// license:BSD-3-Clause // copyright-holders:Aaron Giles /*************************************************************************** render.h Core rendering routines for MAME. **************************************************************************** Theory of operation ------------------- A render "target" is described by 5 parameters: - width = width, in pixels - height = height, in pixels - bpp = depth, in bits per pixel - orientation = orientation of the target - pixel_aspect = aspect ratio of the pixels Width, height, and bpp are self-explanatory. The remaining parameters need some additional explanation. Regarding orientation, there are three orientations that need to be dealt with: target orientation, UI orientation, and game orientation. In the current model, the UI orientation tracks the target orientation so that the UI is (in theory) facing the correct direction. The game orientation is specified by the game driver and indicates how the game and artwork are rotated. Regarding pixel_aspect, this is the aspect ratio of the individual pixels, not the aspect ratio of the screen. You can determine this by dividing the aspect ratio of the screen by the aspect ratio of the resolution. For example, a 4:3 screen displaying 640x480 gives a pixel aspect ratio of (4/3)/(640/480) = 1.0, meaning the pixels are square. That same screen displaying 1280x1024 would have a pixel aspect ratio of (4/3)/(1280/1024) = 1.06666, meaning the pixels are slightly wider than they are tall. Artwork is always assumed to be a 1.0 pixel aspect ratio. The game screens themselves can be variable aspect ratios. ***************************************************************************/ #ifndef __RENDER_H__ #define __RENDER_H__ //#include "osdepend.h" #include #include #include "emu.h" //#include "bitmap.h" //#include "screen.h" //************************************************************************** // CONSTANTS //************************************************************************** // blending modes enum { BLENDMODE_NONE = 0, // no blending BLENDMODE_ALPHA, // standard alpha blend BLENDMODE_RGB_MULTIPLY, // apply source alpha to source pix, then multiply RGB values BLENDMODE_ADD, // apply source alpha to source pix, then add to destination BLENDMODE_COUNT }; // render creation flags const UINT8 RENDER_CREATE_NO_ART = 0x01; // ignore any views that have art in them const UINT8 RENDER_CREATE_SINGLE_FILE = 0x02; // only load views from the file specified const UINT8 RENDER_CREATE_HIDDEN = 0x04; // don't make this target visible // render scaling modes enum { SCALE_FRACTIONAL = 0, // compute fractional scaling factors for both axes SCALE_FRACTIONAL_X, // compute fractional scaling factor for x-axis, and integer factor for y-axis SCALE_INTEGER // compute integer scaling factors for both axes, based on target dimensions }; // flags for primitives const int PRIMFLAG_TEXORIENT_SHIFT = 0; const UINT32 PRIMFLAG_TEXORIENT_MASK = 15 << PRIMFLAG_TEXORIENT_SHIFT; const int PRIMFLAG_TEXFORMAT_SHIFT = 4; const UINT32 PRIMFLAG_TEXFORMAT_MASK = 15 << PRIMFLAG_TEXFORMAT_SHIFT; const int PRIMFLAG_BLENDMODE_SHIFT = 8; const UINT32 PRIMFLAG_BLENDMODE_MASK = 15 << PRIMFLAG_BLENDMODE_SHIFT; const int PRIMFLAG_ANTIALIAS_SHIFT = 12; const UINT32 PRIMFLAG_ANTIALIAS_MASK = 1 << PRIMFLAG_ANTIALIAS_SHIFT; const int PRIMFLAG_SCREENTEX_SHIFT = 13; const UINT32 PRIMFLAG_SCREENTEX_MASK = 1 << PRIMFLAG_SCREENTEX_SHIFT; const int PRIMFLAG_TEXWRAP_SHIFT = 14; const UINT32 PRIMFLAG_TEXWRAP_MASK = 1 << PRIMFLAG_TEXWRAP_SHIFT; const int PRIMFLAG_TEXSHADE_SHIFT = 15; const UINT32 PRIMFLAG_TEXSHADE_MASK = 3 << PRIMFLAG_TEXSHADE_SHIFT; const int PRIMFLAG_VECTOR_SHIFT = 17; const UINT32 PRIMFLAG_VECTOR_MASK = 1 << PRIMFLAG_VECTOR_SHIFT; const int PRIMFLAG_VECTORBUF_SHIFT = 18; const UINT32 PRIMFLAG_VECTORBUF_MASK = 1 << PRIMFLAG_VECTORBUF_SHIFT; const int PRIMFLAG_TYPE_SHIFT = 19; const UINT32 PRIMFLAG_TYPE_MASK = 3 << PRIMFLAG_TYPE_SHIFT; const UINT32 PRIMFLAG_TYPE_LINE = 0 << PRIMFLAG_TYPE_SHIFT; const UINT32 PRIMFLAG_TYPE_QUAD = 1 << PRIMFLAG_TYPE_SHIFT; const int PRIMFLAG_PACKABLE_SHIFT = 21; const UINT32 PRIMFLAG_PACKABLE = 1 << PRIMFLAG_PACKABLE_SHIFT; //************************************************************************** // MACROS //************************************************************************** #define PRIMFLAG_TEXORIENT(x) ((x) << PRIMFLAG_TEXORIENT_SHIFT) #define PRIMFLAG_GET_TEXORIENT(x) (((x) & PRIMFLAG_TEXORIENT_MASK) >> PRIMFLAG_TEXORIENT_SHIFT) #define PRIMFLAG_TEXFORMAT(x) ((x) << PRIMFLAG_TEXFORMAT_SHIFT) #define PRIMFLAG_GET_TEXFORMAT(x) (((x) & PRIMFLAG_TEXFORMAT_MASK) >> PRIMFLAG_TEXFORMAT_SHIFT) #define PRIMFLAG_BLENDMODE(x) ((x) << PRIMFLAG_BLENDMODE_SHIFT) #define PRIMFLAG_GET_BLENDMODE(x) (((x) & PRIMFLAG_BLENDMODE_MASK) >> PRIMFLAG_BLENDMODE_SHIFT) #define PRIMFLAG_ANTIALIAS(x) ((x) << PRIMFLAG_ANTIALIAS_SHIFT) #define PRIMFLAG_GET_ANTIALIAS(x) (((x) & PRIMFLAG_ANTIALIAS_MASK) >> PRIMFLAG_ANTIALIAS_SHIFT) #define