// license:BSD-3-Clause // copyright-holders:Aaron Giles, Vas Crabb /*************************************************************************** render.h Core rendering routines for MAME. **************************************************************************** Theory of operation ------------------- A render "target" is described by 5 parameters: - width = width, in pixels - height = height, in pixels - bpp = depth, in bits per pixel - orientation = orientation of the target - pixel_aspect = aspect ratio of the pixels Width, height, and bpp are self-explanatory. The remaining parameters need some additional explanation. Regarding orientation, there are three orientations that need to be dealt with: target orientation, UI orientation, and game orientation. In the current model, the UI orientation tracks the target orientation so that the UI is (in theory) facing the correct direction. The game orientation is specified by the game driver and indicates how the game and artwork are rotated. Regarding pixel_aspect, this is the aspect ratio of the individual pixels, not the aspect ratio of the screen. You can determine this by dividing the aspect ratio of the screen by the aspect ratio of the resolution. For example, a 4:3 screen displaying 640x480 gives a pixel aspect ratio of (4/3)/(640/480) = 1.0, meaning the pixels are square. That same screen displaying 1280x1024 would have a pixel aspect ratio of (4/3)/(1280/1024) = 1.06666, meaning the pixels are slightly wider than they are tall. Artwork is always assumed to be a 1.0 pixel aspect ratio. The game screens themselves can be variable aspect ratios. ***************************************************************************/ #ifndef MAME_EMU_RENDER_H #define MAME_EMU_RENDER_H #include "screen.h" #include #include #include #include #include #include #include #include namespace emu { namespace render { namespace detail { class layout_environment; } } } //************************************************************************** // CONSTANTS //************************************************************************** // blending modes enum { BLENDMODE_NONE = 0, // no blending BLENDMODE_ALPHA, // standard alpha blend BLENDMODE_RGB_MULTIPLY, // apply source alpha to source pix, then multiply RGB values BLENDMODE_ADD, // apply source alpha to source pix, then add to destination BLENDMODE_COUNT }; // render creation flags constexpr u8 RENDER_CREATE_NO_ART = 0x01; // ignore any views that have art in them constexpr u8 RENDER_CREATE_SINGLE_FILE = 0x02; // only load views from the file specified constexpr u8 RENDER_CREATE_HIDDEN = 0x04; // don't make this target visible // render scaling modes enum { SCALE_FRACTIONAL = 0, // compute fractional scaling factors for both axes SCALE_FRACTIONAL_X, // compute fractional scaling factor for x-axis, and integer factor for y-axis SCALE_FRACTIONAL_Y, // compute fractional scaling factor for y-axis, and integer factor for x-axis SCALE_FRACTIONAL_AUTO, // automatically compute fractional scaling for x/y-axes based on source native orientation SCALE_INTEGER // compute integer scaling factors for both axes, based on target dimensions }; // flags for primitives constexpr int PRIMFLAG_TEXORIENT_SHIFT = 0; constexpr u32 PRIMFLAG_TEXORIENT_MASK = 15 << PRIMFLAG_TEXORIENT_SHIFT; constexpr int PRIMFLAG_TEXFORMAT_SHIFT = 4; constexpr u32 PRIMFLAG_TEXFORMAT_MASK = 15 << PRIMFLAG_TEXFORMAT_SHIFT; constexpr int PRIMFLAG_BLENDMODE_SHIFT = 8; constexpr u32 PRIMFLAG_BLENDMODE_MASK = 15 << PRIMFLAG_BLENDMODE_SHIFT; constexpr int PRIMFLAG_ANTIALIAS_SHIFT = 12; constexpr u32 PRIMFLAG_ANTIALIAS_MASK = 1 << PRIMFLAG_ANTIALIAS_SHIFT; constexpr int PRIMFLAG_SCREENTEX_SHIFT = 13; constexpr u32 PRIMFLAG_SCREENTEX_MASK = 1 << PRIMFLAG_SCREENTEX_SHIFT; constexpr int PRIMFLAG_TEXWRAP_SHIFT = 14; constexpr u32 PRIMFLAG_TEXWRAP_MASK = 1 << PRIMFLAG_TEXWRAP_SHIFT; constexpr int PRIMFLAG_TEXSHADE_SHIFT = 15; constexpr u32 PRIMFLAG_TEXSHADE_MASK = 3 << PRIMFLAG_TEXSHADE_SHIFT; constexpr int PRIMFLAG_VECTOR_SHIFT = 17; constexpr u32 PRIMFLAG_VECTOR_MASK = 1 << PRIMFLAG_VECTOR_SHIFT; constexpr int PRIMFLAG_VECTORBUF_SHIFT = 18; constexpr u32 PRIMFLAG_VECTORBUF_MASK = 1 << PRIMFLAG_VECTORBUF_SHIFT; constexpr int PRIMFLAG_TYPE_SHIFT = 19; constexpr u32 PRIMFLAG_TYPE_MASK = 3 << PRIMFLAG_TYPE_SHIFT; constexpr u32 PRIMFLAG_TYPE_LINE = 0 << PRIMFLAG_TYPE_SHIFT; constexpr u32 PRIMFLAG_TYPE_QUAD = 1 << PRIMFLAG_TYPE_SHIFT; constexpr int PRIMFLAG_PACKABLE_SHIFT = 21; constexpr u32 PRIMFLAG_PACKABLE = 1 << PRIMFLAG_PACKABLE_SHIFT; //************************************************************************** // MACROS //************************************************************************** constexpr u32 PRIMFLAG_TEXORIENT(u32 x) { return x << PRIMFLAG_TEXORIENT_SHIFT; } constexpr u32 PRIMFLAG_GET_TEXORIENT(u32 x) { return (x & PRIMFLAG_TEXORIENT_MASK) >> PRIMFLAG_TEXORIENT_SHIFT; } constexpr u32 PRIMFLAG_TEXFORMAT(u32 x) { return x << PRIMFLAG_TEXFORMAT_SHIFT; } constexpr u32 PRIMFLAG_GET_TEXFORMAT(u32 x) { return (x & PRIMFLAG_TEXFORMAT_MASK) >> PRIMFLAG_TEXFORMAT_SHIFT; } constexpr u32 PRIMFLAG_BLENDMODE(u32 x) { return x << PRIMFLAG_BLENDMODE_SHIFT; } constexpr u32 PRIMFLAG_GET_BLENDMODE(u32 x) { return (x & PRIMFLAG_BLENDMODE_MASK) >> PRIMFLAG_BLENDMODE_SHIFT; } constexpr u32 PRIMFLAG_ANTIALIAS(u32 x) { return x << PRIMFLAG_ANTIALIAS_SHIFT; } constexpr u32 PRIMFLAG_GET_ANTIALIAS(u32 x) { return (x & PRIMFLAG_ANTIALIAS_MASK) >> PRIMFLAG_ANTIALIAS_SHIFT; } constexpr u32 PRIMFLAG_SCREENTEX(u32 x) { return x << PRIMFLAG_SCREENTEX_SHIFT; } constexpr u32 PRIMFLAG_GET_SCREENTEX(u32 x) { return (x & PRIMFLAG_SCREENTEX_MASK) >> PRIMFLAG_SCREENTEX_SHIFT; } constexpr u32 PRIMFLAG_TEXWRAP(u32 x) { return x << PRIMFLAG_TEXWRAP_SHIFT; } constexpr u32 PRIMFLAG_GET_TEXWRAP(u32 x) { return (x & PRIMFLAG_TEXWRAP_MASK) >> PRIMFLAG_TEXWRAP_SHIFT; } constexpr u32 PRIMFLAG_TEXSHADE(u32 x) { return x << PRIMFLAG_TEXSHADE_SHIFT; } constexpr u32 PRIMFLAG_GET_TEXSHADE(u32 x) { return (x & PRIMFLAG_TEXSHADE_MASK) >> PRIMFLAG_TEXSHADE_SHIFT; } constexpr u32 PRIMFLAG_VECTOR(u32 x) { return x << PRIMFLAG_VECTOR_SHIFT; } constexpr u32 PRIMFLAG_GET_VECTOR(u32 x) { return (x & PRIMFLAG_VECTOR_MASK) >> PRIMFLAG_VECTOR_SHIFT; } constexpr u32 PRIMFLAG_VECTORBUF(u32 x) { return x << PRIMFLAG_VECTORBUF_SHIFT; } constexpr u32 PRIMFLAG_GET_VECTORBUF(u32 x) { return (x & PRIMFLAG_VECTORBUF_MASK) >> PRIMFLAG_VECTORBUF_SHIFT; } //************************************************************************** // TYPE DEFINITIONS //************************************************************************** // texture scaling callback typedef void (*texture_scaler_func)(bitmap_argb32 &dest, bitmap_argb32 &source, const rectangle &sbounds, void *param); // render_bounds - floating point bounding rectangle struct render_bounds { float x0; // leftmost X coordinate float y0; // topmost Y coordinate float x1; // rightmost X coordinate float y1; // bottommost Y coordinate constexpr float width() const { return x1 - x0; } constexpr float height() const { return y1 - y0; } }; // render_color - floating point set of ARGB values struct render_color { float a; // alpha component (0.0 = transparent, 1.0 = opaque) float r; // red component (0.0 = none, 1.0 = max) float g; // green component (0.0 = none, 1.0 = max) float b; // blue component (0.0 = none, 1.0 = max) }; // render_texuv - floating point set of UV texture coordinates struct render_texuv { float u; // U coordinate (0.0-1.0) float v; // V coordinate (0.0-1.0) }; // render_quad_texuv - floating point set of UV texture coordinates struct render_quad_texuv { render_texuv tl; // top-left UV coordinate render_texuv tr; // top-right UV coordinate render_texuv bl; // bottom-left UV coordinate render_texuv br; // bottom-right UV coordinate }; // render_texinfo - texture information struct render_texinfo { void * base; // base of the data u32 rowpixels; // pixels per row u32 width; // width of the image u32 height; // height of the image u32 seqid; // sequence ID u64 unique_id; // unique identifier to pass to osd u64 old_id; // previously allocated id, if applicable const rgb_t * palette; // palette for PALETTE16 textures, bcg lookup table for RGB32/YUY16 u32 palette_length; }; // ======================> render_layer_config // render_layer_config - describes the state of layers class render_layer_config { private: static constexpr u8 ZOOM_TO_SCREEN = 0x01; // zoom to screen area by default static constexpr u8 ENABLE_SCREEN_OVERLAY = 0x02; // enable screen overlays static constexpr u8 DEFAULT = ENABLE_SCREEN_OVERLAY; u8 m_state = DEFAULT; render_layer_config &set_flag(u8 flag, bool enable) { if (enable) m_state |= flag; else m_state &= ~flag; return *this; } public: constexpr render_layer_config() { } bool operator==(const render_layer_config &rhs) const { return m_state == rhs.m_state; } bool operator!=(const render_layer_config &rhs) const { return m_state != rhs.m_state; } constexpr bool screen_overlay_enabled() const { return (m_state & ENABLE_SCREEN_OVERLAY) != 0; } constexpr bool zoom_to_screen() const { return (m_state & ZOOM_TO_SCREEN) != 0; } render_layer_config &set_screen_overlay_enabled(bool enable) { return set_flag(ENABLE_SCREEN_OVERLAY, enable); } render_layer_config &set_zoom_to_screen(bool zoom) { return set_flag(ZOOM_TO_SCREEN, zoom); } }; // ======================> render_primitive // render_primitive - a single low-level primitive for the rendering engine class render_primitive { friend class simple_list; public: render_primitive() { } // render primitive types enum primitive_type { INVALID = 0, // invalid type LINE, // a single line QUAD // a rectilinear quad }; // getters render_primitive *next() const { return m_next; } bool packable(const s32 pack_size) const { return (flags & PRIMFLAG_PACKABLE) && texture.base != nullptr && texture.width <= pack_size && texture.height <= pack_size; } float get_quad_width() const { return fabsf(bounds.x1 - bounds.x0); } float get_quad_height() const { return fabsf(bounds.y1 - bounds.y0); } float get_full_quad_width() const { return