/*************************************************************************** machine.c Controls execution of the core MAME system. **************************************************************************** Copyright Aaron Giles All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name 'MAME' nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY AARON GILES ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL AARON GILES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. **************************************************************************** Since there has been confusion in the past over the order of initialization and other such things, here it is, all spelled out as of January, 2008: main() - does platform-specific init - calls mame_execute() [mame.c] mame_execute() [mame.c] - calls mame_validitychecks() [validity.c] to perform validity checks on all compiled drivers - begins resource tracking (level 1) - calls create_machine [mame.c] to initialize the running_machine structure - calls init_machine() [mame.c] init_machine() [mame.c] - calls fileio_init() [fileio.c] to initialize file I/O info - calls config_init() [config.c] to initialize configuration system - calls input_init() [input.c] to initialize the input system - calls output_init() [output.c] to initialize the output system - calls state_init() [state.c] to initialize save state system - calls state_save_allow_registration() [state.c] to allow registrations - calls palette_init() [palette.c] to initialize palette system - calls render_init() [render.c] to initialize the rendering system - calls ui_init() [ui.c] to initialize the user interface - calls generic_machine_init() [machine/generic.c] to initialize generic machine structures - calls timer_init() [timer.c] to reset the timer system - calls osd_init() [osdepend.h] to do platform-specific initialization - calls input_port_init() [inptport.c] to set up the input ports - calls rom_init() [romload.c] to load the game's ROMs - calls memory_init() [memory.c] to process the game's memory maps - calls the driver's DRIVER_INIT callback - calls device_list_start() [devintrf.c] to start any devices - calls video_init() [video.c] to start the video system - calls tilemap_init() [tilemap.c] to start the tilemap system - calls crosshair_init() [crsshair.c] to configure the crosshairs - calls sound_init() [sound.c] to start the audio system - calls debugger_init() [debugger.c] to set up the debugger - calls the driver's MACHINE_START, SOUND_START, and VIDEO_START callbacks - calls cheat_init() [cheat.c] to initialize the cheat system - calls image_init() [image.c] to initialize the image system - calls config_load_settings() [config.c] to load the configuration file - calls nvram_load [machine/generic.c] to load NVRAM - calls ui_display_startup_screens() [ui.c] to display the the startup screens - begins resource tracking (level 2) - calls soft_reset() [mame.c] to reset all systems -------------------( at this point, we're up and running )---------------------- - calls scheduler->timeslice() [schedule.c] over and over until we exit - ends resource tracking (level 2), freeing all auto_mallocs and timers - calls the nvram_save() [machine/generic.c] to save NVRAM - calls config_save_settings() [config.c] to save the game's configuration - calls all registered exit routines [mame.c] - ends resource tracking (level 1), freeing all auto_mallocs and timers - exits the program ***************************************************************************/ #include "emu.h" #include "emuopts.h" #include "osdepend.h" #include "config.h" #include "debugger.h" #include "render.h" #include "cheat.h" #include "uimain.h" #include "uiinput.h" #include "crsshair.h" #include "validity.h" #include "unzip.h" #include "debug/debugcon.h" #include //************************************************************************** // GLOBAL VARIABLES //************************************************************************** // a giant string buffer for temporary strings static char giant_string_buffer[65536] = { 0 }; //************************************************************************** // RUNNING MACHINE //************************************************************************** //------------------------------------------------- // running_machine - constructor //------------------------------------------------- running_machine::running_machine(const machine_config &_config, osd_interface &osd, bool exit_to_game_select) : firstcpu(NULL), primary_screen(NULL), palette(NULL), pens(NULL), colortable(NULL), shadow_table(NULL), debug_flags(0), palette_data(NULL), romload_data(NULL), ui_input_data(NULL), debugcpu_data(NULL), generic_machine_data(NULL), m_config(_config), m_system(_config.gamedrv()), m_osd(osd), m_cheat(NULL), m_render(NULL), m_input(NULL), m_sound(NULL), m_video(NULL), m_tilemap(NULL), m_debug_view(NULL), m_current_phase(MACHINE_PHASE_PREINIT), m_paused(false), m_hard_reset_pending(false), m_exit_pending(false), m_exit_to_game_select(exit_to_game_select), m_new_driver_pending(NULL), m_soft_reset_timer(NULL), m_rand_seed(0x9d14abd7), m_ui_active(_config.options().ui_active()), m_basename(_config.gamedrv().name), m_sample_rate(_config.options().sample_rate()), m_logfile(NULL), m_saveload_schedule(SLS_NONE), m_saveload_schedule_time(attotime::zero), m_saveload_searchpath(NULL), m_logerror_list(m_respool), m_save(*this), m_memory(*this), m_ioport(*this), m_scheduler(*this) { memset(gfx, 0, sizeof(gfx)); memset(&m_base_time, 0, sizeof(m_base_time)); // set the machine on all devices device_iterator iter(root_device()); for (device_t *device = iter.first(); device != NULL; device = iter.next()) device->set_machine(*this); // find devices for (device_t *device = iter.first(); device != NULL; device = iter.next()) if (dynamic_cast(device) != NULL) { firstcpu = downcast(device); break; } screen_device_iterator screeniter(root_device()); primary_screen = screeniter.first(); // fetch core options if (options().debug()) debug_flags = (DEBUG_FLAG_ENABLED | DEBUG_FLAG_CALL_HOOK) | (options().debug_internal() ? 0 : DEBUG_FLAG_OSD_ENABLED); } //------------------------------------------------- // ~running_machine - destructor //------------------------------------------------- running_machine::~running_machine() { } //------------------------------------------------- // describe_context - return a string describing // which device is currently executing and its // PC //------------------------------------------------- const char *running_machine::describe_context() { device_execute_interface *executing = m_scheduler.currently_executing(); if (executing != NULL) { cpu_device *cpu = downcast(&executing->device()); if (cpu != NULL) m_context.printf("'%s' (%s)", cpu->tag(), core_i64_format(cpu->pc(), cpu->space(AS_PROGRAM)->logaddrchars(), cpu->is_octal())); } else m_context.cpy("(no context)"); return m_context; } //------------------------------------------------- // start - initialize the emulated machine //------------------------------------------------- void running_machine::start() { // initialize basic can't-fail systems here config_init(*this); m_input = auto_alloc(*this, input_manager(*this)); output_init(*this); palette_init(*this); m_render = auto_alloc(*this, render_manager(*this)); generic_machine_init(*this); // allocate a soft_reset timer m_soft_reset_timer = m_scheduler.timer_alloc(timer_expired_delegate(FUNC(running_machine::soft_reset), this)); // init the osd layer m_osd.init(*this); // create the video manager m_video = auto_alloc(*this, video_manager(*this)); ui_init(*this); // initialize the base time (needed for doing record/playback) ::time(&m_base_time); // initialize the input system and input ports for the game // this must be done before memory_init in order to allow specifying // callbacks based on input port tags time_t newbase = m_ioport.initialize(); if (newbase != 0) m_base_time = newbase; // intialize UI input ui_input_init(*this); // initialize the streams engine before the sound devices start m_sound = auto_alloc(*this, sound_manager(*this)); // first load ROMs, then populate memory, and finally initialize CPUs // these operations must proceed in this order rom_init(*this); m_memory.initialize(); m_watchdog_timer = m_scheduler.timer_alloc(timer_expired_delegate(FUNC(running_machine::watchdog_fired), this)); save().save_item(NAME(m_watchdog_enabled)); save().save_item(NAME(m_watchdog_counter)); // allocate the gfx elements prior to device initialization gfx_init(*this); // initialize image devices image_init(*this); m_tilemap = auto_alloc(*this, tilemap_manager(*this)); crosshair_init(*this); network_init(*this); // initialize the