PRIMFLAG_SCREENTEX(x) ((x) << PRIMFLAG_SCREENTEX_SHIFT) #define PRIMFLAG_GET_SCREENTEX(x) (((x) & PRIMFLAG_SCREENTEX_MASK) >> PRIMFLAG_SCREENTEX_SHIFT) #define PRIMFLAG_TEXWRAP(x) ((x) << PRIMFLAG_TEXWRAP_SHIFT) #define PRIMFLAG_GET_TEXWRAP(x) (((x) & PRIMFLAG_TEXWRAP_MASK) >> PRIMFLAG_TEXWRAP_SHIFT) #define PRIMFLAG_TEXSHADE(x) ((x) << PRIMFLAG_TEXSHADE_SHIFT) #define PRIMFLAG_GET_TEXSHADE(x) (((x) & PRIMFLAG_TEXSHADE_MASK) >> PRIMFLAG_TEXSHADE_SHIFT) #define PRIMFLAG_VECTOR(x) ((x) << PRIMFLAG_VECTOR_SHIFT) #define PRIMFLAG_GET_VECTOR(x) (((x) & PRIMFLAG_VECTOR_MASK) >> PRIMFLAG_VECTOR_SHIFT) #define PRIMFLAG_VECTORBUF(x) ((x) << PRIMFLAG_VECTORBUF_SHIFT) #define PRIMFLAG_GET_VECTORBUF(x) (((x) & PRIMFLAG_VECTORBUF_MASK) >> PRIMFLAG_VECTORBUF_SHIFT) //************************************************************************** // TYPE DEFINITIONS //************************************************************************** // forward definitions class device_t; class screen_device; class render_container; class render_manager; struct xml_data_node; class render_font; struct object_transform; class layout_element; class layout_view; // texture scaling callback typedef void (*texture_scaler_func)(bitmap_argb32 &dest, bitmap_argb32 &source, const rectangle &sbounds, void *param); // render_bounds - floating point bounding rectangle struct render_bounds { float x0; // leftmost X coordinate float y0; // topmost Y coordinate float x1; // rightmost X coordinate float y1; // bottommost Y coordinate float width() const { return x1 - x0; } float height() const { return y1 - y0; } }; // render_color - floating point set of ARGB values struct render_color { float a; // alpha component (0.0 = transparent, 1.0 = opaque) float r; // red component (0.0 = none, 1.0 = max) float g; // green component (0.0 = none, 1.0 = max) float b; // blue component (0.0 = none, 1.0 = max) }; // render_texuv - floating point set of UV texture coordinates struct render_texuv { float u; // U coodinate (0.0-1.0) float v; // V coordinate (0.0-1.0) }; // render_quad_texuv - floating point set of UV texture coordinates struct render_quad_texuv { render_texuv tl; // top-left UV coordinate render_texuv tr; // top-right UV coordinate render_texuv bl; // bottom-left UV coordinate render_texuv br; // bottom-right UV coordinate }; // render_texinfo - texture information struct render_texinfo { void * base; // base of the data UINT32 rowpixels; // pixels per row UINT32 width; // width of the image UINT32 height; // height of the image UINT32 seqid; // sequence ID UINT64 osddata; // aux data to pass to osd const rgb_t * palette; // palette for PALETTE16 textures, bcg lookup table for RGB32/YUY16 }; // ======================> render_screen_list // a render_screen_list is a list of screen_devices class render_screen_list { // screen list item class item { friend class simple_list; friend class render_screen_list; public: // construction/destruction item(screen_device &screen) : m_next(nullptr), m_screen(screen) { } // state item * m_next; // next screen in list screen_device & m_screen; // reference to screen device }; public: // getters int count() const { return m_list.count(); } // operations void add(screen_device &screen) { m_list.append(*global_alloc(item(screen))); } void reset() { m_list.reset(); } // query int contains(screen_device &screen) const { int count = 0; for (item *curitem = m_list.first(); curitem != nullptr; curitem = curitem->m_next) if (&curitem->m_screen == &screen) count++; return count; } private: // internal state simple_list m_list; }; // ======================> render_layer_config // render_layer_config - describes the state of layers class render_layer_config { static const UINT8 ENABLE_BACKDROP = 0x01; // enable backdrop layers static const UINT8 ENABLE_OVERLAY = 0x02; // enable overlay layers static const UINT8 ENABLE_BEZEL = 0x04; // enable bezel layers static const UINT8 ENABLE_CPANEL = 0x08; // enable cpanel layers static const UINT8 ENABLE_MARQUEE = 0x10; // enable marquee layers static const UINT8 ZOOM_TO_SCREEN = 0x20; // zoom to screen area by default static const UINT8 ENABLE_SCREEN_OVERLAY = 0x40; // enable screen overlays static const UINT8 DEFAULT = ENABLE_BACKDROP | ENABLE_OVERLAY | ENABLE_BEZEL | ENABLE_CPANEL | ENABLE_MARQUEE | ENABLE_SCREEN_OVERLAY; public: render_layer_config() : m_state(DEFAULT) { } bool operator==(const render_layer_config &rhs) const { return m_state == rhs.m_state; } bool operator!