fabsf(full_bounds.x1 - full_bounds.x0); } float get_full_quad_height() const { return fabsf(full_bounds.y1 - full_bounds.y0); } // reset to prepare for re-use void reset(); // public state primitive_type type = INVALID; // type of primitive render_bounds bounds; // bounds or positions render_bounds full_bounds; // bounds or positions (unclipped) render_color color; // RGBA values u32 flags = 0U; // flags float width = 0.0F; // width (for line primitives) render_texinfo texture; // texture info (for quad primitives) render_quad_texuv texcoords; // texture coordinates (for quad primitives) render_container * container = nullptr;// the render container we belong to private: // internal state render_primitive * m_next = nullptr; // pointer to next element }; // ======================> render_primitive_list // render_primitive_list - an object containing a list head plus a lock class render_primitive_list { friend class render_target; // construction/destruction render_primitive_list(); ~render_primitive_list(); public: // getters render_primitive *first() const { return m_primlist.first(); } // range iterators using auto_iterator = simple_list::auto_iterator; auto_iterator begin() const { return m_primlist.begin(); } auto_iterator end() const { return m_primlist.end(); } // lock management void acquire_lock() { m_lock.lock(); } void release_lock() { m_lock.unlock(); } // reference management void add_reference(void *refptr); bool has_reference(void *refptr) const; private: // helpers for our friends to manipulate the list render_primitive *alloc(render_primitive::primitive_type type); void release_all(); void append(render_primitive &prim) { append_or_return(prim, false); } void append_or_return(render_primitive &prim, bool clipped); // a reference is an abstract reference to an internal object of some sort class reference { public: reference *next() const { return m_next; } reference * m_next; // link to the next reference void * m_refptr; // reference pointer }; // internal state simple_list m_primlist; // list of primitives simple_list m_reflist; // list of references fixed_allocator m_primitive_allocator;// allocator for primitives fixed_allocator m_reference_allocator; // allocator for references std::recursive_mutex m_lock; // lock to protect list accesses }; // ======================> render_texture // a render_texture is used to track transformations when building an object list class render_texture { friend resource_pool_object::~resource_pool_object(); friend class simple_list; friend class fixed_allocator; friend class render_manager; friend class render_target; // construction/destruction render_texture(); ~render_texture(); // reset before re-use void reset(render_manager &manager, texture_scaler_func scaler = nullptr, void *param = nullptr); // release resources when freed void release(); public: // getters int format() const { return m_format; } render_manager *manager() const { return m_manager; } // configure the texture bitmap void set_bitmap(bitmap_t &bitmap, const rectangle &sbounds, texture_format format); // set a unique identifier void set_id(u64 id) { m_old_id = m_id; m_id = id; } // generic high-quality bitmap scaler static void hq_scale(bitmap_argb32 &dest, bitmap_argb32 &source, const rectangle &sbounds, void *param); private: // internal helpers void get_scaled(u32 dwidth, u32 dheight, render_texinfo &texinfo, render_primitive_list &primlist, u32 flags = 0); const rgb_t *get_adjusted_palette(render_container &container, u32 &out_length); static const int MAX_TEXTURE_SCALES = 16; // a scaled_texture contains a single scaled entry for a texture struct scaled_texture { bitmap_argb32 * bitmap; // final bitmap u32 seqid; // sequence number }; // internal state render_manager * m_manager; // reference to our manager render_texture * m_next; // next texture (for free list) bitmap_t * m_bitmap; // pointer to the original bitmap rectangle m_sbounds; // source bounds within the bitmap texture_format m_format; // format of the texture data u64 m_id; // unique id to pass to osd u64 m_old_id; // previous id, if applicable // scaling state (ARGB32 only) texture_scaler_func m_scaler; // scaling callback void * m_param; // scaling callback parameter u32 m_curseq; // current sequence number scaled_texture m_scaled[MAX_TEXTURE_SCALES];// array of scaled variants of this texture }; // ======================> render_container // a render_container holds a list of items and an orientation for the entire collection class render_container { friend resource_pool_object::~resource_pool_object(); friend class simple_list; friend class render_manager; friend class render_target; // construction/destruction render_container(render_manager &manager, screen_device *screen = nullptr); ~render_container(); public: // user settings describes the collected user-controllable settings struct user_settings { // construction/destruction user_settings(); // public state int m_orientation; // orientation float m_brightness; // brightness float m_contrast; // contrast float m_gamma; // gamma