// license:BSD-3-Clause // copyright-holders:Aaron Giles,Olivier Galibert /*************************************************************************** emumem.h Functions which handle device memory accesses. ***************************************************************************/ #pragma once #ifndef __EMU_H__ #error Dont include this file directly; include emu.h instead. #endif #ifndef MAME_EMU_EMUMEM_H #define MAME_EMU_EMUMEM_H using s8 = std::int8_t; using u8 = std::uint8_t; using s16 = std::int16_t; using u16 = std::uint16_t; using s32 = std::int32_t; using u32 = std::uint32_t; using s64 = std::int64_t; using u64 = std::uint64_t; //************************************************************************** // CONSTANTS //************************************************************************** enum { TOTAL_MEMORY_BANKS = 512 }; // address space names for common use constexpr int AS_PROGRAM = 0; // program address space constexpr int AS_DATA = 1; // data address space constexpr int AS_IO = 2; // I/O address space constexpr int AS_OPCODES = 3; // (decrypted) opcodes, when separate from data accesses // read or write constants enum class read_or_write { READ = 1, WRITE = 2, READWRITE = 3 }; //************************************************************************** // TYPE DEFINITIONS //************************************************************************** // private classes declared in emumem.cpp class address_table; class address_table_read; class address_table_setoffset; class address_table_write; // offsets and addresses are 32-bit (for now...) typedef u32 offs_t; // address map constructors are functions that build up an address_map typedef void (*address_map_constructor)(address_map &map); // submap retriever delegate typedef named_delegate address_map_delegate; // struct with function pointers for accessors; use is generally discouraged unless necessary struct data_accessors { u8 (*read_byte)(address_space &space, offs_t address); u16 (*read_word)(address_space &space, offs_t address); u16 (*read_word_masked)(address_space &space, offs_t address, u16 mask); u32 (*read_dword)(address_space &space, offs_t address); u32 (*read_dword_masked)(address_space &space, offs_t address, u32 mask); u64 (*read_qword)(address_space &space, offs_t address); u64 (*read_qword_masked)(address_space &space, offs_t address, u64 mask); void (*write_byte)(address_space &space, offs_t address, u8 data); void (*write_word)(address_space &space, offs_t address, u16 data); void (*write_word_masked)(address_space &space, offs_t address, u16 data, u16 mask); void (*write_dword)(address_space &space, offs_t address, u32 data); void (*write_dword_masked)(address_space &space, offs_t address, u32 data, u32 mask); void (*write_qword)(address_space &space, offs_t address, u64 data); void (*write_qword_masked)(address_space &space, offs_t address, u64 data, u64 mask); }; // ======================> read_delegate // declare delegates for each width typedef device_delegate read8_delegate; typedef device_delegate read16_delegate; typedef device_delegate read32_delegate; typedef device_delegate read64_delegate; // ======================> write_delegate // declare delegates for each width typedef device_delegate write8_delegate; typedef device_delegate write16_delegate; typedef device_delegate write32_delegate; typedef device_delegate write64_delegate; // ======================> setoffset_delegate typedef device_delegate setoffset_delegate; // ======================> direct_read_data // direct_read_data contains state data for direct read access template class direct_read_data { friend class address_table; public: using direct_update_delegate = delegate &, offs_t)>; // direct_range is an internal class that is part of a list of start/end ranges class direct_range { public: // construction direct_range(): m_addrstart(0),m_addrend(~0) { } inline bool operator==(direct_range val) noexcept { // return true if _Left and _Right identify the same thread return (m_addrstart == val.m_addrstart) && (m_addrend == val.m_addrend); } // internal state offs_t m_addrstart; // starting offset of the range offs_t m_addrend; // ending offset of the range }; // construction/destruction direct_read_data(address_space &space); ~direct_read_data(); // getters address_space &space() const { return m_space; } u8 *ptr() const { return m_ptr; } // see if an address is within bounds, or attempt to update it if not bool address_is_valid(offs_t address) { return EXPECTED(address >= m_addrstart && address <= m_addrend) || set_direct_region(address); } // force a recomputation on the next read void force_update() { m_addrend = 0; m_addrstart = 1; } void force_update(u16 if_match) { if (m_entry == if_match) force_update(); } // accessor methods void *read_ptr(offs_t address, offs_t directxor = 0); u8 read_byte(offs_t address, offs_t directxor = 0); u16 read_word(offs_t address, offs_t directxor = 0); u32 read_dword(offs_t address, offs_t directxor = 0); u64 read_qword(offs_t address, offs_t directxor = 0); void remove_intersecting_ranges(offs_t start, offs_t end); static constexpr offs_t offset_to_byte(offs_t offset) { return AddrShift < 0 ? offset << iabs(AddrShift) : offset >> iabs(AddrShift); } private: // internal helpers bool set_direct_region(offs_t