=(const render_layer_config &rhs) const { return m_state != rhs.m_state; } bool backdrops_enabled() const { return ((m_state & ENABLE_BACKDROP) != 0); } bool overlays_enabled() const { return ((m_state & ENABLE_OVERLAY) != 0); } bool bezels_enabled() const { return ((m_state & ENABLE_BEZEL) != 0); } bool cpanels_enabled() const { return ((m_state & ENABLE_CPANEL) != 0); } bool marquees_enabled() const { return ((m_state & ENABLE_MARQUEE) != 0); } bool screen_overlay_enabled() const { return ((m_state & ENABLE_SCREEN_OVERLAY) != 0); } bool zoom_to_screen() const { return ((m_state & ZOOM_TO_SCREEN) != 0); } render_layer_config &set_backdrops_enabled(bool enable) { if (enable) m_state |= ENABLE_BACKDROP; else m_state &= ~ENABLE_BACKDROP; return *this; } render_layer_config &set_overlays_enabled(bool enable) { if (enable) m_state |= ENABLE_OVERLAY; else m_state &= ~ENABLE_OVERLAY; return *this; } render_layer_config &set_bezels_enabled(bool enable) { if (enable) m_state |= ENABLE_BEZEL; else m_state &= ~ENABLE_BEZEL; return *this; } render_layer_config &set_cpanels_enabled(bool enable) { if (enable) m_state |= ENABLE_CPANEL; else m_state &= ~ENABLE_CPANEL; return *this; } render_layer_config &set_marquees_enabled(bool enable) { if (enable) m_state |= ENABLE_MARQUEE; else m_state &= ~ENABLE_MARQUEE; return *this; } render_layer_config &set_screen_overlay_enabled(bool enable) { if (enable) m_state |= ENABLE_SCREEN_OVERLAY; else m_state &= ~ENABLE_SCREEN_OVERLAY; return *this; } render_layer_config &set_zoom_to_screen(bool zoom) { if (zoom) m_state |= ZOOM_TO_SCREEN; else m_state &= ~ZOOM_TO_SCREEN; return *this; } private: UINT8 m_state; }; // ======================> render_primitive // render_primitive - a single low-level primitive for the rendering engine class render_primitive { friend class simple_list; public: render_primitive(): type(), flags(0), width(0), container(nullptr), m_next(nullptr) {} // render primitive types enum primitive_type { INVALID = 0, // invalid type LINE, // a single line QUAD // a rectilinear quad }; // getters render_primitive *next() const { return m_next; } bool packable(const INT32 pack_size) const { return (flags & PRIMFLAG_PACKABLE) && texture.base != nullptr && texture.width <= pack_size && texture.height <= pack_size; } float get_quad_width() const { return bounds.x1 - bounds.x0; } float get_quad_height() const { return bounds.y1 - bounds.y0; } // reset to prepare for re-use void reset(); // public state primitive_type type; // type of primitive render_bounds bounds; // bounds or positions render_color color; // RGBA values UINT32 flags; // flags float width; // width (for line primitives) render_texinfo texture; // texture info (for quad primitives) render_quad_texuv texcoords; // texture coordinates (for quad primitives) render_container * container; // the render container we belong to private: // internal state render_primitive * m_next; // pointer to next element }; // ======================> render_primitive_list // render_primitive_list - an object containing a list head plus a lock class render_primitive_list { friend class render_target; // construction/destruction render_primitive_list(); ~render_primitive_list(); public: // getters render_primitive *first() const { return m_primlist.first(); } // range iterators using auto_iterator = simple_list::auto_iterator; auto_iterator begin() const { return m_primlist.begin(); } auto_iterator end() const { return m_primlist.end(); } // lock management void acquire_lock() { m_lock.lock(); } void release_lock() { m_lock.unlock(); } // reference management void add_reference(void *refptr); bool has_reference(void *refptr) const; private: // helpers for our friends to manipulate the list render_primitive *alloc(render_primitive::primitive_type type); void release_all(); void append(render_primitive &prim) { append_or_return(prim, false); } void append_or_return(render_primitive &prim, bool clipped); // a reference is an abstract reference to an internal object of some sort class reference { public: reference *next() const { return m_next; } reference * m_next; // link to the next reference void * m_refptr; // reference pointer }; // internal state simple_list m_primlist; // list of primitives simple_list m_reflist; // list of references fixed_allocator m_primitive_allocator;// allocator for primitives fixed_allocator m_reference_allocator; // allocator for references std::recursive_mutex m_lock; // lock to protect list accesses }; // ======================> render_texture // a render_texture is used to track transformations when building an object list class render_texture { friend resource_pool_object::~resource_pool_object(); friend class simple_list; friend class fixed_allocator; friend class render_manager; friend class render_target; // construction/destruction render_texture(); ~render_texture(); // reset before re-use void reset(render_manager &manager, texture_scaler_func scaler = nullptr, void *param = nullptr); // release resources when freed void release(); public: // getters int format() const { return m_format; } render_manager *manager() const { return m_manager; } // configure the texture bitmap void set_bitmap(bitmap_t &bitmap, const rectangle &sbounds, texture_format format); // set any necessary aux data void set_osd_data(UINT64 data) { m_osddata = data; } // generic high-quality bitmap scaler static void hq_scale(bitmap_argb32 &dest, bitmap_argb32 &source, const rectangle &sbounds, void *param); private: // internal helpers void get_scaled(UINT32 dwidth, UINT32 dheight, render_texinfo &texinfo, render_primitive_list &primlist, UINT32 flags = 0); const rgb_t *get_adjusted_palette(render_container &container); static const int MAX_TEXTURE_SCALES = 16; // a scaled_texture contains a single scaled entry for a texture struct scaled_texture { bitmap_argb32 * bitmap; // final bitmap UINT32 seqid; // sequence number }; // internal state render_manager * m_manager; // reference to our manager render_texture * m_next; // next texture (for free list) bitmap_t * m_bitmap; // pointer to the original bitmap rectangle m_sbounds; // source bounds within the bitmap texture_format m_format; // format of the texture data UINT64 m_osddata; // aux data to pass to osd // scaling state (ARGB32 only) texture_scaler_func m_scaler; // scaling callback void * m_param; // scaling callback parameter UINT32 m_curseq; // current sequence number scaled_texture m_scaled[MAX_TEXTURE_SCALES];// array of scaled variants of this texture }; // ======================> render_container // a render_container holds a list of items and an orientation for the entire collection class render_container { friend resource_pool_object::~resource_pool_object(); friend class simple_list; friend class render_manager; friend class render_target; // construction/destruction render_container(render_manager &manager, screen_device *screen = nullptr); ~render_container(); public: // user settings describes the collected user-controllable settings struct user_settings { // construction/destruction user_settings(); // public state int m_orientation; // orientation float m_brightness; // brightness float m_contrast; // contrast float m_gamma; // gamma float m_xscale; // horizontal scale factor float m_yscale; // vertical scale factor float m_xoffset; // horizontal offset float m_yoffset; // vertical offset }; // getters render_container *next() const { return m_next; } screen_device *screen() const { return m_screen; } render_manager &manager() const { return m_manager; } render_texture *overlay() const { return m_overlaytexture; } int orientation() const { return m_user.m_orientation; } float xscale() const { return m_user.m_xscale; } float yscale() const { return m_user.m_yscale; } float xoffset() const { return m_user.m_xoffset; } float yoffset() const { return m_user.m_yoffset; } bool is_empty() const { return (m_itemlist.count() == 0); } void get_user_settings(user_settings &settings) const { settings = m_user; } // setters void set_overlay(bitmap_argb32 *bitmap); void set_user_settings(const user_settings &settings); // empty the item list void empty() { m_item_allocator.reclaim_all(m_itemlist); } // add items to the list void add_line(float x0, float y0, float x1, float y1, float width, rgb_t argb, UINT32 flags); void add_quad(float x0, float y0, float x1, float y1, rgb_t argb, render_texture *texture, UINT32 flags); void add_char(float x0, float y0, float height, float aspect, rgb_t argb, render_font &font, UINT16 ch); void add_point(float x0, float y0, float diameter, rgb_t argb, UINT32 flags) { add_line(x0, y0, x0, y0, diameter, argb, flags); } void add_rect(float x0, float y0, float x1, float y1, rgb_t argb, UINT32 flags) { add_quad(x0, y0, x1, y1, argb, nullptr, flags); } // brightness/contrast/gamma helpers bool has_brightness_contrast_gamma_changes() const { return (m_user.m_brightness != 1.0f || m_user.m_contrast != 1.0f || m_user.m_gamma != 1.0f); } UINT8 apply_brightness_contrast_gamma(UINT8 value); float apply_brightness_contrast_gamma_fp(float value); const rgb_t *bcg_lookup_table(int texformat, palette_t *palette = nullptr); private: // an item describes a high level primitive that is added to a container class item { friend class render_container; friend class simple_list; public: item() : m_next(nullptr), m_type(0), m_flags(0), m_internal(0), m_width(0), m_texture(nullptr) { } // getters item *next() const { return m_next; } UINT8 type() const { return m_type; } const render_bounds &bounds() const { return m_bounds; } const render_color &color() const { return m_color; } UINT32 flags() const { return m_flags; } UINT32 internal() const { return m_internal; } float width() const { return m_width; } render_texture *texture() const { return m_texture; } private: // internal state item * m_next; // pointer to the next element in the list UINT8 m_type; // type of element render_bounds m_bounds; // bounds of the element render_color m_color; // RGBA factors UINT32 m_flags; // option flags UINT32 m_internal; // internal flags float m_width; // width of the line (lines only) render_texture * m_texture; // pointer to the source texture (quads only) }; // generic screen overlay scaler static void overlay_scale(bitmap_argb32 &dest, bitmap_argb32 &source, const rectangle &sbounds, void *param); // internal helpers const simple_list &items() const { return m_itemlist; } item &add_generic(UINT8 type, float x0, float y0, float x1, float y1, rgb_t argb); void recompute_lookups(); void update_palette(); // internal state render_container * m_next; // the next container in the list