float m_xscale; // horizontal scale factor float m_yscale; // vertical scale factor float m_xoffset; // horizontal offset float m_yoffset; // vertical offset }; // getters render_container *next() const { return m_next; } screen_device *screen() const { return m_screen; } render_manager &manager() const { return m_manager; } render_texture *overlay() const { return m_overlaytexture; } int orientation() const { return m_user.m_orientation; } float xscale() const { return m_user.m_xscale; } float yscale() const { return m_user.m_yscale; } float xoffset() const { return m_user.m_xoffset; } float yoffset() const { return m_user.m_yoffset; } bool is_empty() const { return (m_itemlist.count() == 0); } void get_user_settings(user_settings &settings) const { settings = m_user; } // setters void set_overlay(bitmap_argb32 *bitmap); void set_user_settings(const user_settings &settings); // empty the item list void empty() { m_item_allocator.reclaim_all(m_itemlist); } // add items to the list void add_line(float x0, float y0, float x1, float y1, float width, rgb_t argb, u32 flags); void add_quad(float x0, float y0, float x1, float y1, rgb_t argb, render_texture *texture, u32 flags); void add_char(float x0, float y0, float height, float aspect, rgb_t argb, render_font &font, u16 ch); void add_point(float x0, float y0, float diameter, rgb_t argb, u32 flags) { add_line(x0, y0, x0, y0, diameter, argb, flags); } void add_rect(float x0, float y0, float x1, float y1, rgb_t argb, u32 flags) { add_quad(x0, y0, x1, y1, argb, nullptr, flags); } // brightness/contrast/gamma helpers bool has_brightness_contrast_gamma_changes() const { return (m_user.m_brightness != 1.0f || m_user.m_contrast != 1.0f || m_user.m_gamma != 1.0f); } u8 apply_brightness_contrast_gamma(u8 value); float apply_brightness_contrast_gamma_fp(float value); const rgb_t *bcg_lookup_table(int texformat, u32 &out_length, palette_t *palette = nullptr); private: // an item describes a high level primitive that is added to a container class item { friend class render_container; friend class simple_list; public: item() : m_next(nullptr), m_type(0), m_flags(0), m_internal(0), m_width(0), m_texture(nullptr) { } // getters item *next() const { return m_next; } u8 type() const { return m_type; } const render_bounds &bounds() const { return m_bounds; } const render_color &color() const { return m_color; } u32 flags() const { return m_flags; } u32 internal() const { return m_internal; } float width() const { return m_width; } render_texture *texture() const { return m_texture; } private: // internal state item * m_next; // pointer to the next element in the list u8 m_type; // type of element render_bounds m_bounds; // bounds of the element render_color m_color; // RGBA factors u32 m_flags; // option flags u32 m_internal; // internal flags float m_width; // width of the line (lines only) render_texture * m_texture; // pointer to the source texture (quads only) }; // generic screen overlay scaler static void overlay_scale(bitmap_argb32 &dest, bitmap_argb32 &source, const rectangle &sbounds, void *param); // internal helpers const simple_list &items() const { return m_itemlist; } item &add_generic(u8 type, float x0, float y0, float x1, float y1, rgb_t argb); void recompute_lookups(); void update_palette(); // internal state render_container * m_next; // the next container in the list render_manager & m_manager; // reference back to the owning manager simple_list m_itemlist; // head of the item list fixed_allocator m_item_allocator; // free container items screen_device * m_screen; // the screen device user_settings m_user; // user settings bitmap_argb32 * m_overlaybitmap; // overlay bitmap render_texture * m_overlaytexture; // overlay texture std::unique_ptr m_palclient; // client to the screen palette std::vector m_bcglookup; // copy of screen palette with bcg adjustment rgb_t m_bcglookup256[0x400]; // lookup table for brightness/contrast/gamma }; //************************************************************************** // TYPE DEFINITIONS //************************************************************************** /// \brief A description of a piece of visible artwork /// /// Most view_items (except for those in the screen layer) have exactly /// one layout_element which describes the contents of the item. /// Elements are separate from items because they can be re-used /// multiple times within a layout. Even though an element can contain /// a number of components, they are treated as if they were a single /// bitmap. class layout_element { public: using environment = emu::render::detail::layout_environment; // construction/destruction layout_element(environment &env, util::xml::data_node const &elemnode, const char *dirname); virtual ~layout_element(); // getters running_machine &machine() const { return m_machine; } int default_state() const { return m_defstate; } int maxstate() const { return m_maxstate; } render_texture *state_texture(int state); private: /// \brief An image, rectangle, or disk in an element /// /// Each