// license:BSD-3-Clause // copyright-holders:Aaron Giles,Paul Priest /*************************************************************************** info.c Dumps the MAME internal data as an XML file. ***************************************************************************/ #include "emu.h" #include "emuopts.h" #include "machine/ram.h" #include "sound/samples.h" #include "info.h" #include "xmlfile.h" #include "config.h" #include "softlist.h" #include //************************************************************************** // GLOBAL VARIABLES //************************************************************************** // DTD string describing the data const char info_xml_creator::s_dtd_string[] = "\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\t\n" "\t\t\n" "\t\t\n" "\t\t\n" "\t\t\n" "\t\t\n" "\t\t\n" "\t\t\n" "\t\t\n" "\t\t\n" "\t\t\n" "\t\t\n" "\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\n" "\t\t\t\n" "\t\t\n" "\t\t\t\n" "\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\n" "\t\t\t\n" "\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\t\n" "\t\t\t\t\n" "\t\t\t\t\n" "\t\t\t\t\n" "\t\t\t\t\n" "\t\t\t\t\n" "\t\t\t\t\n" "\t\t\t\t\n" "\t\t\t\t\n" "\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\t\n" "\t\t\t\t\n" "\t\t\t\t\n" "\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\t\n" "\t\t\t\t\n" "\t\t\t\t\n" "\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\t\n" "\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\t\n" "\t\t\t\t\n" "\t\t\t\n" "\t\t\t\t\n" "\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\t\n" "\t\t\t\t\n" "\t\t\t\t\n" "\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\t\n" "\t\t\n" "\t\t\t\n" "]>"; //************************************************************************** // INFO XML CREATOR //************************************************************************** //------------------------------------------------- // info_xml_creator - constructor //------------------------------------------------- info_xml_creator::info_xml_creator(driver_enumerator &drivlist) : m_output(nullptr), m_drivlist(drivlist), m_lookup_options(m_drivlist.options()) { m_lookup_options.remove_device_options(); } //------------------------------------------------- // output_mame_xml - print the XML information // for all known games //------------------------------------------------- void info_xml_creator::output(FILE *out) { m_output = out; // output the DTD fprintf(m_output, "\n"); std::string dtd(s_dtd_string); strreplace(dtd, "__XML_ROOT__", emulator_info::get_xml_root()); strreplace(dtd, "__XML_TOP__", emulator_info::get_xml_top()); fprintf(m_output, "%s\n\n", dtd.c_str()); // top-level tag fprintf(m_output, "<%s build=\"%s\" debug=\"" #ifdef MAME_DEBUG "yes" #else "no" #endif "\" mameconfig=\"%d\">\n", emulator_info::get_xml_root(), xml_normalize_string(build_version), CONFIG_VERSION ); // iterate through the drivers, outputting one at a time while (m_drivlist.next()) output_one(); // output devices (both devices with roms and slot devices) output_devices(); // close the top level tag fprintf(m_output, "\n",emulator_info::get_xml_root()); } //------------------------------------------------- // output_one - print the XML information // for one particular game driver //------------------------------------------------- void info_xml_creator::output_one() { // no action if not a game const game_driver &driver = m_drivlist.driver(); if (driver.flags & MACHINE_NO_STANDALONE) return; // allocate input ports machine_config &config = m_drivlist.config(); ioport_list portlist; std::string errors; device_iterator iter(config.root_device()); for (device_t *device = iter.first(); device != nullptr; device = iter.next()) portlist.append(*device, errors); // print the header and the game name fprintf(m_output, "\t<%s",emulator_info::get_xml_top()); fprintf(m_output, " name=\"%s\"", xml_normalize_string(driver.name)); // strip away any path information from the source_file and output it const char *start = strrchr(driver.source_file, '/'); if (start == nullptr) start = strrchr(driver.source_file, '\\'); if (start == nullptr) start = driver.source_file - 1; fprintf(m_output, " sourcefile=\"%s\"", xml_normalize_string(start + 1)); // append bios and runnable flags if (driver.flags & MACHINE_IS_BIOS_ROOT) fprintf(m_output, " isbios=\"yes\""); if (driver.flags & MACHINE_NO_STANDALONE) fprintf(m_output, " runnable=\"no\""); if (driver.flags & MACHINE_MECHANICAL) fprintf(m_output, " ismechanical=\"yes\""); // display clone information int clone_of = m_drivlist.find(driver.parent); if (clone_of != -1 && !