debugger if ((debug_flags & DEBUG_FLAG_ENABLED) != 0) debugger_init(*this); // call the game driver's init function // this is where decryption is done and memory maps are altered // so this location in the init order is important ui_set_startup_text(*this, "Initializing...", true); // register callbacks for the devices, then start them add_notifier(MACHINE_NOTIFY_RESET, machine_notify_delegate(FUNC(running_machine::reset_all_devices), this)); add_notifier(MACHINE_NOTIFY_EXIT, machine_notify_delegate(FUNC(running_machine::stop_all_devices), this)); save().register_presave(save_prepost_delegate(FUNC(running_machine::presave_all_devices), this)); save().register_postload(save_prepost_delegate(FUNC(running_machine::postload_all_devices), this)); start_all_devices(); // if we're coming in with a savegame request, process it now const char *savegame = options().state(); if (savegame[0] != 0) schedule_load(savegame); // if we're in autosave mode, schedule a load else if (options().autosave() && (m_system.flags & GAME_SUPPORTS_SAVE) != 0) schedule_load("auto"); // set up the cheat engine m_cheat = auto_alloc(*this, cheat_manager(*this)); // disallow save state registrations starting here m_save.allow_registration(false); } //------------------------------------------------- // add_dynamic_device - dynamically add a device //------------------------------------------------- device_t &running_machine::add_dynamic_device(device_t &owner, device_type type, const char *tag, UINT32 clock) { // add the device in a standard manner device_t *device = const_cast(m_config).device_add(&owner, tag, type, clock); // notify this device and all its subdevices that they are now configured device_iterator iter(root_device()); for (device_t *device = iter.first(); device != NULL; device = iter.next()) if (!device->configured()) device->config_complete(); return *device; } //------------------------------------------------- // run - execute the machine //------------------------------------------------- int running_machine::run(bool firstrun) { int error = MAMERR_NONE; // use try/catch for deep error recovery try { // move to the init phase m_current_phase = MACHINE_PHASE_INIT; // if we have a logfile, set up the callback if (options().log()) { m_logfile = auto_alloc(*this, emu_file(OPEN_FLAG_WRITE | OPEN_FLAG_CREATE | OPEN_FLAG_CREATE_PATHS)); file_error filerr = m_logfile->open("error.log"); assert_always(filerr == FILERR_NONE, "unable to open log file"); add_logerror_callback(logfile_callback); } // then finish setting up our local machine start(); // load the configuration settings and NVRAM bool settingsloaded = config_load_settings(*this); nvram_load(*this); sound().ui_mute(false); // display the startup screens ui_display_startup_screens(*this, firstrun, !settingsloaded); // perform a soft reset -- this takes us to the running phase soft_reset(); // run the CPUs until a reset or exit m_hard_reset_pending = false; while ((!m_hard_reset_pending && !m_exit_pending) || m_saveload_schedule != SLS_NONE) { g_profiler.start(PROFILER_EXTRA); // execute CPUs if not paused if (!m_paused) m_scheduler.timeslice(); // otherwise, just pump video updates through else m_video->frame_update(); // handle save/load if (m_saveload_schedule != SLS_NONE) handle_saveload(); g_profiler.stop(); } // and out via the exit phase m_current_phase = MACHINE_PHASE_EXIT; // save the NVRAM and configuration sound().ui_mute(true); nvram_save(*this); config_save_settings(*this); } catch (emu_fatalerror &fatal) { mame_printf_error("%s\n", fatal.string()); error = MAMERR_FATALERROR; if (fatal.exitcode() != 0) error = fatal.exitcode(); } catch (emu_exception &) { mame_printf_error("Caught unhandled emulator exception\n"); error = MAMERR_FATALERROR; } catch (std::bad_alloc &) { mame_printf_error("Out of memory!