layout_element contains one or more components. Each /// component can describe either an image or a rectangle/disk /// primitive. Each component also has a "state" associated with it, /// which controls whether or not the component is visible (if the /// owning item has the same state, it is visible). class component { public: typedef std::unique_ptr ptr; // construction/destruction component(environment &env, util::xml::data_node const &compnode, const char *dirname); virtual ~component() = default; // setup void normalize_bounds(float xoffs, float yoffs, float xscale, float yscale); // getters int state() const { return m_state; } virtual int maxstate() const { return m_state; } const render_bounds &bounds() const { return m_bounds; } const render_color &color() const { return m_color; } // operations virtual void draw(running_machine &machine, bitmap_argb32 &dest, const rectangle &bounds, int state) = 0; protected: // helpers void draw_text(render_font &font, bitmap_argb32 &dest, const rectangle &bounds, const char *str, int align); void draw_segment_horizontal_caps(bitmap_argb32 &dest, int minx, int maxx, int midy, int width, int caps, rgb_t color); void draw_segment_horizontal(bitmap_argb32 &dest, int minx, int maxx, int midy, int width, rgb_t color); void draw_segment_vertical_caps(bitmap_argb32 &dest, int miny, int maxy, int midx, int width, int caps, rgb_t color); void draw_segment_vertical(bitmap_argb32 &dest, int miny, int maxy, int midx, int width, rgb_t color); void draw_segment_diagonal_1(bitmap_argb32 &dest, int minx, int maxx, int miny, int maxy, int width, rgb_t color); void draw_segment_diagonal_2(bitmap_argb32 &dest, int minx, int maxx, int miny, int maxy, int width, rgb_t color); void draw_segment_decimal(bitmap_argb32 &dest, int midx, int midy, int width, rgb_t color); void draw_segment_comma(bitmap_argb32 &dest, int minx, int maxx, int miny, int maxy, int width, rgb_t color); void apply_skew(bitmap_argb32 &dest, int skewwidth); private: // internal state int m_state; // state where this component is visible (-1 means all states) render_bounds m_bounds; // bounds of the element render_color m_color; // color of the element }; // component implementations class image_component; class rect_component; class disk_component; class text_component; class led7seg_component; class led8seg_gts1_component; class led14seg_component; class led16seg_component; class led14segsc_component; class led16segsc_component; class dotmatrix_component; class simplecounter_component; class reel_component; // a texture encapsulates a texture for a given element in a given state class texture { public: texture(); texture(texture const &that) = delete; texture(texture &&that); ~texture(); texture &operator=(texture const &that) = delete; texture &operator=(texture &&that); layout_element * m_element; // pointer back to the element render_texture * m_texture; // texture for this state int m_state; // associated state number }; typedef component::ptr (*make_component_func)(environment &env, util::xml::data_node const &compnode, const char *dirname); typedef std::map make_component_map; // internal helpers static void element_scale(bitmap_argb32 &dest, bitmap_argb32 &source, const rectangle &sbounds, void *param); template static component::ptr make_component(environment &env, util::xml::data_node const &compnode, const char *dirname); template static component::ptr make_dotmatrix_component(environment &env, util::xml::data_node const &compnode, const char *dirname); static make_component_map const s_make_component; // maps component XML names to creator functions // internal state running_machine & m_machine; // reference to the owning machine std::vector m_complist; // list of components int m_defstate; // default state of this element int m_maxstate; // maximum state value for all components std::vector m_elemtex; // array of element textures used for managing the scaled bitmaps }; /// \brief A reusable group of elements /// /// Views expand/flatten groups into their component elements applying /// an optional coordinate transform. This is mainly useful duplicating /// the same sublayout in multiple views. It would be more useful /// within a view if it could be parameterised. Groups only exist while /// parsing a layout file - no information about element grouping is /// preserved. class layout_group { public: using environment = emu::render::detail::layout_environment; using group_map = std::unordered_map; using transform = std::array, 3>; layout_group(util::xml::data_node const &groupnode); ~layout_group(); util::xml::data_node const &get_groupnode() const { return m_groupnode; } transform make_transform(int orientation, render_bounds const &dest) const; transform make_transform(int orientation, transform const &trans) const; transform make_transform(int orientation, render_bounds const &dest, transform const &trans) const; void set_bounds_unresolved(); void resolve_bounds(environment &env, group_map &groupmap); private: void resolve_bounds(environment &env, group_map &groupmap, std::vector &seen); void resolve_bounds( environment &env, util::xml::data_node const &parentnode, group_map &groupmap, std::vector &seen, bool empty, bool repeat, bool init); util::xml::data_node const & m_groupnode; render_bounds m_bounds; bool m_bounds_resolved; }; /// \brief A single view within a layout_file /// /// The view is described using arbitrary coordinates that are scaled to /// fit within the render target. Pixels within a view are assumed to /// be square. class layout_view { public: using environment = emu::render::detail::layout_environment; using element_map = std::unordered_map; using group_map = std::unordered_map; using render_screen_list = std::list>; /// \brief A single backdrop/screen/overlay/bezel/cpanel/marquee item /// /// Each view has four lists of view_items, one for each "layer." /// Each view item is specified using floating point coordinates in /// arbitrary units, and is assumed to have square pixels. Each /// view item can control its orientation independently. Each item /// can also have an optional name, and can be set at runtime into /// different "states", which control how the embedded elements are /// displayed. class item { friend class layout_view; public: // construction/destruction item( environment &env, util::xml::data_node const &itemnode, element_map &elemmap, int orientation, layout_group::transform const &trans, render_color const &color); ~item(); // getters layout_element *element() const { return m_element; } screen_device *screen() { return m_screen; } const render_bounds &bounds() const { return m_bounds; } const render_color &color() const { return m_color; } int blend_mode() const { return m_blend_mode; } int orientation() const { return m_orientation; } render_container *screen_container(running_machine &machine) const; bool has_input() const { return bool(m_input_port); } ioport_port *input_tag_and_mask(ioport_value &mask) const { mask = m_input_mask; return m_input_port; }; // fetch state based on configured source int state() const; // resolve tags, if any void resolve_tags(); // setters void set_blend_mode(int mode) { m_blend_mode = mode; } private: static layout_element *find_element(environment &env, util::xml::data_node const &itemnode, element_map &elemmap); static render_bounds make_bounds(environment &env, util::xml::data_node const &itemnode, layout_group::transform const &trans); static std::string make_input_tag(environment &env, util::xml::data_node const &itemnode); static int get_blend_mode(environment &env, util::xml::data_node const &itemnode); // internal state layout_element *const m_element; // pointer to the associated element (non-screens only) output_finder<> m_output; // associated output bool const m_have_output; // whether we actually have an output std::string const m_input_tag; // input tag of this item ioport_port * m_input_port; // input port of this item ioport_field const * m_input_field; // input port field of this item ioport_value const m_input_mask; // input mask of this item u8 m_input_shift; // input mask rightshift for raw (trailing 0s) bool const m_input_raw; // get raw data from input port screen_device * m_screen; // pointer to screen int m_orientation; // orientation of this item render_bounds m_bounds; // bounds of the item render_bounds const m_rawbounds; // raw (original) bounds of the item render_color m_color; // color of the item int m_blend_mode; // blending mode to use when drawing }; using item_list = std::list; // construction/destruction layout_view( environment &env, util::xml::data_node const &viewnode, element_map &elemmap, group_map &groupmap); ~layout_view(); // getters item_list &items() { return m_items; } const std::string &name() const { return m_name; } const render_bounds &bounds() const { return m_bounds; } const render_bounds &screen_bounds() const { return m_scrbounds; } const render_screen_list &screens() const { return m_screens; } size_t screen_count() const { return m_screens.size(); } bool has_screen(screen_device &screen) const; // bool has_art() const { return m_has_art; } float effective_aspect(render_layer_config config) const { return (config.zoom_to_screen() && !m_screens.empty()) ? m_scraspect : m_aspect; } // operations void recompute(render_layer_config layerconfig); // resolve tags, if any void resolve_tags(); private: struct layer_lists; // add items, recursing for groups void add_items( layer_lists &layers, environment &env, util::xml::data_node const &parentnode, element_map &elemmap, group_map &groupmap, int orientation, layout_group::transform const &trans, render_color const &color, bool root, bool repeat, bool init); static std::string make_name(environment &env, util::xml::data_node const &viewnode); // internal state std::string m_name; // name of the layout float m_aspect; // X/Y of the layout float m_scraspect; // X/Y of the screen areas render_screen_list m_screens; // list of active screens render_bounds m_bounds; // computed bounds of the view render_bounds m_scrbounds; // computed bounds of the screens within