(m_drivlist.driver(clone_of).flags & MACHINE_IS_BIOS_ROOT)) fprintf(m_output, " cloneof=\"%s\"", xml_normalize_string(m_drivlist.driver(clone_of).name)); if (clone_of != -1) fprintf(m_output, " romof=\"%s\"", xml_normalize_string(m_drivlist.driver(clone_of).name)); // display sample information and close the game tag output_sampleof(); fprintf(m_output, ">\n"); // output game description if (driver.description != nullptr) fprintf(m_output, "\t\t%s\n", xml_normalize_string(driver.description)); // print the year only if is a number or another allowed character (? or +) if (driver.year != nullptr && strspn(driver.year, "0123456789?+") == strlen(driver.year)) fprintf(m_output, "\t\t%s\n", xml_normalize_string(driver.year)); // print the manufacturer information if (driver.manufacturer != nullptr) fprintf(m_output, "\t\t%s\n", xml_normalize_string(driver.manufacturer)); // now print various additional information output_bios(); output_rom(m_drivlist.config().root_device()); output_device_roms(); output_sample(m_drivlist.config().root_device()); output_chips(m_drivlist.config().root_device(), ""); output_display(m_drivlist.config().root_device(), ""); output_sound(m_drivlist.config().root_device()); output_input(portlist); output_switches(portlist, "", IPT_DIPSWITCH, "dipswitch", "dipvalue"); output_switches(portlist, "", IPT_CONFIG, "configuration", "confsetting"); output_ports(portlist); output_adjusters(portlist); output_driver(); output_images(m_drivlist.config().root_device(), ""); output_slots(m_drivlist.config().root_device(), ""); output_software_list(); output_ramoptions(); // close the topmost tag fprintf(m_output, "\t\n",emulator_info::get_xml_top()); } //------------------------------------------------- // output_one_device - print the XML info for // a single device //------------------------------------------------- void info_xml_creator::output_one_device(device_t &device, const char *devtag) { bool has_speaker = FALSE, has_input = FALSE; // check if the device adds speakers to the system sound_interface_iterator snditer(device); if (snditer.first() != nullptr) has_speaker = TRUE; // generate input list ioport_list portlist; std::string errors; device_iterator iptiter(device); for (device_t *dev = iptiter.first(); dev != nullptr; dev = iptiter.next()) portlist.append(*dev, errors); // check if the device adds player inputs (other than dsw and configs) to the system for (ioport_port *port = portlist.first(); port != nullptr; port = port->next()) for (ioport_field *field = port->first_field(); field != nullptr; field = field->next()) if (field->type() >= IPT_START1 && field->type() < IPT_UI_FIRST) { has_input = TRUE; break; } // start to output info fprintf(m_output, "\t<%s", emulator_info::get_xml_top()); fprintf(m_output, " name=\"%s\"", xml_normalize_string(device.shortname())); std::string src(device.source()); strreplace(src,"../", ""); fprintf(m_output, " sourcefile=\"%s\"", xml_normalize_string(src.c_str())); fprintf(m_output, " isdevice=\"yes\""); fprintf(m_output, " runnable=\"no\""); output_sampleof(); fprintf(m_output, ">\n"); fprintf(m_output, "\t\t%s\n", xml_normalize_string(device.name())); output_rom(device); samples_device *samples = dynamic_cast(&device); if (samples==nullptr) output_sample(device); // ignore samples_device itself output_chips(device, devtag); output_display(device, devtag); if (has_speaker) output_sound(device); if (has_input) output_input(portlist); output_switches(portlist, devtag, IPT_DIPSWITCH, "dipswitch", "dipvalue"); output_switches(portlist, devtag, IPT_CONFIG, "configuration", "confsetting"); output_adjusters(portlist); output_images(device, devtag); output_slots(device, devtag); fprintf(m_output, "\t\n", emulator_info::get_xml_top()); } //------------------------------------------------- // output_devices - print the XML info for devices // with roms and for devices that can be mounted // in