render_manager & m_manager; // reference back to the owning manager simple_list m_itemlist; // head of the item list fixed_allocator m_item_allocator; // free container items screen_device * m_screen; // the screen device user_settings m_user; // user settings bitmap_argb32 * m_overlaybitmap; // overlay bitmap render_texture * m_overlaytexture; // overlay texture std::unique_ptr m_palclient; // client to the screen palette std::vector m_bcglookup; // copy of screen palette with bcg adjustment rgb_t m_bcglookup256[0x400]; // lookup table for brightness/contrast/gamma }; //************************************************************************** // CONSTANTS //************************************************************************** enum item_layer { ITEM_LAYER_FIRST = 0, ITEM_LAYER_BACKDROP = ITEM_LAYER_FIRST, ITEM_LAYER_SCREEN, ITEM_LAYER_OVERLAY, ITEM_LAYER_BEZEL, ITEM_LAYER_CPANEL, ITEM_LAYER_MARQUEE, ITEM_LAYER_MAX }; DECLARE_ENUM_OPERATORS(item_layer) //************************************************************************** // TYPE DEFINITIONS //************************************************************************** // ======================> layout_element // a layout_element is a single named element, which may have multiple components class layout_element { friend class simple_list; public: // construction/destruction layout_element(running_machine &machine, xml_data_node &elemnode, const char *dirname); virtual ~layout_element(); // getters layout_element *next() const { return m_next; } const char *name() const { return m_name.c_str(); } running_machine &machine() const { return m_machine; } int default_state() const { return m_defstate; } int maxstate() const { return m_maxstate; } render_texture *state_texture(int state); private: // a component represents an image, rectangle, or disk in an element class component { friend class layout_element; friend class simple_list; public: // construction/destruction component(running_machine &machine, xml_data_node &compnode, const char *dirname); ~component(); // getters component *next() const { return m_next; } const render_bounds &bounds() const { return m_bounds; } // operations void draw(running_machine &machine, bitmap_argb32 &dest, const rectangle &bounds, int state); private: // component types enum component_type { CTYPE_INVALID = 0, CTYPE_IMAGE, CTYPE_RECT, CTYPE_DISK, CTYPE_TEXT, CTYPE_LED7SEG, CTYPE_LED8SEG_GTS1, CTYPE_LED14SEG, CTYPE_LED16SEG, CTYPE_LED14SEGSC, CTYPE_LED16SEGSC, CTYPE_DOTMATRIX, CTYPE_DOTMATRIX5DOT, CTYPE_DOTMATRIXDOT, CTYPE_SIMPLECOUNTER, CTYPE_REEL, CTYPE_MAX }; // helpers void draw_rect(bitmap_argb32 &dest, const rectangle &bounds); void draw_disk(bitmap_argb32 &dest, const rectangle &bounds); void draw_text(running_machine &machine, bitmap_argb32 &dest, const rectangle &bounds); void draw_simplecounter(running_machine &machine, bitmap_argb32 &dest, const rectangle &bounds, int state); void draw_reel(running_machine &machine, bitmap_argb32 &dest, const rectangle &bounds, int state); void draw_beltreel(running_machine &machine, bitmap_argb32 &dest, const rectangle &bounds, int state); void load_bitmap(); void load_reel_bitmap(int number); void draw_led7seg(bitmap_argb32 &dest, const rectangle &bounds, int pattern); void draw_led8seg_gts1(bitmap_argb32 &dest, const rectangle &bounds, int pattern); void draw_led14seg(bitmap_argb32 &dest, const rectangle &bounds, int pattern); void draw_led14segsc(bitmap_argb32 &dest, const rectangle &bounds, int pattern); void draw_led16seg(bitmap_argb32 &dest, const rectangle &bounds, int pattern); void draw_led16segsc(bitmap_argb32 &dest, const rectangle &bounds, int pattern); void draw_dotmatrix(int dots,bitmap_argb32 &dest, const rectangle &bounds, int pattern); void draw_segment_horizontal_caps(bitmap_argb32 &dest, int minx, int maxx, int midy, int width, int caps, rgb_t color); void draw_segment_horizontal(bitmap_argb32 &dest, int minx, int maxx, int midy, int width, rgb_t color); void draw_segment_vertical_caps(bitmap_argb32 &dest, int miny, int maxy, int midx, int width, int caps, rgb_t color); void draw_segment_vertical(bitmap_argb32 &dest, int miny, int maxy, int midx, int width, rgb_t color); void draw_segment_diagonal_1(bitmap_argb32 &dest, int minx, int maxx, int miny, int maxy, int width, rgb_t color); void draw_segment_diagonal_2(bitmap_argb32 &dest, int minx, int maxx, int miny, int maxy, int width, rgb_t color); void draw_segment_decimal(bitmap_argb32 &dest, int midx, int midy, int width, rgb_t color); void draw_segment_comma(bitmap_argb32 &dest, int minx, int maxx, int miny, int maxy, int width, rgb_t color); void apply_skew(bitmap_argb32 &dest, int skewwidth); #define MAX_BITMAPS 32 // internal state component * m_next; // link to next component component_type m_type; // type of component int m_state; // state where this component is visible (-1 means all states) render_bounds m_bounds; // bounds of the element render_color m_color; // color of the element std::string m_string; // string for