the view render_bounds m_expbounds; // explicit bounds of the view item_list m_items; // list of layout items bool m_has_art; // true if the layout contains non-screen elements }; /// \brief Layout description file /// /// Comprises a list of elements and a list of views. The elements are /// reusable items that the views reference. class layout_file { public: using element_map = std::unordered_map; using group_map = std::unordered_map; using view_list = std::list; // construction/destruction layout_file(device_t &device, util::xml::data_node const &rootnode, char const *dirname); ~layout_file(); // getters element_map const &elements() const { return m_elemmap; } view_list &views() { return m_viewlist; } view_list const &views() const { return m_viewlist; } private: using environment = emu::render::detail::layout_environment; // add elements and parameters void add_elements( char const *dirname, environment &env, util::xml::data_node const &parentnode, group_map &groupmap, bool repeat, bool init); // internal state element_map m_elemmap; // list of shared layout elements view_list m_viewlist; // list of views }; // ======================> render_target // a render_target describes a surface that is being rendered to class render_target { friend resource_pool_object::~resource_pool_object(); friend class simple_list; friend class render_manager; // construction/destruction render_target(render_manager &manager, const internal_layout *layoutfile = nullptr, u32 flags = 0); render_target(render_manager &manager, util::xml::data_node const &layout, u32 flags = 0); ~render_target(); public: // getters render_target *next() const { return m_next; } render_manager &manager() const { return m_manager; } u32 width() const { return m_width; } u32 height() const { return m_height; } float pixel_aspect() const { return m_pixel_aspect; } int scale_mode() const { return m_scale_mode; } float max_update_rate() const { return m_max_refresh; } int orientation() const { return m_orientation; } render_layer_config layer_config() const { return m_layerconfig; } layout_view *current_view() const { return m_curview; } int view() const { return view_index(*m_curview); } bool hidden() const { return ((m_flags & RENDER_CREATE_HIDDEN) != 0); } bool is_ui_target() const; int index() const; // setters void set_bounds(s32 width, s32 height, float pixel_aspect = 0); void set_max_update_rate(float updates_per_second) { m_max_refresh = updates_per_second; } void set_orientation(int orientation) { m_orientation = orientation; } void set_view(int viewindex); void set_max_texture_size(int maxwidth, int maxheight); void set_transform_container(bool transform_container) { m_transform_container = transform_container; } void set_keepaspect(bool keepaspect) { m_keepaspect = keepaspect; } void set_scale_mode(int scale_mode) { m_scale_mode = scale_mode; } // layer config getters bool screen_overlay_enabled() const { return m_layerconfig.screen_overlay_enabled(); } bool zoom_to_screen() const { return m_layerconfig.zoom_to_screen(); } // layer config setters void set_screen_overlay_enabled(bool enable) { m_layerconfig.set_screen_overlay_enabled(enable); update_layer_config(); } void set_zoom_to_screen(bool zoom) { m_layerconfig.set_zoom_to_screen(zoom); update_layer_config(); } // view configuration helper int configured_view(const char *viewname, int targetindex, int numtargets); // view information const char *view_name(int viewindex); // bounds computations void compute_visible_area(s32 target_width, s32 target_height, float target_pixel_aspect, int target_orientation, s32 &visible_width, s32 &visible_height); void compute_minimum_size(s32 &minwidth, s32 &minheight); // get a primitive list render_primitive_list &get_primitives(); // hit testing bool map_point_container(s32 target_x, s32 target_y, render_container &container, float &container_x, float &container_y); bool map_point_input(s32 target_x, s32 target_y, ioport_port *&input_port, ioport_value &input_mask, float &input_x, float &input_y); // reference tracking void invalidate_all(void *refptr); // debug containers render_container *debug_alloc(); void debug_free(render_container &container); void debug_append(render_container &container); // resolve tag lookups void resolve_tags(); private: // private classes declared in render.cpp struct object_transform; // internal helpers enum constructor_impl_t { CONSTRUCTOR_IMPL }; template render_target(render_manager &manager, T&& layout, u32 flags, constructor_impl_t); void update_layer_config(); void load_layout_files(const internal_layout *layoutfile, bool singlefile); void load_layout_files(util::xml::data_node const &rootnode, bool singlefile); void load_additional_layout_files(const char *basename, bool have_artwork); bool load_layout_file(const char *dirname, const char *filename); bool load_layout_file(const char *dirname, const internal_layout &layout_data, device_t *device = nullptr); bool load_layout_file(device_t &device, const char *dirname, util::xml::data_node const &rootnode); void