slots // The current solution works to some extent, but // it is limited by the fact that devices are only // acknowledged when attached to a driver (so that // for instance sub-sub-devices could never appear // in the xml input if they are not also attached // directly to a driver as device or sub-device) //------------------------------------------------- void info_xml_creator::output_devices() { m_drivlist.reset(); std::unordered_set shortnames; while (m_drivlist.next()) { // first, run through devices with roms which belongs to the default configuration device_iterator deviter(m_drivlist.config().root_device()); for (device_t *device = deviter.first(); device != nullptr; device = deviter.next()) { if (device->owner() != nullptr && device->shortname()!= nullptr && strlen(device->shortname())!=0) { if (shortnames.insert(device->shortname()).second) output_one_device(*device, device->tag()); } } // then, run through slot devices slot_interface_iterator iter(m_drivlist.config().root_device()); for (const device_slot_interface *slot = iter.first(); slot != nullptr; slot = iter.next()) { for (const device_slot_option *option = slot->first_option(); option != nullptr; option = option->next()) { std::string temptag("_"); temptag.append(option->name()); device_t *dev = const_cast(m_drivlist.config()).device_add(&m_drivlist.config().root_device(), temptag.c_str(), option->devtype(), 0); // notify this device and all its subdevices that they are now configured device_iterator subiter(*dev); for (device_t *device = subiter.first(); device != nullptr; device = subiter.next()) if (!device->configured()) device->config_complete(); if (shortnames.insert(dev->shortname()).second) output_one_device(*dev, temptag.c_str()); // also, check for subdevices with ROMs (a few devices are missed otherwise, e.g. MPU401) device_iterator deviter2(*dev); for (device_t *device = deviter2.first(); device != nullptr; device = deviter2.next()) { if (device->owner() == dev && device->shortname()!= nullptr && strlen(device->shortname())!=0) { if (shortnames.insert(device->shortname()).second) output_one_device(*device, device->tag()); } } const_cast(m_drivlist.config()).device_remove(&m_drivlist.config().root_device(), temptag.c_str()); } } } } //------------------------------------------------ // output_device_roms - when a driver uses roms // included in a device set, print a reference //------------------------------------------------- void info_xml_creator::output_device_roms() { device_iterator deviter(m_drivlist.config().root_device()); for (device_t *device = deviter.first(); device != nullptr; device = deviter.next()) if (device->owner() != nullptr && device->shortname()!= nullptr && strlen(device->shortname())!=0) fprintf(m_output, "\t\t\n", xml_normalize_string(device->shortname())); } //------------------------------------------------ // output_sampleof - print the 'sampleof' // attribute, if appropriate //------------------------------------------------- void info_xml_creator::output_sampleof() { // iterate over sample devices samples_device_iterator iter(m_drivlist.config().root_device()); for (samples_device *device = iter.first(); device != nullptr; device = iter.next()) { samples_iterator sampiter(*device); if (sampiter.altbasename() != nullptr) { fprintf(m_output, " sampleof=\"%s\"", xml_normalize_string(sampiter.altbasename())); // must stop here, as there can only be one attribute of the same name return; } } } //------------------------------------------------- // output_bios - print the BIOS set for a // game //------------------------------------------------- void info_xml_creator::output_bios() { // skip if no ROMs if (m_drivlist.driver().rom == nullptr) return; // iterate over ROM entries and look for BIOSes for (const rom_entry *rom = m_drivlist.driver().rom; !ROMENTRY_ISEND(rom); rom++) if (ROMENTRY_ISSYSTEM_BIOS(rom)) { // output extracted name and descriptions fprintf(m_output, "\t\t\n"); } } //------------------------------------------------- // output_rom - print the roms section of // the XML output //------------------------------------------------- void info_xml_creator::output_rom(device_t &device) { // iterate over 3 different ROM "types": BIOS, ROMs, DISKs for (int rom_type = 0; rom_type < 