolved) { unresolved = true; for (group_map::value_type &group : groupmap) group.second.set_bounds_unresolved(); } if (!repeat) env.set_parameter(*itemnode); else env.set_repeat_parameter(*itemnode, init); } else if (!strcmp(itemnode->get_name(), "backdrop")) { layers.backdrops.emplace_back(env, *itemnode, elemmap, orientation, trans, color); m_has_art = true; } else if (!strcmp(itemnode->get_name(), "screen")) { layers.screens.emplace_back(env, *itemnode, elemmap, orientation, trans, color); } else if (!strcmp(itemnode->get_name(), "element")) { layers.screens.emplace_back(env, *itemnode, elemmap, orientation, trans, color); m_has_art = true; } else if (!strcmp(itemnode->get_name(), "overlay")) { layers.overlays.emplace_back(env, *itemnode, elemmap, orientation, trans, color); m_has_art = true; } else if (!strcmp(itemnode->get_name(), "bezel")) { layers.bezels.emplace_back(env, *itemnode, elemmap, orientation, trans, color); m_has_art = true; } else if (!strcmp(itemnode->get_name(), "cpanel")) { layers.cpanels.emplace_back(env, *itemnode, elemmap, orientation, trans, color); m_has_art = true; } else if (!strcmp(itemnode->get_name(), "marquee")) { layers.marquees.emplace_back(env, *itemnode, elemmap, orientation, trans, color); m_has_art = true; } else if (!strcmp(itemnode->get_name(), "group")) { char const *ref(env.get_attribute_string(*itemnode, "ref", nullptr)); if (!ref) throw layout_syntax_error("nested group must have ref attribute"); group_map::iterator const found(groupmap.find(ref)); if (groupmap.end() == found) throw layout_syntax_error(util::string_format("unable to find group %s", ref)); unresolved = false; found->second.resolve_bounds(env, groupmap); layout_group::transform grouptrans(trans); util::xml::data_node const *const itemboundsnode(itemnode->get_child("bounds")); util::xml::data_node const *const itemorientnode(itemnode->get_child("orientation")); int const grouporient(env.parse_orientation(itemorientnode)); if (itemboundsnode) { render_bounds itembounds; env.parse_bounds(itemboundsnode, itembounds); grouptrans = found->second.make_transform(grouporient, itembounds, trans); } else if (itemorientnode) { grouptrans = found->second.make_transform(grouporient, trans); } environment local(env); add_items( layers, local, found->second.get_groupnode(), elemmap, groupmap, orientation_add(grouporient, orientation), grouptrans, render_color_multiply(env.parse_color(itemnode->get_child("color")), color), false, false, true); } else if (!strcmp(itemnode->get_name(), "repeat")) { int const count(env.get_attribute_int(*itemnode, "count", -1)); if (0 >= count) throw layout_syntax_error("repeat must have positive integer count attribute"); environment local(env); for (int i = 0; count > i; ++i) { add_items(layers, local, *itemnode, elemmap, groupmap, orientation, trans, color, false, true, !i); local.increment_parameters(); } } else { throw layout_syntax_error(util::string_format("unknown view item %s", itemnode->get_name())); } } if (envaltered && !unresolved) { for (group_map::value_type &group : groupmap) group.second.set_bounds_unresolved(); } } std::string layout_view::make_name(environment &env, util::xml::data_node const &viewnode) { char const *const name(env.get_attribute_string(viewnode, "name", nullptr)); if (!name) throw layout_syntax_error("view must have name attribute"); if (env.is_root_device()) { return name; } else { char const *tag(env.device().tag()); if (':' == *tag) ++tag; return util::string_format("%s %s", tag, name); } } //************************************************************************** // LAYOUT VIEW ITEM //************************************************************************** //------------------------------------------------- // item - constructor //------------------------------------------------- layout_view::item::item( environment &env, util::xml::data_node const &itemnode, element_map &elemmap, int orientation, layout_group::transform const &trans, render_color const &color) : m_element(find_element(env, itemnode, elemmap)) , m_output(env.device(), env.get_attribute_string(itemnode, "name", "")) , m_have_output(env.get_attribute_string(itemnode, "name", "")[0]) , m_input_tag(make_input_tag(env, itemnode)) , m_input_port(nullptr) , m_input_field(nullptr) , m_input_mask(env.get_attribute_int(itemnode, "inputmask", 0)) , m_input_shift(0) , m_input_raw(0 != env.get_attribute_int(itemnode, "inputraw", 0)) , m_screen(nullptr) , m_orientation(orientation_add(env.parse_orientation(itemnode.get_child("orientation")), orientation)) , m_rawbounds(make_bounds(env, itemnode, trans)) , m_color(render_color_multiply(env.parse_color(itemnode.get_child("color")), color)) , m_blend_mode(get_blend_mode(env, itemnode)) { // outputs