add_container_primitives(render_primitive_list &list, const object_transform &root_xform, const object_transform &xform, render_container &container, int blendmode); void add_element_primitives(render_primitive_list &list, const object_transform &xform, layout_element &element, int state, int blendmode); bool map_point_internal(s32 target_x, s32 target_y, render_container *container, float &mapped_x, float &mapped_y, ioport_port *&mapped_input_port, ioport_value &mapped_input_mask); // config callbacks void config_load(util::xml::data_node const &targetnode); bool config_save(util::xml::data_node &targetnode); // view lookups layout_view *view_by_index(int index); int view_index(layout_view &view) const; // optimized clearing void init_clear_extents(); bool remove_clear_extent(const render_bounds &bounds); void add_clear_extents(render_primitive_list &list); void add_clear_and_optimize_primitive_list(render_primitive_list &list); // constants static constexpr int NUM_PRIMLISTS = 3; static constexpr int MAX_CLEAR_EXTENTS = 1000; // internal state render_target * m_next; // link to next target render_manager & m_manager; // reference to our owning manager layout_view * m_curview; // current view std::list m_filelist; // list of layout files u32 m_flags; // creation flags render_primitive_list m_primlist[NUM_PRIMLISTS]; // list of primitives int m_listindex; // index of next primlist to use s32 m_width; // width in pixels s32 m_height; // height in pixels render_bounds m_bounds; // bounds of the target bool m_keepaspect; // constrain aspect ratio bool m_int_overscan; // allow overscan on integer scaled targets float m_pixel_aspect; // aspect ratio of individual pixels int m_scale_mode; // type of scale to apply int m_int_scale_x; // horizontal integer scale factor int m_int_scale_y; // vertical integer scale factor float m_max_refresh; // maximum refresh rate, 0 or if none int m_orientation; // orientation render_layer_config m_layerconfig; // layer configuration layout_view * m_base_view; // the view at the time of first frame int m_base_orientation; // the orientation at the time of first frame render_layer_config m_base_layerconfig; // the layer configuration at the time of first frame int m_maxtexwidth; // maximum width of a texture int m_maxtexheight; // maximum height of a texture simple_list m_debug_containers; // list of debug containers s32 m_clear_extent_count; // number of clear extents s32 m_clear_extents[MAX_CLEAR_EXTENTS]; // array of clear extents bool m_transform_container; // determines whether the screen container is transformed by the core renderer, // otherwise the respective render API will handle the transformation (scale, offset) }; // ======================> render_manager // contains machine-global information and operations class render_manager { friend class render_target; public: // construction/destruction render_manager(running_machine &machine); ~render_manager(); // getters running_machine &machine() const { return m_machine; } // global queries bool is_live(screen_device &screen) const; float max_update_rate() const; // targets render_target *target_alloc(const internal_layout *layoutfile = nullptr, u32 flags = 0); render_target *target_alloc(util::xml::data_node const &layout, u32 flags = 0); void target_free(render_target *target); const simple_list &targets() const { return m_targetlist; } render_target *first_target() const { return m_targetlist.first(); } render_target *target_by_index(int index) const; // UI targets render_target &ui_target() const { assert(m_ui_target != nullptr); return *m_ui_target; } void set_ui_target(render_target &target) { m_ui_target = ⌖ } float ui_aspect(render_container *rc = nullptr); // UI containers render_container &ui_container() const { assert(m_ui_container != nullptr); return *m_ui_container; } // textures render_texture *texture_alloc(texture_scaler_func scaler = nullptr, void *param = nullptr); void texture_free(render_texture *texture); // fonts render_font *font_alloc(const char *filename = nullptr); void font_free(render_font *font); // reference tracking void invalidate_all(void *refptr); // resolve tag lookups void resolve_tags(); private: // containers render_container *container_alloc(screen_device *screen = nullptr); void container_free(render_container *container); // config callbacks void config_load(config_type cfg_type, util::xml::data_node const *parentnode); void config_save(config_type cfg_type, util::xml::data_node *parentnode); // internal state running_machine & m_machine; // reference back to the machine // array of live targets simple_list m_targetlist; // list of targets render_target * m_ui_target; // current UI target // texture lists u32 m_live_textures; // number of live textures u64 m_texture_id; // rolling texture ID counter fixed_allocator m_texture_allocator;// texture allocator // containers for the UI and for screens render_container * m_ui_container; // UI container simple_list m_screen_container_list; // list of containers for the screen }; #endif // MAME_EMU_RENDER_H