address); direct_range *find_range(offs_t address, u16 &entry); // internal state address_space & m_space; u8 * m_ptr; // direct access data pointer offs_t m_addrmask; // address mask offs_t m_addrstart; // minimum valid address offs_t m_addrend; // maximum valid address u16 m_entry; // live entry std::list m_rangelist[TOTAL_MEMORY_BANKS]; // list of ranges for each entry }; // ======================> address_space_config // describes an address space and provides basic functions to map addresses to bytes class address_space_config { public: // construction/destruction address_space_config(); address_space_config(const char *name, endianness_t endian, u8 datawidth, u8 addrwidth, s8 addrshift = 0, address_map_constructor internal = nullptr, address_map_constructor defmap = nullptr); address_space_config(const char *name, endianness_t endian, u8 datawidth, u8 addrwidth, s8 addrshift, u8 logwidth, u8 pageshift, address_map_constructor internal = nullptr, address_map_constructor defmap = nullptr); address_space_config(const char *name, endianness_t endian, u8 datawidth, u8 addrwidth, s8 addrshift, address_map_delegate internal, address_map_delegate defmap = address_map_delegate()); address_space_config(const char *name, endianness_t endian, u8 datawidth, u8 addrwidth, s8 addrshift, u8 logwidth, u8 pageshift, address_map_delegate internal, address_map_delegate defmap = address_map_delegate()); // getters const char *name() const { return m_name; } endianness_t endianness() const { return m_endianness; } int data_width() const { return m_data_width; } int addr_width() const { return m_addr_width; } int addr_shift() const { return m_addr_shift; } // Actual alignment of the bus addresses int alignment() const { int bytes = m_data_width / 8; return m_addr_shift < 0 ? bytes >> -m_addr_shift : bytes << m_addr_shift; } // Address delta to byte delta helpers inline offs_t addr2byte(offs_t address) const { return (m_addr_shift < 0) ? (address << -m_addr_shift) : (address >> m_addr_shift); } inline offs_t byte2addr(offs_t address) const { return (m_addr_shift > 0) ? (address << m_addr_shift) : (address >> -m_addr_shift); } // address-to-byte conversion helpers inline offs_t addr2byte_end(offs_t address) const { return (m_addr_shift < 0) ? ((address << -m_addr_shift) | ((1 << -m_addr_shift) - 1)) : (address >> m_addr_shift); } inline offs_t byte2addr_end(offs_t address) const { return (m_addr_shift > 0) ? ((address << m_addr_shift) | ((1 << m_addr_shift) - 1)) : (address >> -m_addr_shift); } // state const char * m_name; endianness_t m_endianness; u8 m_data_width; u8 m_addr_width; s8 m_addr_shift; u8 m_logaddr_width; u8 m_page_shift; bool m_is_octal; // to determine if messages/debugger will show octal or hex address_map_constructor m_internal_map; address_map_constructor m_default_map; address_map_delegate m_internal_map_delegate; address_map_delegate m_default_map_delegate; }; // ======================> address_space // address_space holds live information about an address space class address_space { friend class address_table; friend class address_table_read; friend class address_table_write; friend class address_table_setoffset; friend class direct_read_data<3>; friend class direct_read_data<0>; friend class direct_read_data<-1>; friend class direct_read_data<-2>; friend class direct_read_data<-3>; protected: // construction/destruction address_space(memory_manager &manager, device_memory_interface &memory, int spacenum, bool large); public: virtual ~address_space(); // getters memory_manager &manager() const { return m_manager; } device_t &device() const { return m_device; } running_machine &machine() const { return m_machine; } const char *name() const { return m_name; } int spacenum() const { return m_spacenum; } address_map *map() const { return m_map.get(); } template direct_read_data *direct() const { static_assert(AddrShift == 3 || AddrShift == 0 || AddrShift == -1 || AddrShift == -2 || AddrShift == -3, "Unsupported AddrShift in direct()"); if(AddrShift != m_config.addr_shift()) fatalerror("Requesing direct() with address shift %d while the config says %d\n", AddrShift, m_config.addr_shift()); return static_cast *>(m_direct); } int data_width() const { return m_config.data_width(); } int addr_width() const { return m_config.addr_width(); } int alignment() const { return m_config.alignment(); } endianness_t endianness() const { return m_config.endianness(); } int addr_shift() const { return m_config.addr_shift(); } u64 unmap() const { return m_unmap; } bool is_octal() const { return m_config.m_is_octal; } offs_t addrmask() const { return m_addrmask; } u8 addrchars() const { return m_addrchars; } offs_t logaddrmask() const { return m_logaddrmask; } u8 logaddrchars() const { return m_logaddrchars; } // debug helpers const char *get_handler_string(read_or_write readorwrite, offs_t byteaddress); bool log_unmap() const { return m_log_unmap; } void set_log_unmap(bool log) { m_log_unmap = log; } void dump_map(FILE *file, read_or_write readorwrite); // watchpoint enablers virtual void enable_read_watchpoints(bool enable = true) = 0; virtual void enable_write_watchpoints(bool enable = true) = 0; // general accessors virtual void accessors(data_accessors &accessors) const = 0; virtual void *get_read_ptr(offs_t address) = 