3; rom_type++) for (const rom_entry *region = rom_first_region(device); region != nullptr; region = rom_next_region(region)) { bool is_disk = ROMREGION_ISDISKDATA(region); // disk regions only work for disks if ((is_disk && rom_type != 2) || (!is_disk && rom_type == 2)) continue; // iterate through ROM entries for (const rom_entry *rom = rom_first_file(region); rom != nullptr; rom = rom_next_file(rom)) { bool is_bios = ROM_GETBIOSFLAGS(rom); const char *name = ROM_GETNAME(rom); int offset = ROM_GETOFFSET(rom); const char *merge_name = nullptr; char bios_name[100]; // BIOS ROMs only apply to bioses if ((is_bios && rom_type != 0) || (!is_bios && rom_type == 0)) continue; // if we have a valid ROM and we are a clone, see if we can find the parent ROM hash_collection hashes(ROM_GETHASHDATA(rom)); if (!hashes.flag(hash_collection::FLAG_NO_DUMP)) merge_name = get_merge_name(hashes); if (&device != &m_drivlist.config().root_device()) merge_name = nullptr; // scan for a BIOS name bios_name[0] = 0; if (!is_disk && is_bios) { // scan backwards through the ROM entries for (const rom_entry *brom = rom - 1; brom != m_drivlist.driver().rom; brom--) if (ROMENTRY_ISSYSTEM_BIOS(brom)) { strcpy(bios_name, ROM_GETNAME(brom)); break; } } std::string output; // opening tag if (!is_disk) output.append("\t\t\n"); fprintf(m_output, "%s", output.c_str()); } } } //------------------------------------------------- // output_sample - print a list of all // samples referenced by a game_driver //------------------------------------------------- void info_xml_creator::output_sample(device_t &device) { // iterate over sample devices samples_device_iterator sampiter(device); for (samples_device *samples = sampiter.first(); samples != nullptr; samples = sampiter.next()) { samples_iterator iter(*samples); std::unordered_set already_printed; for (const char *samplename = iter.first(); samplename != nullptr; samplename = iter.next()) { // filter out duplicates if (already_printed.insert(samplename).second) continue; // output the sample name fprintf(m_output, "\t\t\n", xml_normalize_string(samplename)); } } } /*------------------------------------------------- output_chips - print a list of CPU and sound chips used by a game -------------------------------------------------*/ void info_xml_creator::output_chips(device_t &device, const char *root_tag) { // iterate over executable devices execute_interface_iterator execiter(device); for (device_execute_interface *exec = execiter.first(); exec != nullptr; exec = execiter.next()) { if (strcmp(exec->device().tag(), device.tag())) { std::string newtag(exec->device().tag()), oldtag(":"); newtag = newtag.substr(newtag.find(oldtag.append(root_tag)) + oldtag.length()); fprintf(m_output, "\t\tdevice().name())); fprintf(m_output, " clock=\"%d\"", exec->device().clock()); fprintf(m_output, "/>\n"); } } // iterate over sound devices sound_interface_iterator sounditer(device); for (device_sound_interface *sound = sounditer.first(); sound != nullptr; sound = sounditer.next()) { if (strcmp(sound->device().tag(), device.tag())) { std::string newtag(sound->device().tag()), oldtag(":"); newtag = newtag.substr(newtag.find(oldtag.append(root_tag)) + oldtag.length()); fprintf(m_output, "\t\tdevice().name())); if (sound->device().clock() != 0) fprintf(m_output, " clock=\"%d\"", sound->device().clock()); fprintf(m_output, "/>\n"); } } } //------------------------------------------------- // output_display - print a list of all the // displays //------------------------------------------------- void info_xml_creator::output_display(device_t &device, const char *root_tag) { // iterate over screens screen_device_iterator iter(device); for (const screen_device *screendev = iter.first(); screendev != nullptr; screendev = iter.next()) { if (strcmp(screendev->tag(), device.tag())) { std::string newtag(screendev->tag()), oldtag(":"); newtag = newtag.substr(newtag.find(oldtag.append(root_tag)) + oldtag.length()); fprintf(m_output, "\t\tscreen_type()) { case SCREEN_TYPE_RASTER: fprintf(m_output, " type=\"raster\""); break; case SCREEN_TYPE_VECTOR: fprintf(m_output, " type=\"vector\""); break; case SCREEN_TYPE_LCD: fprintf(m_output, " type=\"lcd\""); break; default: fprintf(m_output, " type=\"unknown\""); break; } // output