text components int m_digits; // number of digits for simple counters int m_textalign; // text alignment to box bitmap_argb32 m_bitmap[MAX_BITMAPS]; // source bitmap for images std::string m_dirname; // directory name of image file (for lazy loading) std::unique_ptr m_file[MAX_BITMAPS]; // file object for reading image/alpha files std::string m_imagefile[MAX_BITMAPS]; // name of the image file (for lazy loading) std::string m_alphafile[MAX_BITMAPS]; // name of the alpha file (for lazy loading) bool m_hasalpha[MAX_BITMAPS]; // is there any alpha component present? // stuff for fruit machine reels // basically made up of multiple text strings / gfx int m_numstops; std::string m_stopnames[MAX_BITMAPS]; int m_stateoffset; int m_reelreversed; int m_numsymbolsvisible; int m_beltreel; }; // a texture encapsulates a texture for a given element in a given state class texture { public: texture(); ~texture(); layout_element * m_element; // pointer back to the element render_texture * m_texture; // texture for this state int m_state; // associated state number }; // internal helpers static void element_scale(bitmap_argb32 &dest, bitmap_argb32 &source, const rectangle &sbounds, void *param); // internal state layout_element * m_next; // link to next element running_machine & m_machine; // reference to the owning machine std::string m_name; // name of this element simple_list m_complist; // list of components int m_defstate; // default state of this element int m_maxstate; // maximum state value for all components std::vector m_elemtex; // array of element textures used for managing the scaled bitmaps }; // ======================> layout_view // a layout_view encapsulates a named list of items class layout_view { friend class simple_list; public: // an item is a single backdrop, screen, overlay, bezel, cpanel, or marquee item class item { friend class layout_view; friend class simple_list; public: // construction/destruction item(running_machine &machine, xml_data_node &itemnode, simple_list &elemlist); virtual ~item(); // getters item *next() const { return m_next; } layout_element *element() const { return m_element; } screen_device *screen() { return m_screen; } const render_bounds &bounds() const { return m_bounds; } const render_color &color() const { return m_color; } int orientation() const { return m_orientation; } render_container *screen_container(running_machine &machine) const; bool has_input() const { return !m_input_tag.empty(); } ioport_port *input_tag_and_mask(ioport_value &mask) const { mask = m_input_mask; return m_input_port; }; // fetch state based on configured source int state() const; // resolve tags, if any void resolve_tags(); private: // internal state item * m_next; // link to next item layout_element * m_element; // pointer to the associated element (non-screens only) std::string m_output_name; // name of this item std::string m_input_tag; // input tag of this item ioport_port * m_input_port; // input port of this item ioport_value m_input_mask; // input mask of this item screen_device * m_screen; // pointer to screen int m_orientation; // orientation of this item render_bounds m_bounds; // bounds of the item render_bounds m_rawbounds; // raw (original) bounds of the item render_color m_color; // color of the item }; // construction/destruction layout_view(running_machine &machine, xml_data_node &viewnode, simple_list &elemlist); virtual ~layout_view(); // getters layout_view *next() const { return m_next; } const simple_list &items(item_layer layer) const; const char *name() const { return m_name.c_str(); } const render_bounds &bounds() const { return m_bounds; } const render_bounds &screen_bounds() const { return m_scrbounds; } const render_screen_list &screens() const { return m_screens; } bool layer_enabled(item_layer layer) const { return m_layenabled[layer]; } // bool has_art() const { return (m_backdrop_list.count() + m_overlay_list.count() + m_bezel_list.count() + m_cpanel_list.count() + m_marquee_list.count() != 0); } float effective_aspect(render_layer_config config) const { return (config.zoom_to_screen() && m_screens.count() != 0) ? m_scraspect : m_aspect; } // operations void recompute(render_layer_config layerconfig); // resolve tags, if any void resolve_tags(); private: // internal state layout_view * m_next; // pointer to next layout in the list std::string m_name; // name of the layout float m_aspect; // X/Y of the layout float m_scraspect; // X/Y of the screen areas render_screen_list m_screens; // list of active screens render_bounds m_bounds; // computed bounds of the view render_bounds m_scrbounds; // computed bounds of the screens within the view render_bounds m_expbounds; // explicit bounds of the view bool m_layenabled[ITEM_LAYER_MAX]; // is this layer enabled? simple_list m_backdrop_list; // list of backdrop items simple_list m_screen_list; // list of screen items simple_list m_overlay_list; // list of overlay items simple_list m_bezel_list; // list of bezel items simple_list m_cpanel_list; // list