need resolving if (m_have_output) m_output.resolve(); // fetch common data int index = env.get_attribute_int(itemnode, "index", -1); if (index != -1) m_screen = screen_device_iterator(env.machine().root_device()).byindex(index); for (u32 mask = m_input_mask; (mask != 0) && (~mask & 1); mask >>= 1) m_input_shift++; if (m_have_output && m_element) m_output = m_element->default_state(); // sanity checks if (strcmp(itemnode.get_name(), "screen") == 0) { if (itemnode.has_attribute("tag")) { char const *const tag(env.get_attribute_string(itemnode, "tag", "")); m_screen = dynamic_cast(env.device().subdevice(tag)); if (!m_screen) throw layout_reference_error(util::string_format("invalid screen tag '%d'", tag)); } else if (!m_screen) { throw layout_reference_error(util::string_format("invalid screen index %d", index)); } } else if (!m_element) { throw layout_syntax_error(util::string_format("item of type %s require an element tag", itemnode.get_name())); } } //------------------------------------------------- // item - destructor //------------------------------------------------- layout_view::item::~item() { } //------------------------------------------------- // screen_container - retrieve screen container //------------------------------------------------- render_container *layout_view::item::screen_container(running_machine &machine) const { return (m_screen != nullptr) ? &m_screen->container() : nullptr; } //------------------------------------------------- // state - fetch state based on configured source //------------------------------------------------- int layout_view::item::state() const { assert(m_element); if (m_have_output) { // if configured to track an output, fetch its value return m_output; } else if (!m_input_tag.empty()) { // if configured to an input, fetch the input value if (m_input_port) { if (m_input_raw) { return (m_input_port->read() & m_input_mask) >> m_input_shift; } else { ioport_field const *const field(m_input_field ? m_input_field : m_input_port->field(m_input_mask)); if (field) return ((m_input_port->read() ^ field->defvalue()) & m_input_mask) ? 1 : 0; } } } return 0; } //--------------------------------------------- // resolve_tags - resolve tags, if any are set //--------------------------------------------- void layout_view::item::resolve_tags() { if (!m_input_tag.empty()) { m_input_port = m_element->machine().root_device().ioport(m_input_tag.c_str()); if (m_input_port) { for (ioport_field &field : m_input_port->fields()) { if (field.mask() & m_input_mask) { if (field.condition().condition() == ioport_condition::ALWAYS) m_input_field = &field; break; } } } } } //--------------------------------------------- // find_element - find element definition //--------------------------------------------- layout_element *layout_view::item::find_element(environment &env, util::xml::data_node const &itemnode, element_map &elemmap) { char const *const name(env.get_attribute_string(itemnode, !strcmp(itemnode.get_name(), "element") ? "ref" : "element", nullptr)); if (!name) return nullptr; // search the list of elements for a match, error if not found element_map::iterator const found(elemmap.find(name)); if (elemmap.end() != found) return &found->second; else throw layout_syntax_error(util::string_format("unable to find element %s", name)); } //--------------------------------------------- // make_bounds - get transformed bounds //--------------------------------------------- render_bounds layout_view::item::make_bounds( environment &env, util::xml::data_node const &itemnode, layout_group::transform const &trans) { render_bounds bounds; env.parse_bounds(itemnode.get_child("bounds"), bounds); render_bounds_transform(bounds, trans); if (bounds.x0 > bounds.x1) std::swap(bounds.x0, bounds.x1); if (bounds.y0 > bounds.y1) std::swap(bounds.y0, bounds.y1); return bounds; } //--------------------------------------------- // make_input_tag - get absolute input tag //--------------------------------------------- std::string layout_view::item::make_input_tag(environment &env, util::xml::data_node const &itemnode) { char const *tag(env.get_attribute_string(itemnode, "inputtag", nullptr)); return tag ? env.device().subtag(tag) : std::string(); } //--------------------------------------------- // get_blend_mode - explicit or implicit blend //--------------------------------------------- int layout_view::item::get_blend_mode(environment &env, util::xml::data_node const &itemnode) { // see if there's a blend mode attribute char const *const mode(env.get_attribute_string(itemnode, "blend", nullptr)); if (mode) { if (!strcmp(mode, "none")) return BLENDMODE_NONE; else if (!strcmp(mode, "alpha")) return BLENDMODE_ALPHA; else if (!strcmp(mode, "multiply")) return BLENDMODE_RGB_MULTIPLY; else if (!strcmp(mode, "add")) return BLENDMODE_ADD; else throw layout_syntax_error(util::string_format("unknown blend mode %s", mode)); } // fall back to implicit blend mode based on element type if (!strcmp(itemnode.get_name(), "screen")) return -1; // magic number recognised by render.cpp to allow per-element blend mode else if (!strcmp(itemnode.get_name(), "overlay")) return BLENDMODE_RGB_MULTIPLY; else return BLENDMODE_ALPHA; } //************************************************************************** // LAYOUT FILE //************************************************************************** //------------------------------------------------- // layout_file - constructor //------------------------------------------------- layout_file::layout_file(device_t &device, util::xml::data_node const &rootnode, char const *dirname) : m_elemmap() , m_viewlist() { try { environment env(device); // find the layout node util::xml::data_node const *const mamelayoutnode = rootnode.get_child("mamelayout"); if (!mamelayoutnode) throw layout_syntax_error("missing mamelayout node"); // validate the config data version int const version = mamelayoutnode->get_attribute_int("version", 0); if (version != LAYOUT_VERSION) throw layout_syntax_error(util::string_format("unsupported version %d", version)); // parse all the parameters, elements and groups group_map groupmap; add_elements(dirname, env, *mamelayoutnode, groupmap, false, true); // parse all the views for (util::xml::data_node const *viewnode = mamelayoutnode->get_child("view"); viewnode != nullptr; viewnode = viewnode->get_next_sibling("view")) { // the trouble with allowing errors to propagate here is that it wreaks havoc with screenless systems that use a terminal by default // e.g. intlc44 and intlc440 have a terminal on the tty port by default and have a view with the front panel with the terminal screen // however, they have a second view with just the front panel which is very useful if you're using e.g. -tty null_modem with a socket // if the error is allowed to propagate, the entire layout is dropped so you can't select the useful view try { m_viewlist.emplace_back(env, *viewnode, m_elemmap, groupmap); } catch (layout_reference_error const &err) { osd_printf_warning("Error instantiating layout view %s: %s\n", env.get_attribute_string(*viewnode, "name", ""), err.what()); } } } catch (layout_syntax_error const &err) { // syntax errors are always fatal throw emu_fatalerror("Error parsing XML layout: %s", err.what()); } } //------------------------------------------------- // ~layout_file - destructor //------------------------------------------------- layout_file::~layout_file() { } void layout_file::add_elements( char const *dirname, environment &env, util::xml::data_node const &parentnode, group_map &groupmap, bool repeat, bool init) { for (util::xml::data_node const *childnode = parentnode.get_first_child(); childnode; childnode = childnode->get_next_sibling()) { if (!strcmp(childnode->get_name(), "param")) { if (!repeat) env.set_parameter(*childnode); else env.set_repeat_parameter(*childnode, init); } else if (!strcmp(childnode->get_name(), "element")) { char const *const name(env.get_attribute_string(*childnode, "name", nullptr)); if (!name) throw layout_syntax_error("element lacks name attribute"); if (!m_elemmap.emplace(std::piecewise_construct, std::forward_as_tuple(name), std::forward_as_tuple(env, *childnode, dirname)).second) throw layout_syntax_error(util::string_format("duplicate element name %s", name)); } else if (!strcmp(childnode->get_name(), "group")) { char const *const name(env.get_attribute_string(*childnode, "name", nullptr)); if (!name) throw layout_syntax_error("group lacks name attribute"); if (!groupmap.emplace(std::piecewise_construct, std::forward_as_tuple(name), std::forward_as_tuple(*childnode)).second) throw layout_syntax_error(util::string_format("duplicate group name %s", name)); } else if (!strcmp(childnode->get_name(), "repeat")) { int const count(env.get_attribute_int(*childnode, "count", -1)); if (0 >= count) throw layout_syntax_error("repeat must have positive integer count attribute"); environment local(env); for (int i = 0; count > i; ++i) { add_elements(dirname, local, *childnode, groupmap, true, !i); local.increment_parameters(); } } else if (repeat || (strcmp(childnode->get_name(), "view") && strcmp(childnode->get_name(), "script"))) { throw layout_syntax_error(util::string_format("unknown layout item %s", childnode->get_name())); } } }