the orientation as a string switch (m_drivlist.driver().flags & ORIENTATION_MASK) { case ORIENTATION_FLIP_X: fprintf(m_output, " rotate=\"0\" flipx=\"yes\""); break; case ORIENTATION_FLIP_Y: fprintf(m_output, " rotate=\"180\" flipx=\"yes\""); break; case ORIENTATION_FLIP_X|ORIENTATION_FLIP_Y: fprintf(m_output, " rotate=\"180\""); break; case ORIENTATION_SWAP_XY: fprintf(m_output, " rotate=\"90\" flipx=\"yes\""); break; case ORIENTATION_SWAP_XY|ORIENTATION_FLIP_X: fprintf(m_output, " rotate=\"90\""); break; case ORIENTATION_SWAP_XY|ORIENTATION_FLIP_Y: fprintf(m_output, " rotate=\"270\""); break; case ORIENTATION_SWAP_XY|ORIENTATION_FLIP_X|ORIENTATION_FLIP_Y: fprintf(m_output, " rotate=\"270\" flipx=\"yes\""); break; default: fprintf(m_output, " rotate=\"0\""); break; } // output width and height only for games that are not vector if (screendev->screen_type() != SCREEN_TYPE_VECTOR) { const rectangle &visarea = screendev->visible_area(); fprintf(m_output, " width=\"%d\"", visarea.width()); fprintf(m_output, " height=\"%d\"", visarea.height()); } // output refresh rate fprintf(m_output, " refresh=\"%f\"", ATTOSECONDS_TO_HZ(screendev->refresh_attoseconds())); // output raw video parameters only for games that are not vector // and had raw parameters specified if (screendev->screen_type() != SCREEN_TYPE_VECTOR && !screendev->oldstyle_vblank_supplied()) { int pixclock = screendev->width() * screendev->height() * ATTOSECONDS_TO_HZ(screendev->refresh_attoseconds()); fprintf(m_output, " pixclock=\"%d\"", pixclock); fprintf(m_output, " htotal=\"%d\"", screendev->width()); fprintf(m_output, " hbend=\"%d\"", screendev->visible_area().min_x); fprintf(m_output, " hbstart=\"%d\"", screendev->visible_area().max_x+1); fprintf(m_output, " vtotal=\"%d\"", screendev->height()); fprintf(m_output, " vbend=\"%d\"", screendev->visible_area().min_y); fprintf(m_output, " vbstart=\"%d\"", screendev->visible_area().max_y+1); } fprintf(m_output, " />\n"); } } } //------------------------------------------------- // output_sound - print a list of all the // speakers //------------------------------------------------ void info_xml_creator::output_sound(device_t &device) { speaker_device_iterator spkiter(device); int speakers = spkiter.count(); // if we have no sound, zero m_output the speaker count sound_interface_iterator snditer(device); if (snditer.first() == nullptr) speakers = 0; fprintf(m_output, "\t\t\n", speakers); } //------------------------------------------------- // output_input - print a summary of a game's // input //------------------------------------------------- void info_xml_creator::output_input(const ioport_list &portlist) { // enumerated list of control types enum { ANALOG_TYPE_PADDLE, ANALOG_TYPE_PEDAL, ANALOG_TYPE_JOYSTICK, ANALOG_TYPE_POSITIONAL, ANALOG_TYPE_LIGHTGUN, ANALOG_TYPE_DIAL, ANALOG_TYPE_TRACKBALL, ANALOG_TYPE_MOUSE, ANALOG_TYPE_COUNT }; // directions const UINT8 DIR_UP = 0x01; const UINT8 DIR_DOWN = 0x02; const UINT8 DIR_LEFT = 0x04; const UINT8 DIR_RIGHT = 0x08; const UINT8 DIR_4WAY = 0x10; // initialize the list of control types struct { const char * type; /* general type of input */ bool analog; bool keyb; INT32 min; /* analog minimum value */ INT32 max; /* analog maximum value */ INT32 sensitivity; /* default analog sensitivity */ INT32 keydelta; /* default analog keydelta */ bool reverse; /* default analog reverse setting */ } control_info[ANALOG_TYPE_COUNT]; memset(&control_info, 0, sizeof(control_info)); // tracking info as we iterate int nplayer = 0; int nbutton = 0; int ncoin = 0; UINT8 joytype[3] = { 0,0,0 }; bool service = false; bool tilt = false; bool keypad = false; bool keyboard = false; bool mahjong = false; bool hanafuda = false; bool gambling = false; // iterate over the ports for (ioport_port *port = portlist.first(); port != nullptr; port = port->next()) for (ioport_field *field = port->first_field(); field != nullptr; field = field->next()) { int analogtype = -1; // track the highest player number if (nplayer < field->player() + 1) nplayer = field->player() + 1; // switch off of the type switch (field->type()) { // map which joystick directions are present case IPT_JOYSTICK_UP: joytype[0] |= DIR_UP | ((field->way() == 4) ? DIR_4WAY : 0); break; case