of marquee items simple_list m_marquee_list; // list of marquee items }; // ======================> layout_file // a layout_file consists of a list of elements and a list of views class layout_file { friend class simple_list; public: // construction/destruction layout_file(running_machine &machine, xml_data_node &rootnode, const char *dirname); virtual ~layout_file(); // getters layout_file *next() const { return m_next; } const simple_list &elements() const { return m_elemlist; } const simple_list &views() const { return m_viewlist; } private: // internal state layout_file * m_next; // pointer to the next file in the list simple_list m_elemlist; // list of shared layout elements simple_list m_viewlist; // list of views }; // ======================> render_target // a render_target describes a surface that is being rendered to class render_target { friend resource_pool_object::~resource_pool_object(); friend class simple_list; friend class render_manager; // construction/destruction render_target(render_manager &manager, const internal_layout *layoutfile = nullptr, UINT32 flags = 0); ~render_target(); public: // getters render_target *next() const { return m_next; } render_manager &manager() const { return m_manager; } UINT32 width() const { return m_width; } UINT32 height() const { return m_height; } float pixel_aspect() const { return m_pixel_aspect; } int scale_mode() const { return m_scale_mode; } float max_update_rate() const { return m_max_refresh; } int orientation() const { return m_orientation; } render_layer_config layer_config() const { return m_layerconfig; } layout_view *current_view() const { return m_curview; } int view() const { return view_index(*m_curview); } bool hidden() const { return ((m_flags & RENDER_CREATE_HIDDEN) != 0); } bool is_ui_target() const; int index() const; // setters void set_bounds(INT32 width, INT32 height, float pixel_aspect = 0); void set_max_update_rate(float updates_per_second) { m_max_refresh = updates_per_second; } void set_orientation(int orientation) { m_orientation = orientation; } void set_view(int viewindex); void set_max_texture_size(int maxwidth, int maxheight); void set_transform_container(bool transform_container) { m_transform_container = transform_container; } void set_keepaspect(bool keepaspect) { m_keepaspect = keepaspect; } void set_scale_mode(bool scale_mode) { m_scale_mode = scale_mode; } // layer config getters bool backdrops_enabled() const { return m_layerconfig.backdrops_enabled(); } bool overlays_enabled() const { return m_layerconfig.overlays_enabled(); } bool bezels_enabled() const { return m_layerconfig.bezels_enabled(); } bool cpanels_enabled() const { return m_layerconfig.cpanels_enabled(); } bool marquees_enabled() const { return m_layerconfig.marquees_enabled(); } bool screen_overlay_enabled() const { return m_layerconfig.screen_overlay_enabled(); } bool zoom_to_screen() const { return m_layerconfig.zoom_to_screen(); } // layer config setters void set_backdrops_enabled(bool enable) { m_layerconfig.set_backdrops_enabled(enable); update_layer_config(); } void set_overlays_enabled(bool enable) { m_layerconfig.set_overlays_enabled(enable); update_layer_config(); } void set_bezels_enabled(bool enable) { m_layerconfig.set_bezels_enabled(enable); update_layer_config(); } void set_cpanels_enabled(bool enable) { m_layerconfig.set_cpanels_enabled(enable); update_layer_config(); } void set_marquees_enabled(bool enable) { m_layerconfig.set_marquees_enabled(enable); update_layer_config(); } void set_screen_overlay_enabled(bool enable) { m_layerconfig.set_screen_overlay_enabled(enable); update_layer_config(); } void set_zoom_to_screen(bool zoom) { m_layerconfig.set_zoom_to_screen(zoom); update_layer_config(); } // view configuration helper int configured_view(const char *viewname, int targetindex, int numtargets); // view information const char *view_name(int viewindex); const render_screen_list &view_screens(int viewindex); // bounds computations void compute_visible_area(INT32 target_width, INT32 target_height, float target_pixel_aspect, int target_orientation, INT32 &visible_width, INT32 &visible_height); void compute_minimum_size(INT32 &minwidth, INT32 &minheight); // get a primitive list render_primitive_list &get_primitives(); // hit testing bool map_point_container(INT32 target_x, INT32 target_y, render_container &container, float &container_x, float &container_y); bool map_point_input(INT32 target_x, INT32 target_y, ioport_port *&input_port, ioport_value &input_mask, float &input_x, float &input_y); // reference tracking void invalidate_all(void *refptr); // debug containers render_container *debug_alloc(); void debug_free(render_container &container); void debug_append(render_container &container); // resolve tag lookups void resolve_tags(); private: // internal helpers void update_layer_config(); void load_layout_files(const internal_layout *layoutfile, bool singlefile); bool load_layout_file(const char *dirname, const char *filename); bool load_layout_file(const