\n"); error = MAMERR_FATALERROR; } // make sure our phase is set properly before cleaning up, // in case we got here via exception m_current_phase = MACHINE_PHASE_EXIT; // call all exit callbacks registered call_notifiers(MACHINE_NOTIFY_EXIT); zip_file_cache_clear(); // close the logfile auto_free(*this, m_logfile); return error; } //------------------------------------------------- // schedule_exit - schedule a clean exit //------------------------------------------------- void running_machine::schedule_exit() { // if we are in-game but we started with the select game menu, return to that instead if (m_exit_to_game_select && options().system_name()[0] != 0) { options().set_system_name(""); ui_menu_force_game_select(*this, &render().ui_container()); } // otherwise, exit for real else m_exit_pending = true; // if we're executing, abort out immediately m_scheduler.eat_all_cycles(); // if we're autosaving on exit, schedule a save as well if (options().autosave() && (m_system.flags & GAME_SUPPORTS_SAVE) && this->time() > attotime::zero) schedule_save("auto"); } //------------------------------------------------- // schedule_hard_reset - schedule a hard-reset of // the machine //------------------------------------------------- void running_machine::schedule_hard_reset() { m_hard_reset_pending = true; // if we're executing, abort out immediately m_scheduler.eat_all_cycles(); } //------------------------------------------------- // schedule_soft_reset - schedule a soft-reset of // the system //------------------------------------------------- void running_machine::schedule_soft_reset() { m_soft_reset_timer->adjust(attotime::zero); // we can't be paused since the timer needs to fire resume(); // if we're executing, abort out immediately m_scheduler.eat_all_cycles(); } //------------------------------------------------- // schedule_new_driver - schedule a new game to // be loaded //------------------------------------------------- void running_machine::schedule_new_driver(const game_driver &driver) { m_hard_reset_pending = true; m_new_driver_pending = &driver; // if we're executing, abort out immediately m_scheduler.eat_all_cycles(); } //------------------------------------------------- // set_saveload_filename - specifies the filename // for state loading/saving //------------------------------------------------- void running_machine::set_saveload_filename(const char *filename) { // free any existing request and allocate a copy of the requested name if (osd_is_absolute_path(filename)) { m_saveload_searchpath = NULL; m_saveload_pending_file.cpy(filename); } else { m_saveload_searchpath = options().state_directory(); m_saveload_pending_file.cpy(basename()).cat(PATH_SEPARATOR).cat(filename).cat(".sta"); } } //------------------------------------------------- // schedule_save - schedule a save to occur as // soon as possible //------------------------------------------------- void running_machine::schedule_save(const char *filename) { // specify the filename to save or load set_saveload_filename(filename); // note the start time and set a timer for the next timeslice to actually schedule it m_saveload_schedule = SLS_SAVE; m_saveload_schedule_time = this->time(); // we can't be paused since we need to clear out anonymous timers resume(); } //------------------------------------------------- // schedule_load - schedule a load to occur as // soon as possible //------------------------------------------------- void running_machine::schedule_load(const char *filename) { // specify the filename to save or load set_saveload_filename(filename); // note the start time and set a timer for the next timeslice to actually schedule it m_saveload_schedule = SLS_LOAD; m_saveload_schedule_time = this->time(); // we can't be paused since we need to clear out anonymous timers resume(); } //------------------------------------------------- // pause - pause the system //------------------------------------------------- void running_machine::pause() { // ignore if nothing has changed if (m_paused) return; m_paused = true; // call the callbacks call_notifiers(MACHINE_NOTIFY_PAUSE); } //------------------------------------------------- // resume - resume the system //------------------------------------------------- void running_machine::resume() { // ignore if nothing has changed if (!m_paused) return; m_paused = false; // call the callbacks call_notifiers(MACHINE_NOTIFY_RESUME); } //------------------------------------------------- // add_notifier - add a notifier of the // given type //------------------------------------------------- void running_machine::add_notifier(machine_notification event, machine_notify_delegate callback) { assert_always(m_current_phase == MACHINE_PHASE_INIT, "Can only call add_notifier at init time!"); // exit notifiers are added to the head, and executed in reverse order if (event == MACHINE_NOTIFY_EXIT) m_notifier_list[event].prepend(*global_alloc(notifier_callback_item(callback))); // all other notifiers are added to the tail, and executed in the order registered else m_notifier_list[event].append(*global_alloc(notifier_callback_item(callback))); } //------------------------------------------------- // add_logerror_callback - adds a callback to be // called on logerror() //------------------------------------------------- void running_machine::add_logerror_callback(logerror_callback callback) { assert_always(m_current_phase == MACHINE_PHASE_INIT, "Can only call add_logerror_callback at init time!"); m_logerror_list.append(*auto_alloc(*this, logerror_callback_item(callback))); } //------------------------------------------------- // logerror - printf-style error logging //------------------------------------------------- void CLIB_DECL running_machine::logerror(const char *format, ...) { // process only if there is a target if (m_logerror_list.first() != NULL) { va_list arg; va_start(arg, format); vlogerror(format, arg); va_end(arg); } } //------------------------------------------------- // vlogerror - vprintf-style error logging //------------------------------------------------- void CLIB_DECL running_machine::vlogerror(const char *format, va_list args) { // process only if there is a target if (m_logerror_list.first() != NULL) { g_profiler.start(PROFILER_LOGERROR); // dump to the buffer vsnprintf(giant_string_buffer, ARRAY_LENGTH(giant_string_buffer), format, args); // log to all callbacks for (logerror_callback_item *cb = m_logerror_list.first(); cb != NULL; cb = cb->next()) (*cb->m_func)(*this, giant_string_buffer); g_profiler.stop(); } } //------------------------------------------------- // base_datetime - retrieve the time of the host // system; useful for RTC implementations //------------------------------------------------- void running_machine::base_datetime(system_time &systime) { systime.set(m_base_time); } //------------------------------------------------- // current_datetime - retrieve the current time // (offset by the base); useful for RTC // implementations //------------------------------------------------- void running_machine::current_datetime(system_time &systime) { systime.set(m_base_time + this->time().seconds); } //------------------------------------------------- // rand - standardized random numbers //------------------------------------------------- UINT32 running_machine::rand() { m_rand_seed = 1664525 * m_rand_seed + 1013904223; // return rotated by 16 bits; the low bits have a short period // and are frequently used return (m_rand_seed >> 16) | (m_rand_seed << 16); } //------------------------------------------------- // call_notifiers - call notifiers of the given // type //------------------------------------------------- void running_machine::call_notifiers(machine_notification which) { for (notifier_callback_item *cb = m_notifier_list[which].first(); cb != NULL; cb = cb->next()) cb->m_func(); } //------------------------------------------------- // handle_saveload - attempt to perform a save // or load //------------------------------------------------- void running_machine::handle_saveload() { UINT32 openflags = (m_saveload_schedule == SLS_LOAD) ? OPEN_FLAG_READ : (OPEN_FLAG_WRITE | OPEN_FLAG_CREATE | OPEN_FLAG_CREATE_PATHS); const char *opnamed = (m_saveload_schedule == SLS_LOAD) ? "loaded" : "saved"; const char *opname = (m_saveload_schedule == SLS_LOAD) ? "load" : "save"; file_error filerr = FILERR_NONE; // if no name, bail emu_file file(m_saveload_searchpath, openflags); if (!m_saveload_pending_file) goto cancel; // if there are anonymous timers, we can't save just yet, and we can't load yet either // because the timers might overwrite data we have loaded if (!m_scheduler.can_save()) { // if more than a second has passed, we're probably screwed if ((this->time() - m_saveload_schedule_time) > attotime::from_seconds(1)) { popmessage("Unable to %s due to pending anonymous timers. See error.log for details.", opname); goto cancel; } return; } // open the file filerr = file.open(m_saveload_pending_file); if (filerr == FILERR_NONE) { // read/write the save state save_error saverr = (m_saveload_schedule == SLS_LOAD) ? m_save.read_file(file) : m_save.write_file(file); // handle the result switch (saverr) { case STATERR_ILLEGAL_REGISTRATIONS: popmessage("Error: Unable to %s state due to illegal registrations. See error.log for details.", opname); break; case STATERR_INVALID_HEADER: popmessage("Error: Unable to %s state due to an invalid header. Make sure the save state is correct for this game.", opname); break; case STATERR_READ_ERROR: popmessage("Error: Unable to %s state due to a read error (file is likely corrupt).", opname); break; case STATERR_WRITE_ERROR: popmessage("Error: Unable to %s state due to a write error. Verify there is enough disk space.", opname); break; case STATERR_NONE: if (!