IPT_JOYSTICK_DOWN: joytype[0] |= DIR_DOWN | ((field->way() == 4) ? DIR_4WAY : 0); break; case IPT_JOYSTICK_LEFT: joytype[0] |= DIR_LEFT | ((field->way() == 4) ? DIR_4WAY : 0); break; case IPT_JOYSTICK_RIGHT: joytype[0] |= DIR_RIGHT | ((field->way() == 4) ? DIR_4WAY : 0); break; case IPT_JOYSTICKLEFT_UP: joytype[1] |= DIR_UP | ((field->way() == 4) ? DIR_4WAY : 0); break; case IPT_JOYSTICKLEFT_DOWN: joytype[1] |= DIR_DOWN | ((field->way() == 4) ? DIR_4WAY : 0); break; case IPT_JOYSTICKLEFT_LEFT: joytype[1] |= DIR_LEFT | ((field->way() == 4) ? DIR_4WAY : 0); break; case IPT_JOYSTICKLEFT_RIGHT: joytype[1] |= DIR_RIGHT | ((field->way() == 4) ? DIR_4WAY : 0); break; case IPT_JOYSTICKRIGHT_UP: joytype[2] |= DIR_UP | ((field->way() == 4) ? DIR_4WAY : 0); break; case IPT_JOYSTICKRIGHT_DOWN: joytype[2] |= DIR_DOWN | ((field->way() == 4) ? DIR_4WAY : 0); break; case IPT_JOYSTICKRIGHT_LEFT: joytype[2] |= DIR_LEFT | ((field->way() == 4) ? DIR_4WAY : 0); break; case IPT_JOYSTICKRIGHT_RIGHT: joytype[2] |= DIR_RIGHT | ((field->way() == 4) ? DIR_4WAY : 0); break; // mark as an analog input, and get analog stats after switch case IPT_AD_STICK_X: case IPT_AD_STICK_Y: case IPT_AD_STICK_Z: control_info[analogtype = ANALOG_TYPE_JOYSTICK].type = "stick"; break; case IPT_PADDLE: case IPT_PADDLE_V: control_info[analogtype = ANALOG_TYPE_PADDLE].type = "paddle"; break; case IPT_PEDAL: case IPT_PEDAL2: case IPT_PEDAL3: control_info[analogtype = ANALOG_TYPE_PEDAL].type = "pedal"; break; case IPT_LIGHTGUN_X: case IPT_LIGHTGUN_Y: control_info[analogtype = ANALOG_TYPE_LIGHTGUN].type = "lightgun"; break; case IPT_POSITIONAL: case IPT_POSITIONAL_V: control_info[analogtype = ANALOG_TYPE_POSITIONAL].type = "positional"; break; case IPT_DIAL: case IPT_DIAL_V: control_info[analogtype = ANALOG_TYPE_DIAL].type = "dial"; break; case IPT_TRACKBALL_X: case IPT_TRACKBALL_Y: control_info[analogtype = ANALOG_TYPE_TRACKBALL].type = "trackball"; break; case IPT_MOUSE_X: case IPT_MOUSE_Y: control_info[analogtype = ANALOG_TYPE_MOUSE].type = "mouse"; break; // track maximum button index case IPT_BUTTON1: case IPT_BUTTON2: case IPT_BUTTON3: case IPT_BUTTON4: case IPT_BUTTON5: case IPT_BUTTON6: case IPT_BUTTON7: case IPT_BUTTON8: case IPT_BUTTON9: case IPT_BUTTON10: case IPT_BUTTON11: case IPT_BUTTON12: case IPT_BUTTON13: case IPT_BUTTON14: case IPT_BUTTON15: case IPT_BUTTON16: nbutton = MAX(nbutton, field->type() - IPT_BUTTON1 + 1); break; // track maximum coin index case IPT_COIN1: case IPT_COIN2: case IPT_COIN3: case IPT_COIN4: case IPT_COIN5: case IPT_COIN6: case IPT_COIN7: case IPT_COIN8: ncoin = MAX(ncoin, field->type() - IPT_COIN1 + 1); break; // track presence of these guys case IPT_KEYPAD: keypad = true; break; case IPT_KEYBOARD: keyboard = true; break; // additional types case IPT_SERVICE: service = true; break; case IPT_TILT: tilt = true; break; default: if (field->type() > IPT_MAHJONG_FIRST && field->type() < IPT_MAHJONG_LAST) mahjong = true; else if (field->type() > IPT_HANAFUDA_FIRST && field->type() < IPT_HANAFUDA_LAST) hanafuda = true; else if (field->type() > IPT_GAMBLING_FIRST && field->type() < IPT_GAMBLING_LAST) gambling = true; break; } // get the analog stats if (analogtype != -1) { if (field->minval() != 0) control_info[analogtype].min = field->minval(); if (field->maxval() != 0) control_info[analogtype].max = field->maxval(); if (field->sensitivity() != 0) control_info[analogtype].sensitivity = field->sensitivity(); if (field->delta() != 0) control_info[analogtype].keydelta = field->delta(); if (field->analog_reverse() != 0) control_info[analogtype].reverse = true; } } // output the basic info fprintf(m_output, "\t\t\n"); // output the joystick types if (joytype[1]==0 && joytype[2]!=0) { joytype[1] = joytype[2]; joytype[2] = 0; } if (joytype[0]==0 && joytype[1]!=0) { joytype[0] = joytype[1]; joytype[1] = 0; } if (joytype[1]==0 && joytype[2]!=0) { joytype[1] = joytype[2]; joytype[2] = 0; } if (joytype[0] != 0) { const char *joys = (joytype[2]!=0) ? "triple" : (joytype[1]!