0; virtual void *get_write_ptr(offs_t address) = 0; // read accessors virtual u8 read_byte(offs_t address) = 0; virtual u16 read_word(offs_t address) = 0; virtual u16 read_word(offs_t address, u16 mask) = 0; virtual u16 read_word_unaligned(offs_t address) = 0; virtual u16 read_word_unaligned(offs_t address, u16 mask) = 0; virtual u32 read_dword(offs_t address) = 0; virtual u32 read_dword(offs_t address, u32 mask) = 0; virtual u32 read_dword_unaligned(offs_t address) = 0; virtual u32 read_dword_unaligned(offs_t address, u32 mask) = 0; virtual u64 read_qword(offs_t address) = 0; virtual u64 read_qword(offs_t address, u64 mask) = 0; virtual u64 read_qword_unaligned(offs_t address) = 0; virtual u64 read_qword_unaligned(offs_t address, u64 mask) = 0; // write accessors virtual void write_byte(offs_t address, u8 data) = 0; virtual void write_word(offs_t address, u16 data) = 0; virtual void write_word(offs_t address, u16 data, u16 mask) = 0; virtual void write_word_unaligned(offs_t address, u16 data) = 0; virtual void write_word_unaligned(offs_t address, u16 data, u16 mask) = 0; virtual void write_dword(offs_t address, u32 data) = 0; virtual void write_dword(offs_t address, u32 data, u32 mask) = 0; virtual void write_dword_unaligned(offs_t address, u32 data) = 0; virtual void write_dword_unaligned(offs_t address, u32 data, u32 mask) = 0; virtual void write_qword(offs_t address, u64 data) = 0; virtual void write_qword(offs_t address, u64 data, u64 mask) = 0; virtual void write_qword_unaligned(offs_t address, u64 data) = 0; virtual void write_qword_unaligned(offs_t address, u64 data, u64 mask) = 0; // Set address. This will invoke setoffset handlers for the respective entries. virtual void set_address(offs_t address) = 0; // address-to-byte conversion helpers offs_t address_to_byte(offs_t address) const { return m_config.addr2byte(address); } offs_t address_to_byte_end(offs_t address) const { return m_config.addr2byte_end(address); } offs_t byte_to_address(offs_t address) const { return m_config.byte2addr(address); } offs_t byte_to_address_end(offs_t address) const { return m_config.byte2addr_end(address); } // umap ranges (short form) void unmap_read(offs_t addrstart, offs_t addrend, offs_t addrmirror = 0) { unmap_generic(addrstart, addrend, addrmirror, read_or_write::READ, false); } void unmap_write(offs_t addrstart, offs_t addrend, offs_t addrmirror = 0) { unmap_generic(addrstart, addrend, addrmirror, read_or_write::WRITE, false); } void unmap_readwrite(offs_t addrstart, offs_t addrend, offs_t addrmirror = 0) { unmap_generic(addrstart, addrend, addrmirror, read_or_write::READWRITE, false); } void nop_read(offs_t addrstart, offs_t addrend, offs_t addrmirror = 0) { unmap_generic(addrstart, addrend, addrmirror, read_or_write::READ, true); } void nop_write(offs_t addrstart, offs_t addrend, offs_t addrmirror = 0) { unmap_generic(addrstart, addrend, addrmirror, read_or_write::WRITE, true); } void nop_readwrite(offs_t addrstart, offs_t addrend, offs_t addrmirror = 0) { unmap_generic(addrstart, addrend, addrmirror, read_or_write::READWRITE, true); } // install ports, banks, RAM (short form) void install_read_port(offs_t addrstart, offs_t addrend, const char *rtag) { install_read_port(addrstart, addrend, 0, rtag); } void install_write_port(offs_t addrstart, offs_t addrend, const char *wtag) { install_write_port(addrstart, addrend, 0, wtag); } void install_readwrite_port(offs_t addrstart, offs_t addrend, const char *rtag, const char *wtag) { install_readwrite_port(addrstart, addrend, 0, rtag, wtag); } void install_read_bank(offs_t addrstart, offs_t addrend, const char *tag) { install_read_bank(addrstart, addrend, 0, tag); } void install_write_bank(offs_t addrstart, offs_t addrend, const char *tag) { install_write_bank(addrstart, addrend, 0, tag); } void install_readwrite_bank(offs_t addrstart, offs_t addrend, const char *tag) { install_readwrite_bank(addrstart, addrend, 0, tag); } void install_read_bank(offs_t addrstart, offs_t addrend, memory_bank *bank) { install_read_bank(addrstart, addrend, 0, bank); } void install_write_bank(offs_t addrstart, offs_t addrend, memory_bank *bank) { install_write_bank(addrstart, addrend, 0, bank); } void install_readwrite_bank(offs_t addrstart, offs_t addrend, memory_bank *bank) { install_readwrite_bank(addrstart, addrend, 0, bank); } void install_rom(offs_t addrstart, offs_t addrend, void *baseptr = nullptr) { install_rom(addrstart, addrend, 0, baseptr); } void install_writeonly(offs_t addrstart, offs_t addrend, void *baseptr = nullptr) { install_writeonly(addrstart, addrend, 0, baseptr); } void install_ram(offs_t addrstart, offs_t addrend, void *baseptr = nullptr) { install_ram(addrstart, addrend, 0, baseptr); } // install ports, banks, RAM (with mirror/mask) void install_read_port(offs_t addrstart, offs_t addrend, offs_t addrmirror, const char *rtag) { install_readwrite_port(addrstart, addrend, addrmirror, rtag, nullptr); } void install_write_port(offs_t addrstart, offs_t addrend, offs_t addrmirror, const char *wtag) { install_readwrite_port(addrstart, addrend, addrmirror, nullptr, wtag); } void install_readwrite_port(offs_t addrstart, offs_t addrend, offs_t addrmirror, const char *rtag, const char *wtag); void install_read_bank(offs_t addrstart, offs_t addrend, offs_t addrmirror, const