char *dirname, const internal_layout *layout_data); void add_container_primitives(render_primitive_list &list, const object_transform &root_xform, const object_transform &xform, render_container &container, int blendmode); void add_element_primitives(render_primitive_list &list, const object_transform &xform, layout_element &element, int state, int blendmode); bool map_point_internal(INT32 target_x, INT32 target_y, render_container *container, float &mapped_x, float &mapped_y, ioport_port *&mapped_input_port, ioport_value &mapped_input_mask); // config callbacks void config_load(xml_data_node &targetnode); bool config_save(xml_data_node &targetnode); // view lookups layout_view *view_by_index(int index) const; int view_index(layout_view &view) const; // optimized clearing void init_clear_extents(); bool remove_clear_extent(const render_bounds &bounds); void add_clear_extents(render_primitive_list &list); void add_clear_and_optimize_primitive_list(render_primitive_list &list); // constants static const int NUM_PRIMLISTS = 3; static const int MAX_CLEAR_EXTENTS = 1000; // internal state render_target * m_next; // link to next target render_manager & m_manager; // reference to our owning manager layout_view * m_curview; // current view simple_list m_filelist; // list of layout files UINT32 m_flags; // creation flags render_primitive_list m_primlist[NUM_PRIMLISTS]; // list of primitives int m_listindex; // index of next primlist to use INT32 m_width; // width in pixels INT32 m_height; // height in pixels render_bounds m_bounds; // bounds of the target bool m_keepaspect; // constrain aspect ratio bool m_int_overscan; // allow overscan on integer scaled targets float m_pixel_aspect; // aspect ratio of individual pixels int m_scale_mode; // type of scale to apply int m_int_scale_x; // horizontal integer scale factor int m_int_scale_y; // vertical integer scale factor float m_max_refresh; // maximum refresh rate, 0 or if none int m_orientation; // orientation render_layer_config m_layerconfig; // layer configuration layout_view * m_base_view; // the view at the time of first frame int m_base_orientation; // the orientation at the time of first frame render_layer_config m_base_layerconfig; // the layer configuration at the time of first frame int m_maxtexwidth; // maximum width of a texture int m_maxtexheight; // maximum height of a texture simple_list m_debug_containers; // list of debug containers INT32 m_clear_extent_count; // number of clear extents INT32 m_clear_extents[MAX_CLEAR_EXTENTS]; // array of clear extents bool m_transform_container; // determines whether the screen container is transformed by the core renderer, // otherwise the respective render API will handle the transformation (scale, offset) static render_screen_list s_empty_screen_list; }; // ======================> render_manager // contains machine-global information and operations class render_manager { friend class render_target; public: // construction/destruction render_manager(running_machine &machine); ~render_manager(); // getters running_machine &machine() const { return m_machine; } // global queries bool is_live(screen_device &screen) const; float max_update_rate() const; // targets render_target *target_alloc(const internal_layout *layoutfile = nullptr, UINT32 flags = 0); void target_free(render_target *target); const simple_list &targets() const { return m_targetlist; } render_target *first_target() const { return m_targetlist.first(); } render_target *target_by_index(int index) const; // UI targets render_target &ui_target() const { assert(m_ui_target != nullptr); return *m_ui_target; } void set_ui_target(render_target &target) { m_ui_target = ⌖ } float ui_aspect(render_container *rc = nullptr); // UI containers render_container &ui_container() const { assert(m_ui_container != nullptr); return *m_ui_container; } // textures render_texture *texture_alloc(texture_scaler_func scaler = nullptr, void *param = nullptr); void texture_free(render_texture *texture); // fonts render_font *font_alloc(const char *filename = nullptr); void font_free(render_font *font); // reference tracking void invalidate_all(void *refptr); // resolve tag lookups void resolve_tags(); private: // containers render_container *container_alloc(screen_device *screen = nullptr); void container_free(render_container *container); // config callbacks void config_load(config_type cfg_type, xml_data_node *parentnode); void config_save(config_type cfg_type, xml_data_node *parentnode); // internal state running_machine & m_machine; // reference back to the machine // array of live targets simple_list m_targetlist; // list of targets render_target * m_ui_target; // current UI target // texture lists UINT32 m_live_textures; // number of live textures fixed_allocator m_texture_allocator;// texture allocator // containers for the UI and for screens render_container * m_ui_container; // UI container simple_list m_screen_container_list; // list of containers for the screen }; #endif // __RENDER_H__