=0) ? "double" : ""; fprintf(m_output, "\t\t\t\n"); } // output analog types for (auto & elem : control_info) if (elem.type != nullptr) { fprintf(m_output, "\t\t\t\n"); } // output keypad and keyboard if (keypad) fprintf(m_output, "\t\t\t\n"); if (keyboard) fprintf(m_output, "\t\t\t\n"); // misc if (mahjong) fprintf(m_output, "\t\t\t\n"); if (hanafuda) fprintf(m_output, "\t\t\t\n"); if (gambling) fprintf(m_output, "\t\t\t\n"); fprintf(m_output, "\t\t\n"); } //------------------------------------------------- // output_switches - print the configurations or // DIP switch settings //------------------------------------------------- void info_xml_creator::output_switches(const ioport_list &portlist, const char *root_tag, int type, const char *outertag, const char *innertag) { // iterate looking for DIP switches for (ioport_port *port = portlist.first(); port != nullptr; port = port->next()) for (ioport_field *field = port->first_field(); field != nullptr; field = field->next()) if (field->type() == type) { std::string output; std::string newtag(port->tag()), oldtag(":"); newtag = newtag.substr(newtag.find(oldtag.append(root_tag)) + oldtag.length()); // output the switch name information std::string normalized_field_name(xml_normalize_string(field->name())); std::string normalized_newtag(xml_normalize_string(newtag.c_str())); strcatprintf(output,"\t\t<%s name=\"%s\" tag=\"%s\" mask=\"%u\">\n", outertag, normalized_field_name.c_str(), normalized_newtag.c_str(), field->mask()); // loop over settings for (ioport_setting *setting = field->first_setting(); setting != nullptr; setting = setting->next()) { strcatprintf(output,"\t\t\t<%s name=\"%s\" value=\"%u\"%s/>\n", innertag, xml_normalize_string(setting->name()), setting->value(), setting->value() == field->defvalue() ? " default=\"yes\"" : ""); } // terminate the switch entry strcatprintf(output,"\t\t\n", outertag); fprintf(m_output, "%s", output.c_str()); } } //------------------------------------------------- // output_ports - print the structure of input // ports in the driver //------------------------------------------------- void info_xml_creator::output_ports(const ioport_list &portlist) { // cycle through ports for (ioport_port *port = portlist.first(); port != nullptr; port = port->next()) { fprintf(m_output,"\t\t\n",port->tag()); for (ioport_field *field = port->first_field(); field != nullptr; field = field->next()) { if(field->is_analog()) fprintf(m_output,"\t\t\t\n",field->mask()); } // close element fprintf(m_output,"\t\t\n"); } } //------------------------------------------------- // output_adjusters - print the Analog // Adjusters for a game //------------------------------------------------- void info_xml_creator::output_adjusters(const ioport_list &portlist) { // iterate looking for Adjusters for (ioport_port *port = portlist.first(); port != nullptr; port = port->next()) for (ioport_field *field = port->first_field(); field != nullptr; field = field->next()) if (field->type() == IPT_ADJUSTER) fprintf(m_output, "\t\t\n", xml_normalize_string(field->name()), field->defvalue()); } //------------------------------------------------- // output_driver - print driver status //------------------------------------------------- void info_xml_creator::output_driver() { fprintf(m_output, "\t\t\n"); } //------------------------------------------------- // output_images - prints m_output all info on // image devices //------------------------------------------------- void info_xml_creator::output_images(device_t &device, const char *root_tag) { image_interface_iterator iter(device); for (const device_image_interface *imagedev = iter.first(); imagedev != nullptr; imagedev = iter.next()) { if (strcmp(imagedev->device().tag(), device.tag())) { std::string newtag(imagedev->device().tag()), oldtag(":"); newtag = newtag.substr(newtag.find(oldtag.append(root_tag)) + oldtag.length()); // print m_output device type fprintf(m_output, "\t\timage_type_name())); // does this device have a tag? if (imagedev->device().tag()) fprintf(m_output, " tag=\"%s\"", xml_normalize_string(newtag.c_str())); // is this device mandatory? if (imagedev->must_be_loaded()) fprintf(m_output, " mandatory=\"1\""); if (imagedev->image_interface() && imagedev->image_interface()[0]) fprintf(m_output, " interface=\"%s\"", xml_normalize_string(imagedev->image_interface())); // close the XML tag fprintf(m_output, ">\n"); const char *name = imagedev->instance_name(); const char *shortname = imagedev->brief_instance_name(); fprintf(m_output, "\t\t\t\n"); std::string