char *tag) { install_bank_generic(addrstart, addrend, addrmirror, tag, nullptr); } void install_write_bank(offs_t addrstart, offs_t addrend, offs_t addrmirror, const char *tag) { install_bank_generic(addrstart, addrend, addrmirror, nullptr, tag); } void install_readwrite_bank(offs_t addrstart, offs_t addrend, offs_t addrmirror, const char *tag) { install_bank_generic(addrstart, addrend, addrmirror, tag, tag); } void install_read_bank(offs_t addrstart, offs_t addrend, offs_t addrmirror, memory_bank *bank) { install_bank_generic(addrstart, addrend, addrmirror, bank, nullptr); } void install_write_bank(offs_t addrstart, offs_t addrend, offs_t addrmirror, memory_bank *bank) { install_bank_generic(addrstart, addrend, addrmirror, nullptr, bank); } void install_readwrite_bank(offs_t addrstart, offs_t addrend, offs_t addrmirror, memory_bank *bank) { install_bank_generic(addrstart, addrend, addrmirror, bank, bank); } void install_rom(offs_t addrstart, offs_t addrend, offs_t addrmirror, void *baseptr = nullptr) { install_ram_generic(addrstart, addrend, addrmirror, read_or_write::READ, baseptr); } void install_writeonly(offs_t addrstart, offs_t addrend, offs_t addrmirror, void *baseptr = nullptr) { install_ram_generic(addrstart, addrend, addrmirror, read_or_write::WRITE, baseptr); } void install_ram(offs_t addrstart, offs_t addrend, offs_t addrmirror, void *baseptr = nullptr) { install_ram_generic(addrstart, addrend, addrmirror, read_or_write::READWRITE, baseptr); } // install device memory maps template void install_device(offs_t addrstart, offs_t addrend, T &device, void (T::*map)(address_map &map), int bits = 0, u64 unitmask = 0) { address_map_delegate delegate(map, "dynamic_device_install", &device); install_device_delegate(addrstart, addrend, device, delegate, bits, unitmask); } void install_device_delegate(offs_t addrstart, offs_t addrend, device_t &device, address_map_delegate &map, int bits = 0, u64 unitmask = 0); // install setoffset handler void install_setoffset_handler(offs_t addrstart, offs_t addrend, setoffset_delegate sohandler, u64 unitmask = 0) { install_setoffset_handler(addrstart, addrend, 0, 0, 0, sohandler, unitmask); } void install_setoffset_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, offs_t addrselect, setoffset_delegate sohandler, u64 unitmask = 0); // install new-style delegate handlers (short form) void install_read_handler(offs_t addrstart, offs_t addrend, read8_delegate rhandler, u64 unitmask = 0) { install_read_handler(addrstart, addrend, 0, 0, 0, rhandler, unitmask); } void install_write_handler(offs_t addrstart, offs_t addrend, write8_delegate whandler, u64 unitmask = 0) { install_write_handler(addrstart, addrend, 0, 0, 0, whandler, unitmask); } void install_readwrite_handler(offs_t addrstart, offs_t addrend, read8_delegate rhandler, write8_delegate whandler, u64 unitmask = 0) { return install_readwrite_handler(addrstart, addrend, 0, 0, 0, rhandler, whandler, unitmask); } void install_read_handler(offs_t addrstart, offs_t addrend, read16_delegate rhandler, u64 unitmask = 0) { install_read_handler(addrstart, addrend, 0, 0, 0, rhandler, unitmask); } void install_write_handler(offs_t addrstart, offs_t addrend, write16_delegate whandler, u64 unitmask = 0) { install_write_handler(addrstart, addrend, 0, 0, 0, whandler, unitmask); } void install_readwrite_handler(offs_t addrstart, offs_t addrend, read16_delegate rhandler, write16_delegate whandler, u64 unitmask = 0) { return install_readwrite_handler(addrstart, addrend, 0, 0, 0, rhandler, whandler, unitmask); } void install_read_handler(offs_t addrstart, offs_t addrend, read32_delegate rhandler, u64 unitmask = 0) { install_read_handler(addrstart, addrend, 0, 0, 0, rhandler, unitmask); } void install_write_handler(offs_t addrstart, offs_t addrend, write32_delegate whandler, u64 unitmask = 0) { install_write_handler(addrstart, addrend, 0, 0, 0, whandler, unitmask); } void install_readwrite_handler(offs_t addrstart, offs_t addrend, read32_delegate rhandler, write32_delegate whandler, u64 unitmask = 0) { return install_readwrite_handler(addrstart, addrend, 0, 0, 0, rhandler, whandler, unitmask); } void install_read_handler(offs_t addrstart, offs_t addrend, read64_delegate rhandler, u64 unitmask = 0) { install_read_handler(addrstart, addrend, 0, 0, 0, rhandler, unitmask); } void install_write_handler(offs_t addrstart, offs_t addrend, write64_delegate whandler, u64 unitmask = 0) { install_write_handler(addrstart, addrend, 0, 0, 0, whandler, unitmask); } void install_readwrite_handler(offs_t addrstart, offs_t addrend, read64_delegate rhandler, write64_delegate whandler, u64 unitmask = 0) { install_readwrite_handler(addrstart, addrend, 0, 0, 0, rhandler, whandler, unitmask); } // install new-style delegate handlers (with mirror/mask) void install_read_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, offs_t addrselect, read8_delegate rhandler, u64 unitmask = 0); void install_write_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, offs_t addrselect, write8_delegate whandler, u64 unitmask = 0); void install_readwrite_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, offs_t addrselect, read8_delegate rhandler, write8_delegate whandler, u64 unitmask = 0); void install_read_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, offs_t