(m_system.flags & GAME_SUPPORTS_SAVE)) popmessage("State successfully %s.\nWarning: Save states are not officially supported for this game.", opnamed); else popmessage("State successfully %s.", opnamed); break; default: popmessage("Error: Unknown error during state %s.", opnamed); break; } // close and perhaps delete the file if (saverr != STATERR_NONE && m_saveload_schedule == SLS_SAVE) file.remove_on_close(); } else popmessage("Error: Failed to open file for %s operation.", opname); // unschedule the operation cancel: m_saveload_pending_file.reset(); m_saveload_searchpath = NULL; m_saveload_schedule = SLS_NONE; } //------------------------------------------------- // soft_reset - actually perform a soft-reset // of the system //------------------------------------------------- void running_machine::soft_reset(void *ptr, INT32 param) { logerror("Soft reset\n"); // temporarily in the reset phase m_current_phase = MACHINE_PHASE_RESET; // set up the watchdog timer; only start off enabled if explicitly configured m_watchdog_enabled = (config().m_watchdog_vblank_count != 0 || config().m_watchdog_time != attotime::zero); watchdog_reset(); m_watchdog_enabled = true; // call all registered reset callbacks call_notifiers(MACHINE_NOTIFY_RESET); // now we're running m_current_phase = MACHINE_PHASE_RUNNING; } //------------------------------------------------- // watchdog_reset - reset the watchdog timer //------------------------------------------------- void running_machine::watchdog_reset() { // if we're not enabled, skip it if (!m_watchdog_enabled) m_watchdog_timer->adjust(attotime::never); // VBLANK-based watchdog? else if (config().m_watchdog_vblank_count != 0) { // register a VBLANK callback for the primary screen m_watchdog_counter = config().m_watchdog_vblank_count; if (primary_screen != NULL) primary_screen->register_vblank_callback(vblank_state_delegate(FUNC(running_machine::watchdog_vblank), this)); } // timer-based watchdog? else if (config().m_watchdog_time != attotime::zero) m_watchdog_timer->adjust(config().m_watchdog_time); // default to an obscene amount of time (3 seconds) else m_watchdog_timer->adjust(attotime::from_seconds(3)); } //------------------------------------------------- // watchdog_enable - reset the watchdog timer //------------------------------------------------- void running_machine::watchdog_enable(bool enable) { // when re-enabled, we reset our state if (m_watchdog_enabled != enable) { m_watchdog_enabled = enable; watchdog_reset(); } } //------------------------------------------------- // watchdog_fired - watchdog timer callback //------------------------------------------------- void running_machine::watchdog_fired(void *ptr, INT32 param) { logerror("Reset caused by the watchdog!!!\n"); bool verbose = options().verbose(); #ifdef MAME_DEBUG verbose = true; #endif if (verbose) popmessage("Reset caused by the watchdog!!!\n"); schedule_soft_reset(); } //------------------------------------------------- // watchdog_vblank - VBLANK state callback for // watchdog timers //------------------------------------------------- void running_machine::watchdog_vblank(screen_device &screen, bool vblank_state) { // VBLANK starting if (vblank_state && m_watchdog_enabled) { // check the watchdog if (config().m_watchdog_vblank_count != 0) if (--m_watchdog_counter == 0) watchdog_fired(); } } //------------------------------------------------- // logfile_callback - callback for logging to // logfile //------------------------------------------------- void running_machine::logfile_callback(running_machine &machine, const char *buffer) { if (machine.m_logfile != NULL) machine.m_logfile->puts(buffer); } //------------------------------------------------- // start_all_devices - start any unstarted devices //------------------------------------------------- void