extensions(imagedev->file_extensions()); char *ext = strtok((char *)extensions.c_str(), ","); while (ext != nullptr) { fprintf(m_output, "\t\t\t\n"); ext = strtok(nullptr, ","); } fprintf(m_output, "\t\t\n"); } } } //------------------------------------------------- // output_images - prints all info about slots //------------------------------------------------- void info_xml_creator::output_slots(device_t &device, const char *root_tag) { slot_interface_iterator iter(device); for (const device_slot_interface *slot = iter.first(); slot != nullptr; slot = iter.next()) { if (slot->fixed()) continue; // or shall we list these as non-configurable? if (strcmp(slot->device().tag(), device.tag())) { std::string newtag(slot->device().tag()), oldtag(":"); newtag = newtag.substr(newtag.find(oldtag.append(root_tag)) + oldtag.length()); // print m_output device type fprintf(m_output, "\t\t\n", xml_normalize_string(newtag.c_str())); /* if (slot->slot_interface()[0]) fprintf(m_output, " interface=\"%s\"", xml_normalize_string(slot->slot_interface())); */ for (const device_slot_option *option = slot->first_option(); option != nullptr; option = option->next()) { if (option->selectable()) { device_t *dev = const_cast(m_drivlist.config()).device_add(&m_drivlist.config().root_device(), "dummy", option->devtype(), 0); if (!dev->configured()) dev->config_complete(); fprintf(m_output, "\t\t\tname())); fprintf(m_output, " devname=\"%s\"", xml_normalize_string(dev->shortname())); if (slot->default_option()) { if (strcmp(slot->default_option(),option->name())==0) fprintf(m_output, " default=\"yes\""); } fprintf(m_output, "/>\n"); const_cast(m_drivlist.config()).device_remove(&m_drivlist.config().root_device(), "dummy"); } } fprintf(m_output, "\t\t\n"); } } } //------------------------------------------------- // output_software_list - print the information // for all known software lists for this system //------------------------------------------------- void info_xml_creator::output_software_list() { software_list_device_iterator iter(m_drivlist.config().root_device()); for (const software_list_device *swlist = iter.first(); swlist != nullptr; swlist = iter.next()) { fprintf(m_output, "\t\tlist_name()); fprintf(m_output, "status=\"%s\" ", (swlist->list_type() == SOFTWARE_LIST_ORIGINAL_SYSTEM) ? "original" : "compatible"); if (swlist->filter()) { fprintf(m_output, "filter=\"%s\" ", swlist->filter()); } fprintf(m_output, "/>\n"); } } //------------------------------------------------- // output_ramoptions - prints m_output all RAM // options for this system //------------------------------------------------- void info_xml_creator::output_ramoptions() { ram_device_iterator iter(m_drivlist.config().root_device()); for (const ram_device *ram = iter.first(); ram != nullptr; ram = iter.next()) { fprintf(m_output, "\t\t%u\n", ram->default_size()); if (ram->extra_options() != nullptr) { std::string options(ram->extra_options()); for (int start = 0, end = options.find_first_of(',');; start = end + 1, end = options.find_first_of(',', start)) { std::string option; option.assign(options.substr(start, (end == -1) ? -1 : end - start)); fprintf(m_output, "\t\t%u\n", ram_device::parse_string(option.c_str())); if (end == -1) break; } } } } //------------------------------------------------- // get_merge_name - get the rom name from a // parent set //------------------------------------------------- const char *info_xml_creator::get_merge_name(const hash_collection &romhashes) { // walk the parent chain const char *merge_name = nullptr; for (int clone_of = m_drivlist.find(m_drivlist.driver().parent); clone_of != -1; clone_of = m_drivlist.find(m_drivlist.driver(clone_of).parent)) { // look in the parent's ROMs device_t *device = &m_drivlist.config(clone_of, m_lookup_options).root_device(); for (const rom_entry *pregion = rom_first_region(*device); pregion != nullptr; pregion = rom_next_region(pregion)) for (const rom_entry *prom = rom_first_file(pregion); prom != nullptr; prom = rom_next_file(prom)) { hash_collection phashes(ROM_GETHASHDATA(prom)); if (!phashes.flag(hash_collection::FLAG_NO_DUMP) && romhashes == phashes) { // stop when we find a match merge_name = ROM_GETNAME(prom); break; } } } return merge_name; }