addrselect, read16_delegate rhandler, u64 unitmask = 0); void install_write_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, offs_t addrselect, write16_delegate whandler, u64 unitmask = 0); void install_readwrite_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, offs_t addrselect, read16_delegate rhandler, write16_delegate whandler, u64 unitmask = 0); void install_read_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, offs_t addrselect, read32_delegate rhandler, u64 unitmask = 0); void install_write_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, offs_t addrselect, write32_delegate whandler, u64 unitmask = 0); void install_readwrite_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, offs_t addrselect, read32_delegate rhandler, write32_delegate whandler, u64 unitmask = 0); void install_read_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, offs_t addrselect, read64_delegate rhandler, u64 unitmask = 0); void install_write_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, offs_t addrselect, write64_delegate whandler, u64 unitmask = 0); void install_readwrite_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, offs_t addrselect, read64_delegate rhandler, write64_delegate whandler, u64 unitmask = 0); // setup void prepare_map(); void populate_from_map(address_map *map = nullptr); void allocate_memory(); void locate_memory(); void invalidate_read_caches(); void invalidate_read_caches(u16 entry); void invalidate_read_caches(offs_t start, offs_t end); private: // internal helpers virtual address_table_read &read() = 0; virtual address_table_write &write() = 0; virtual address_table_setoffset &setoffset() = 0; void populate_map_entry(const address_map_entry &entry, read_or_write readorwrite); void populate_map_entry_setoffset(const address_map_entry &entry); void unmap_generic(offs_t addrstart, offs_t addrend, offs_t addrmirror, read_or_write readorwrite, bool quiet); void install_ram_generic(offs_t addrstart, offs_t addrend, offs_t addrmirror, read_or_write readorwrite, void *baseptr); void install_bank_generic(offs_t addrstart, offs_t addrend, offs_t addrmirror, const char *rtag, const char *wtag); void install_bank_generic(offs_t addrstart, offs_t addrend, offs_t addrmirror, memory_bank *rbank, memory_bank *wbank); void adjust_addresses(offs_t &start, offs_t &end, offs_t &mask, offs_t &mirror); void *find_backing_memory(offs_t addrstart, offs_t addrend); bool needs_backing_store(const address_map_entry &entry); memory_bank &bank_find_or_allocate(const char *tag, offs_t addrstart, offs_t addrend, offs_t addrmirror, read_or_write readorwrite); memory_bank *bank_find_anonymous(offs_t bytestart, offs_t byteend) const; address_map_entry *block_assign_intersecting(offs_t bytestart, offs_t byteend, u8 *base); void check_optimize_all(const char *function, offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, offs_t addrselect, offs_t &nstart, offs_t &nend, offs_t &nmask, offs_t &nmirror); void check_optimize_mirror(const char *function, offs_t addrstart, offs_t addrend, offs_t addrmirror, offs_t &nstart, offs_t &nend, offs_t &nmask, offs_t &nmirror); void check_address(const char *function, offs_t addrstart, offs_t addrend); protected: // private state const address_space_config &m_config; // configuration of this space device_t & m_device; // reference to the owning device std::unique_ptr m_map; // original memory map offs_t m_addrmask; // physical address mask offs_t m_logaddrmask; // logical address mask u64 m_unmap; // unmapped value int m_spacenum; // address space index bool m_log_unmap; // log unmapped accesses in this space? void * m_direct; // fast direct-access read info const char * m_name; // friendly name of the address space u8 m_addrchars; // number of characters to use for physical addresses u8 m_logaddrchars; // number of characters to use for logical addresses private: memory_manager & m_manager; // reference to the owning manager running_machine & m_machine; // reference to the owning machine }; // ======================> memory_block // a memory block is a chunk of RAM associated with a range of memory in a device's address space class memory_block { DISABLE_COPYING(memory_block); public: // construction/destruction memory_block(address_space &space, offs_t start, offs_t end, void *memory = nullptr); ~memory_block(); // getters running_machine &machine() const { return m_machine; } offs_t addrstart() const { return m_addrstart; } offs_t addrend() const { return m_addrend; } u8 *data() const { return m_data; } // is the given range contained by this memory block? bool contains(address_space &space, offs_t addrstart, offs_t addrend) const { return (&space == &m_space && m_addrstart <= addrstart && m_addrend >= addrend); } private: // internal state running_machine & m_machine; // need the machine to free our memory address_space & m_space; // which address space are we associated with? offs_t m_addrstart, m_addrend; // start/end for verifying a match u8 * m_data; // pointer to the data for this block std::vector m_allocated; // pointer to the actually allocated block }; // ======================> memory_bank // a memory bank is a global pointer to memory that can be shared across devices and changed dynamically class memory_bank { // a bank reference