running_machine::start_all_devices() { // iterate through the devices int last_failed_starts = -1; while (last_failed_starts != 0) { // iterate over all devices int failed_starts = 0; device_iterator iter(root_device()); for (device_t *device = iter.first(); device != NULL; device = iter.next()) if (!device->started()) { // attempt to start the device, catching any expected exceptions try { // if the device doesn't have a machine yet, set it first if (device->m_machine == NULL) device->set_machine(*this); // now start the device mame_printf_verbose("Starting %s '%s'\n", device->name(), device->tag()); device->start(); } // handle missing dependencies by moving the device to the end catch (device_missing_dependencies &) { // if we're the end, fail mame_printf_verbose(" (missing dependencies; rescheduling)\n"); failed_starts++; } } // each iteration should reduce the number of failed starts; error if // this doesn't happen if (failed_starts == last_failed_starts) throw emu_fatalerror("Circular dependency in device startup!"); last_failed_starts = failed_starts; } } //------------------------------------------------- // reset_all_devices - reset all devices in the // hierarchy //------------------------------------------------- void running_machine::reset_all_devices() { // reset the root and it will reset children root_device().reset(); } //------------------------------------------------- // stop_all_devices - stop all the devices in the // hierarchy //------------------------------------------------- void running_machine::stop_all_devices() { // first let the debugger save comments if ((debug_flags & DEBUG_FLAG_ENABLED) != 0) debug_comment_save(*this); // iterate over devices and stop them device_iterator iter(root_device()); for (device_t *device = iter.first(); device != NULL; device = iter.next()) device->stop(); // then nuke the device tree // global_free(m_root_device); } //------------------------------------------------- // presave_all_devices - tell all the devices we // are about to save //------------------------------------------------- void running_machine::presave_all_devices() { device_iterator iter(root_device()); for (device_t *device = iter.first(); device != NULL; device = iter.next()) device->pre_save(); } //------------------------------------------------- // postload_all_devices - tell all the devices we // just completed a load //------------------------------------------------- void running_machine::postload_all_devices() { device_iterator iter(root_device()); for (device_t *device = iter.first(); device != NULL; device = iter.next()) device->post_load(); } //************************************************************************** // CALLBACK ITEMS //************************************************************************** //------------------------------------------------- // notifier_callback_item - constructor //------------------------------------------------- running_machine::notifier_callback_item::notifier_callback_item(machine_notify_delegate func) : m_next(NULL), m_func(func) { } //------------------------------------------------- // logerror_callback_item - constructor //------------------------------------------------- running_machine::logerror_callback_item::logerror_callback_item(logerror_callback func) : m_next(NULL), m_func(func) { } //************************************************************************** // SYSTEM TIME //************************************************************************** //------------------------------------------------- // system_time - constructor //------------------------------------------------- system_time::system_time() { set(0); } //------------------------------------------------- // set - fills out a system_time structure //------------------------------------------------- void system_time::set(time_t t) { time = t; local_time.set(*localtime(&t)); utc_time.set(*gmtime(&t)); } //------------------------------------------------- // get_tm_time - converts a tm struction to a // MAME mame_system_tm structure //------------------------------------------------- void system_time::full_time::set(struct tm &t) { second = t.tm_sec; minute = t.tm_min; hour = t.tm_hour; mday = t.tm_mday; month = t.tm_mon; year = t.tm_year + 1900; weekday = t.tm_wday; day = t.tm_yday; is_dst = t.tm_isdst; }