is an entry in a list of address spaces that reference a given bank class bank_reference { public: // construction/destruction bank_reference(address_space &space, read_or_write readorwrite) : m_space(space), m_readorwrite(readorwrite) { } // getters address_space &space() const { return m_space; } // does this reference match the space+read/write combination? bool matches(const address_space &space, read_or_write readorwrite) const { return (&space == &m_space && (readorwrite == read_or_write::READWRITE || readorwrite == m_readorwrite)); } private: // internal state address_space & m_space; // address space that references us read_or_write m_readorwrite; // used for read or write? }; // a bank_entry contains a pointer struct bank_entry { u8 * m_ptr; }; public: // construction/destruction memory_bank(address_space &space, int index, offs_t start, offs_t end, const char *tag = nullptr); ~memory_bank(); // getters running_machine &machine() const { return m_machine; } int index() const { return m_index; } int entry() const { return m_curentry; } bool anonymous() const { return m_anonymous; } offs_t addrstart() const { return m_addrstart; } void *base() const { return *m_baseptr; } const char *tag() const { return m_tag.c_str(); } const char *name() const { return m_name.c_str(); } // compare a range against our range bool matches_exactly(offs_t addrstart, offs_t addrend) const { return (m_addrstart == addrstart && m_addrend == addrend); } bool fully_covers(offs_t addrstart, offs_t addrend) const { return (m_addrstart <= addrstart && m_addrend >= addrend); } bool is_covered_by(offs_t addrstart, offs_t addrend) const { return (m_addrstart >= addrstart && m_addrend <= addrend); } bool straddles(offs_t addrstart, offs_t addrend) const { return (m_addrstart < addrend && m_addrend > addrstart); } // track and verify address space references to this bank bool references_space(const address_space &space, read_or_write readorwrite) const; void add_reference(address_space &space, read_or_write readorwrite); // set the base explicitly void set_base(void *base); // configure and set entries void configure_entry(int entrynum, void *base); void configure_entries(int startentry, int numentries, void *base, offs_t stride); void set_entry(int entrynum); private: // internal helpers void invalidate_references(); void expand_entries(int entrynum); // internal state running_machine & m_machine; // need the machine to free our memory u8 ** m_baseptr; // pointer to our base pointer in the global array u16 m_index; // array index for this handler bool m_anonymous; // are we anonymous or explicit? offs_t m_addrstart; // start offset offs_t m_addrend; // end offset int m_curentry; // current entry std::vector m_entry; // array of entries (dynamically allocated) std::string m_name; // friendly name for this bank std::string m_tag; // tag for this bank std::vector> m_reflist; // linked list of address spaces referencing this bank }; // ======================> memory_share // a memory share contains information about shared memory region class memory_share { public: // construction/destruction memory_share(u8 width, size_t bytes, endianness_t endianness, void *ptr = nullptr) : m_ptr(ptr), m_bytes(bytes), m_endianness(endianness), m_bitwidth(width), m_bytewidth(width <= 8 ? 1 : width <= 16 ? 2 : width <= 32 ? 4 : 8) { } // getters void *ptr() const { return m_ptr; } size_t bytes() const { return m_bytes; } endianness_t endianness() const { return m_endianness; } u8 bitwidth() const { return m_bitwidth; } u8 bytewidth() const { return m_bytewidth; } // setters void set_ptr(void *ptr) { m_ptr = ptr; } private: // internal state void * m_ptr; // pointer to the memory backing the region size_t m_bytes; // size of the shared region in bytes endianness_t m_endianness; // endianness of the memory u8 m_bitwidth; // width of the shared region in bits u8 m_bytewidth; // width in bytes, rounded up to a power of 2 }; // ======================> memory_region // memory region object class memory_region { DISABLE_COPYING(memory_region); friend class memory_manager; public: // construction/destruction memory_region(running_machine &machine, const char *name, u32 length, u8 width, endianness_t endian); // getters running_machine &machine() const { return m_machine; } u8 *base() { return (m_buffer.size() > 0) ? &m_buffer[0] : nullptr; } u8 *end() { return base() + m_buffer.size(); } u32 bytes() const { return m_buffer.size(); } const char *name() const { return m_name.c_str(); } // flag expansion endianness_t endianness() const { return m_endianness; } u8 bitwidth() const { return m_bitwidth; } u8 bytewidth() const { return m_bytewidth; } // data access u8 &as_u8(offs_t offset = 0) { return m_buffer[offset]; } u16 &as_u16(offs_t offset = 0) { return reinterpret_cast(base())[offset]; } u32 &as_u32(offs_t offset = 0) { return reinterpret_cast(base())[offset]; } u64 &as_u64(offs_t offset = 0) { return reinterpret_cast(base())[offset]; } private: // internal data running_machine & m_machine; std::string m_name; std::vector m_buffer; endianness_t m_endianness; u8 m_bitwidth; u8 m_bytewidth; }; // ======================> memory_manager // holds internal state for the memory system class memory_manager { friend class address_space; friend memory_region::memory_region(running_machine &machine, const char *name, u32 length, u8 width, endianness_t endian); public: // construction/destruction memory_manager(running_machine &machine); void initialize(); // getters running_machine &machine() const { return m_machine; } const std::unordered_map> &banks() const { return m_banklist; } const std::unordered_map> ®ions() const { return m_regionlist; } const std::unordered_map> &shares() const { return m_sharelist; } // pointers to a bank pointer (internal usage only) u8 **bank_pointer_addr(u8 index) { return &m_bank_ptr[index]; } // regions memory_region *region_alloc(const char *name, u32 length, u8 width, endianness_t endian); void region_free(const char *name); memory_region *region_containing(const void *memory, offs_t bytes) const; private: // internal helpers void bank_reattach(); void allocate(device_memory_interface &memory); // internal state running_machine & m_machine; // reference to the machine bool m_initialized; // have we completed initialization? u8 * m_bank_ptr[TOTAL_MEMORY_BANKS]; // array of bank pointers std::vector> m_blocklist; // head of the list of memory blocks std::unordered_map> m_banklist; // data gathered for each bank u16 m_banknext; // next bank to allocate std::unordered_map> m_sharelist; // map for share lookups std::unordered_map> m_regionlist; // list of memory regions }; //************************************************************************** // MACROS //************************************************************************** // space read/write handler function macros #define READ8_MEMBER(name) u8 name(ATTR_UNUSED address_space &space, ATTR_UNUSED offs_t offset, ATTR_UNUSED u8 mem_mask) #define WRITE8_MEMBER(name) void name(ATTR_UNUSED address_space &space, ATTR_UNUSED offs_t offset, ATTR_UNUSED u8 data, ATTR_UNUSED u8 mem_mask) #define READ16_MEMBER(name) u16 name(ATTR_UNUSED address_space &space, ATTR_UNUSED offs_t offset, ATTR_UNUSED u16 mem_mask) #define WRITE16_MEMBER(name) void name(ATTR_UNUSED address_space &space, ATTR_UNUSED offs_t offset, ATTR_UNUSED u16 data, ATTR_UNUSED u16 mem_mask) #define READ32_MEMBER(name) u32 name(ATTR_UNUSED address_space &space, ATTR_UNUSED offs_t offset, ATTR_UNUSED u32 mem_mask) #define WRITE32_MEMBER(name) void name(ATTR_UNUSED address_space &space, ATTR_UNUSED offs_t offset, ATTR_UNUSED u32 data, ATTR_UNUSED u32 mem_mask) #define READ64_MEMBER(name) u64 name(ATTR_UNUSED address_space &space, ATTR_UNUSED offs_t offset, ATTR_UNUSED u64 mem_mask) #define WRITE64_MEMBER(name) void name(ATTR_UNUSED address_space &space, ATTR_UNUSED offs_t offset, ATTR_UNUSED u64 data, ATTR_UNUSED u64 mem_mask) #define DECLARE_READ8_MEMBER(name) u8 name(ATTR_UNUSED address_space &space, ATTR_UNUSED offs_t offset, ATTR_UNUSED u8 mem_mask = 0xff) #define DECLARE_WRITE8_MEMBER(name) void name(ATTR_UNUSED address_space &space, ATTR_UNUSED offs_t offset, ATTR_UNUSED u8 data, ATTR_UNUSED u8 mem_mask = 0xff) #define DECLARE_READ16_MEMBER(name) u16 name(ATTR_UNUSED address_space &space, ATTR_UNUSED offs_t offset, ATTR_UNUSED u16 mem_mask = 0xffff) #define DECLARE_WRITE16_MEMBER(name) void name(ATTR_UNUSED address_space &space, ATTR_UNUSED offs_t offset, ATTR_UNUSED u16 data, ATTR_UNUSED u16 mem_mask = 0xffff) #define DECLARE_READ32_MEMBER(name) u32 name(ATTR_UNUSED address_space &space, ATTR_UNUSED offs_t offset, ATTR_UNUSED u32 mem_mask = 0xffffffff) #define DECLARE_WRITE32_MEMBER(name) void name(ATTR_UNUSED address_space &space, ATTR_UNUSED offs_t offset, ATTR_UNUSED u32 data, ATTR_UNUSED u32 mem_mask = 0xffffffff) #define DECLARE_READ64_MEMBER(name) u64 name(ATTR_UNUSED address_space &space, ATTR_UNUSED offs_t offset, ATTR_UNUSED u64 mem_mask = 0xffffffffffffffffU) #define DECLARE_WRITE64_MEMBER(name) void name(ATTR_UNUSED address_space &space, ATTR_UNUSED offs_t offset, ATTR_UNUSED u64 data, ATTR_UNUSED u64 mem_mask = 0xffffffffffffffffU) #define SETOFFSET_MEMBER(name) void name(ATTR_UNUSED address_space &space, ATTR_UNUSED offs_t offset) #define DECLARE_SETOFFSET_MEMBER(name) void name(ATTR_UNUSED address_space &space, ATTR_UNUSED offs_t offset) // device delegate macros #define READ8_DELEGATE(_class, _member) read8_delegate(FUNC(_class::_member), this) #define WRITE8_DELEGATE(_class, _member) write8_delegate(FUNC(_class::_member), this) #define READ16_DELEGATE(_class, _member) read16_delegate(FUNC(_class::_member), this) #define WRITE16_DELEGATE(_class, _member) write16_delegate(FUNC(_class::_member), this) #define READ32_DELEGATE(_class, _member) read32_delegate(FUNC(_class::_member), this) #define WRITE32_DELEGATE(_class, _member) write32_delegate(FUNC(_class::_member), this) #define READ64_DELEGATE(_class, _member) read64_delegate(FUNC(_class::_member), this) #define WRITE64_DELEGATE(_class, _member) write64_delegate(FUNC(_class::_member), this) #define READ8_DEVICE_DELEGATE(_device, _class, _member) read8_delegate(FUNC(_class::_member), (_class *)_device) #define WRITE8_DEVICE_DELEGATE(_device, _class, _member) write8_delegate(FUNC(_class::_member), (_class *)_device) #define READ16_DEVICE_DELEGATE(_device, _class, _member) read16_delegate(FUNC(_class::_member), (_class *)_device) #define WRITE16_DEVICE_DELEGATE(_device, _class, _member) write16_delegate(FUNC(_class::_member), (_class *)_device) #define READ32_DEVICE_DELEGATE(_device, _class, _member) read32_delegate(FUNC(_class::_member), (_class *)_device) #define WRITE32_DEVICE_DELEGATE(_device, _class, _member) write32_delegate(FUNC(_class::_member), (_class *)_device) #define READ64_DEVICE_DELEGATE(_device, _class, _member) read64_delegate(FUNC(_class::_member), (_class *)_device) #define WRITE64_DEVICE_DELEGATE(_device, _class, _member) write64_delegate(FUNC(_class::_member), (_class *)_device) // helper macro for merging data with the memory mask #define COMBINE_DATA(varptr) (*(varptr) = (*(varptr) & ~mem_mask) | (data & mem_mask)) #define ACCESSING_BITS_0_7 ((mem_mask & 0x000000ffU) != 0) #define ACCESSING_BITS_8_15 ((mem_mask & 0x0000ff00U) != 0) #define ACCESSING_BITS_16_23 ((mem_mask & 0x00ff0000U) != 0) #define ACCESSING_BITS_24_31 ((mem_mask & 0xff000000U) != 0) #define ACCESSING_BITS_32_39 ((mem_mask & 0x000000ff00000000U) != 0) #define ACCESSING_BITS_40_47 ((mem_mask & 0x0000ff0000000000U) != 0) #define ACCESSING_BITS_48_55 ((mem_mask & 0x00ff000000000000U) != 0) #define ACCESSING_BITS_56_63 ((mem_mask & 0xff00000000000000U) != 0) #define ACCESSING_BITS_0_15 ((mem_mask & 0x0000ffffU) != 0) #define ACCESSING_BITS_16_31 ((mem_mask & 0xffff0000U) != 0) #define ACCESSING_BITS_32_47 ((mem_mask & 0x0000ffff00000000U) != 0) #define ACCESSING_BITS_48_63 ((mem_mask & 0xffff000000000000U) != 0) #define ACCESSING_BITS_0_31 ((mem_mask & 0xffffffffU) != 0) #define ACCESSING_BITS_32_63 ((mem_mask & 0xffffffff00000000U) != 0) // macros for accessing bytes and words within larger chunks // read/write a byte to a 16-bit space #define BYTE_XOR_BE(a) ((a) ^ NATIVE_ENDIAN_VALUE_LE_BE(1,0)) #define BYTE_XOR_LE(a) ((a) ^ NATIVE_ENDIAN_VALUE_LE_BE(0,1)) // read/write a byte to a 32-bit space #define BYTE4_XOR_BE(a) ((a) ^ NATIVE_ENDIAN_VALUE_LE_BE(3,0)) #define BYTE4_XOR_LE(a) ((a) ^ NATIVE_ENDIAN_VALUE_LE_BE(0,3)) // read/write a word to a 32-bit space #define WORD_XOR_BE(a) ((a) ^ NATIVE_ENDIAN_VALUE_LE_BE(2,0)) #define WORD_XOR_LE(a) ((a) ^ NATIVE_ENDIAN_VALUE_LE_BE(0,2)) // read/write a byte to a 64-bit space #define BYTE8_XOR_BE(a) ((a) ^ NATIVE_ENDIAN_VALUE_LE_BE(7,0)) #define BYTE8_XOR_LE(a) ((a) ^ NATIVE_ENDIAN_VALUE_LE_BE(0,7)) // read/write a word to a 64-bit space #define WORD2_XOR_BE(a) ((a) ^ NATIVE_ENDIAN_VALUE_LE_BE(6,0)) #define WORD2_XOR_LE(a) ((a) ^ NATIVE_ENDIAN_VALUE_LE_BE(0,6)) // read/write a dword to a 64-bit space #define DWORD_XOR_BE(a) ((a) ^ NATIVE_ENDIAN_VALUE_LE_BE(4,0)) #define DWORD_XOR_LE(a) ((a) ^ NATIVE_ENDIAN_VALUE_LE_BE(0,4)) // helpers for checking address alignment #define WORD_ALIGNED(a) (((a) & 1) == 0) #define DWORD_ALIGNED(a) (((a) & 3) == 0) #define QWORD_ALIGNED(a) (((a) & 7) == 0) //************************************************************************** // INLINE FUNCTIONS //************************************************************************** //------------------------------------------------- // read_ptr - return a pointer to valid RAM // referenced by the address, or nullptr if no RAM // backing that address //------------------------------------------------- template inline void *direct_read_data::read_ptr(offs_t address, offs_t directxor) { if (address_is_valid(address)) return &m_ptr[offset_to_byte(((address ^ directxor) & m_addrmask))]; return nullptr; } //------------------------------------------------- // read_byte - read a byte via the // direct_read_data class //------------------------------------------------- template inline u8 direct_read_data::read_byte(offs_t address, offs_t directxor) { if(AddrShift <= -1) fatalerror("Can't direct_read_data::read_byte on a memory space with address shift %d", AddrShift); if (address_is_valid(address)) return m_ptr[offset_to_byte((address ^ directxor) & m_addrmask)]; return m_space.read_byte(address); } //------------------------------------------------- // read_word - read a word via the // direct_read_data class //------------------------------------------------- template inline u16 direct_read_data::read_word(offs_t address, offs_t directxor) { if(AddrShift <= -2) fatalerror("Can't direct_read_data::read_word on a memory space with address shift %d", AddrShift); if (address_is_valid(address)) return *reinterpret_cast(&m_ptr[offset_to_byte((address ^ directxor) & m_addrmask)]); return m_space.read_word(address); } //------------------------------------------------- // read_dword - read a dword via the // direct_read_data class //------------------------------------------------- template inline u32 direct_read_data::read_dword(offs_t address, offs_t directxor) { if(AddrShift <= -3) fatalerror("Can't direct_read_data::read_dword on a memory space with address shift %d", AddrShift); if (address_is_valid(address)) return *reinterpret_cast(&m_ptr[offset_to_byte((address ^ directxor) & m_addrmask)]); return m_space.read_dword(address); } //------------------------------------------------- // read_qword - read a qword via the // direct_read_data class //------------------------------------------------- template inline u64 direct_read_data::read_qword(offs_t address, offs_t directxor) { if (address_is_valid(address)) return *reinterpret_cast(&m_ptr[offset_to_byte((address ^ directxor) & m_addrmask)]); return m_space.read_qword(address); } #endif /* MAME_EMU_EMUMEM_H */