/*************************************************************************** driver.c Core driver device base class. **************************************************************************** Copyright Aaron Giles All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name 'MAME' nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY AARON GILES ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL AARON GILES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ***************************************************************************/ #include "emu.h" #include "drivenum.h" //************************************************************************** // DRIVER DEVICE //************************************************************************** //------------------------------------------------- // driver_device - constructor //------------------------------------------------- driver_device::driver_device(const machine_config &mconfig, device_type type, const char *tag) : device_t(mconfig, type, "Driver Device", tag, NULL, 0), m_generic_paletteram_8(*this, "paletteram"), m_generic_paletteram2_8(*this, "paletteram2"), m_generic_paletteram_16(*this, "paletteram"), m_generic_paletteram2_16(*this, "paletteram2"), m_generic_paletteram_32(*this, "paletteram"), m_generic_paletteram2_32(*this, "paletteram2"), m_system(NULL), m_latch_clear_value(0), m_flip_screen_x(0), m_flip_screen_y(0) { memset(m_legacy_callbacks, 0, sizeof(m_legacy_callbacks)); memset(m_latched_value, 0, sizeof(m_latched_value)); memset(m_latch_read, 0, sizeof(m_latch_read)); } //------------------------------------------------- // driver_device - destructor //------------------------------------------------- driver_device::~driver_device() { } //------------------------------------------------- // static_set_game - set the game in the device // configuration //------------------------------------------------- void driver_device::static_set_game(device_t &device, const game_driver &game) { driver_device &driver = downcast(device); // set the system driver.m_system = &game; // set the short name to the game's name driver.m_shortname = game.name; // set the full name to the game's description driver.m_name = game.description; // and set the search path to include all parents driver.m_searchpath = game.name; for (int parent = driver_list::clone(game); parent != -1; parent = driver_list::clone(parent)) driver.m_searchpath.cat(";").cat(driver_list::driver(parent).name); } //------------------------------------------------- // static_set_callback - set the a callback in // the device configuration //------------------------------------------------- void driver_device::static_set_callback(device_t &device, callback_type type, legacy_callback_func callback) { downcast(device).m_legacy_callbacks[type] = callback; } void driver_device::static_set_callback(device_t &device, callback_type type, driver_callback_delegate callback) { downcast(device).m_callbacks[type] = callback; } //------------------------------------------------- // driver_start - default implementation which // does nothing //------------------------------------------------- void driver_device::driver_start() { } //------------------------------------------------- // machine_start - default implementation which // calls to the legacy machine_start function //------------------------------------------------- void driver_device::machine_start() { } //------------------------------------------------- // sound_start - default implementation which // calls to the legacy sound_start function //------------------------------------------------- void driver_device::sound_start() { } //------------------------------------------------- // palette_init - default implementation which // does nothing //------------------------------------------------- void driver_device::palette_init() { } //------------------------------------------------- // video_start - default implementation which // calls to the legacy video_start function //------------------------------------------------- void driver_device::video_start() { } //------------------------------------------------- // driver_reset - default implementation which // does nothing //------------------------------------------------- void driver_device::driver_reset() { } //------------------------------------------------- // machine_reset - default implementation which // calls to the legacy machine_reset function //------------------------------------------------- void driver_device::machine_reset() { } //------------------------------------------------- // sound_reset - default implementation which // calls to the legacy sound_reset function //------------------------------------------------- void driver_device::sound_reset() { } //------------------------------------------------- // video_reset - default implementation which // calls to the legacy video_reset function //------------------------------------------------- void driver_device::video_reset() { } //------------------------------------------------- // device_rom_region - return a pointer to the // game's ROMs //------------------------------------------------- const rom_entry *driver_device::device_rom_region() const { return m_system->rom; } //------------------------------------------------- // device_input_ports - return a pointer to the // game's input ports //------------------------------------------------- ioport_constructor driver_device::device_input_ports() const { return m_system->ipt; } //------------------------------------------------- // device_start - device override which calls // the various helpers //------------------------------------------------- void driver_device::device_start() { // bind our legacy callbacks for (int index = 0; index < ARRAY_LENGTH(m_legacy_callbacks); index++) if (m_legacy_callbacks[index] != NULL) m_callbacks[index] = driver_callback_delegate(m_legacy_callbacks[index], "legacy_callback", &machine()); // reschedule ourselves to be last device_iterator iter(*this); for (device_t *test = iter.first(); test != NULL; test = iter.next()) if (test != this && !test->started()) throw device_missing_dependencies(); // call the game-specific init if (m_system->driver_init != NULL) (*m_system->driver_init)(machine()); // finish image devices init process image_postdevice_init(machine()); // call palette_init if present if (!m_callbacks[CB_PALETTE_INIT].isnull()) m_callbacks[CB_PALETTE_INIT](); else palette_init(); // start the various pieces driver_start(); if (!m_callbacks[CB_MACHINE_START].isnull()) m_callbacks[CB_MACHINE_START](); else machine_start(); if (!m_callbacks[CB_SOUND_START].isnull()) m_callbacks[CB_SOUND_START](); else sound_start(); if (!m_callbacks[CB_VIDEO_START].isnull()) m_callbacks[CB_VIDEO_START](); else video_start(); // save generic states save_item(NAME(m_flip_screen_x)); save_item(NAME(m_flip_screen_y)); } //------------------------------------------------- // device_reset_after_children - device override // which calls the various helpers; must happen // after all child devices are reset //------------------------------------------------- void driver_device::device_reset_after_children() { // reset each piece driver_reset(); if (!m_callbacks[CB_MACHINE_RESET].isnull()) m_callbacks[CB_MACHINE_RESET](); else machine_reset(); if (!m_callbacks[CB_SOUND_RESET].isnull()) m_callbacks[CB_SOUND_RESET](); else sound_reset(); if (!m_callbacks[CB_VIDEO_RESET].isnull()) m_callbacks[CB_VIDEO_RESET](); else video_reset(); } //************************************************************************** // INTERRUPT ENABLE AND VECTOR HELPERS //************************************************************************** //------------------------------------------------- // irq_pulse_clear - clear a "pulsed" IRQ line //------------------------------------------------- void driver_device::irq_pulse_clear(void *ptr, INT32 param) { device_execute_interface *exec = reinterpret_cast(ptr); int irqline = param; exec->set_input_line(irqline, CLEAR_LINE); } //------------------------------------------------- // generic_pulse_irq_line - "pulse" an IRQ line by // asserting it and then clearing it x cycle(s) // later //------------------------------------------------- void driver_device::generic_pulse_irq_line(device_execute_interface &exec, int irqline, int cycles) { assert(irqline != INPUT_LINE_NMI && irqline != INPUT_LINE_RESET && cycles > 0); exec.set_input_line(irqline, ASSERT_LINE); attotime target_time = exec.local_time() + exec.cycles_to_attotime(cycles * exec.min_cycles()); machine().scheduler().timer_set(target_time - machine().time(), timer_expired_delegate(FUNC(driver_device::irq_pulse_clear), this), irqline, (void *)&exec); } //------------------------------------------------- // generic_pulse_irq_line_and_vector - "pulse" an // IRQ line by asserting it and then clearing it // x cycle(s) later, specifying a vector //------------------------------------------------- void driver_device::generic_pulse_irq_line_and_vector(device_execute_interface &exec, int irqline, int vector, int cycles) { assert(irqline != INPUT_LINE_NMI && irqline != INPUT_LINE_RESET && cycles > 0); exec.set_input_line_and_vector(irqline, ASSERT_LINE, vector); attotime target_time = exec.local_time() + exec.cycles_to_attotime(cycles * exec.min_cycles()); machine().scheduler().timer_set(target_time - machine().time(), timer_expired_delegate(FUNC(driver_device::irq_pulse_clear), this), irqline, (void *)&exec); } //************************************************************************** // INTERRUPT GENERATION CALLBACK HELPERS //************************************************************************** //------------------------------------------------- // NMI callbacks //------------------------------------------------- INTERRUPT_GEN_MEMBER( driver_device::nmi_line_pulse ) { device.execute().set_input_line(INPUT_LINE_NMI, PULSE_LINE); } INTERRUPT_GEN_MEMBER( driver_device::nmi_line_assert ) { device.execute().set_input_line(INPUT_LINE_NMI, ASSERT_LINE); } //------------------------------------------------- // IRQn callbacks //------------------------------------------------- INTERRUPT_GEN_MEMBER( driver_device::irq0_line_hold ) { device.execute().set_input_line(0, HOLD_LINE); } INTERRUPT_GEN_MEMBER( driver_device::irq0_line_pulse ) { generic_pulse_irq_line(device.execute(), 0, 1); } INTERRUPT_GEN_MEMBER( driver_device::irq0_line_assert ) { device.execute().set_input_line(0, ASSERT_LINE); } INTERRUPT_GEN_MEMBER( driver_device::irq1_line_hold ) { device.execute().set_input_line(1, HOLD_LINE); } INTERRUPT_GEN_MEMBER( driver_device::irq1_line_pulse ) { generic_pulse_irq_line(device.execute(), 1, 1); } INTERRUPT_GEN_MEMBER( driver_device::irq1_line_assert ) { device.execute().set_input_line(1, ASSERT_LINE); } INTERRUPT_GEN_MEMBER( driver_device::irq2_line_hold ) { device.execute().set_input_line(2, HOLD_LINE); } INTERRUPT_GEN_MEMBER( driver_device::irq2_line_pulse ) { generic_pulse_irq_line(device.execute(), 2, 1); } INTERRUPT_GEN_MEMBER( driver_device::irq2_line_assert ) { device.execute().set_input_line(2, ASSERT_LINE); } INTERRUPT_GEN_MEMBER( driver_device::irq3_line_hold ) { device.execute().set_input_line(3, HOLD_LINE); } INTERRUPT_GEN_MEMBER( driver_device::irq3_line_pulse ) { generic_pulse_irq_line(device.execute(), 3, 1); } INTERRUPT_GEN_MEMBER( driver_device::irq3_line_assert ) { device.execute().set_input_line(3, ASSERT_LINE); } INTERRUPT_GEN_MEMBER( driver_device::irq4_line_hold ) { device.execute().set_input_line(4, HOLD_LINE); } INTERRUPT_GEN_MEMBER( driver_device::irq4_line_pulse ) { generic_pulse_irq_line(device.execute(), 4, 1); } INTERRUPT_GEN_MEMBER( driver_device::irq4_line_assert ) { device.execute().set_input_line(4, ASSERT_LINE); } INTERRUPT_GEN_MEMBER( driver_device::irq5_line_hold ) { device.execute().set_input_line(5, HOLD_LINE); } INTERRUPT_GEN_MEMBER( driver_device::irq5_line_pulse ) { generic_pulse_irq_line(device.execute(), 5, 1); } INTERRUPT_GEN_MEMBER( driver_device::irq5_line_assert ) { device.execute().set_input_line(5, ASSERT_LINE); } INTERRUPT_GEN_MEMBER( driver_device::irq6_line_hold ) { device.execute().set_input_line(6, HOLD_LINE); } INTERRUPT_GEN_MEMBER( driver_device::irq6_line_pulse ) { generic_pulse_irq_line(device.execute(), 6, 1); } INTERRUPT_GEN_MEMBER( driver_device::irq6_line_assert ) { device.execute().set_input_line(6, ASSERT_LINE); } INTERRUPT_GEN_MEMBER( driver_device::irq7_line_hold ) { device.execute().set_input_line(7, HOLD_LINE); } INTERRUPT_GEN_MEMBER( driver_device::irq7_line_pulse ) { generic_pulse_irq_line(device.execute(), 7, 1); } INTERRUPT_GEN_MEMBER( driver_device::irq7_line_assert ) { device.execute().set_input_line(7, ASSERT_LINE); } //************************************************************************** // WATCHDOG READ/WRITE HELPERS //************************************************************************** //------------------------------------------------- // 8-bit reset read/write handlers //------------------------------------------------- WRITE8_MEMBER( driver_device::watchdog_reset_w ) { machine().watchdog_reset(); } READ8_MEMBER( driver_device::watchdog_reset_r ) { machine().watchdog_reset(); return space.unmap(); } //------------------------------------------------- // 16-bit reset read/write handlers //------------------------------------------------- WRITE16_MEMBER( driver_device::watchdog_reset16_w ) { machine().watchdog_reset(); } READ16_MEMBER( driver_device::watchdog_reset16_r ) { machine().watchdog_reset(); return space.unmap(); } //------------------------------------------------- // 32-bit reset read/write handlers //------------------------------------------------- WRITE32_MEMBER( driver_device::watchdog_reset32_w ) { machine().watchdog_reset(); } READ32_MEMBER( driver_device::watchdog_reset32_r ) { machine().watchdog_reset(); return space.unmap(); } //************************************************************************** // GENERIC SOUND COMMAND LATCHING //************************************************************************** //------------------------------------------------- // soundlatch_sync_callback - time-delayed // callback to set a latch value //------------------------------------------------- void driver_device::soundlatch_sync_callback(void *ptr, INT32 param) { UINT16 value = param >> 8; int which = param & 0xff; // if the latch hasn't been read and the value is changed, log a warning if (!m_latch_read[which] && m_latched_value[which] != value) logerror("Warning: sound latch %d written before being read. Previous: %02x, new: %02x\n", which, m_latched_value[which], value); // store the new value and mark it not read m_latched_value[which] = value; m_latch_read[which] = 0; } //------------------------------------------------- // soundlatch_byte_w - global write handlers for // writing to sound latches //------------------------------------------------- void driver_device::soundlatch_write(UINT8 index, UINT32 data) { machine().scheduler().synchronize(timer_expired_delegate(FUNC(driver_device::soundlatch_sync_callback), this), index | (data << 8)); } WRITE8_MEMBER( driver_device::soundlatch_byte_w ) { soundlatch_write(0, data); } WRITE16_MEMBER( driver_device::soundlatch_word_w ) { soundlatch_write(0, data); } WRITE8_MEMBER( driver_device::soundlatch2_byte_w ) { soundlatch_write(1, data); } WRITE16_MEMBER( driver_device::soundlatch2_word_w ) { soundlatch_write(1, data); } WRITE8_MEMBER( driver_device::soundlatch3_byte_w ) { soundlatch_write(2, data); } WRITE16_MEMBER( driver_device::soundlatch3_word_w ) { soundlatch_write(2, data); } WRITE8_MEMBER( driver_device::soundlatch4_byte_w ) { soundlatch_write(3, data); } WRITE16_MEMBER( driver_device::soundlatch4_word_w ) { soundlatch_write(3, data); } //------------------------------------------------- // soundlatch_byte_r - global read handlers for // reading from sound latches //------------------------------------------------- UINT32 driver_device::soundlatch_read(UINT8 index) { m_latch_read[index] = 1; return m_latched_value[index]; } READ8_MEMBER( driver_device::soundlatch_byte_r ) { return soundlatch_read(0); } READ16_MEMBER( driver_device::soundlatch_word_r ) { return soundlatch_read(0); } READ8_MEMBER( driver_device::soundlatch2_byte_r ) { return soundlatch_read(1); } READ16_MEMBER( driver_device::soundlatch2_word_r ) { return soundlatch_read(1); } READ8_MEMBER( driver_device::soundlatch3_byte_r ) { return soundlatch_read(2); } READ16_MEMBER( driver_device::soundlatch3_word_r ) { return soundlatch_read(2); } READ8_MEMBER( driver_device::soundlatch4_byte_r ) { return soundlatch_read(3); } READ16_MEMBER( driver_device::soundlatch4_word_r ) { return soundlatch_read(3); } //------------------------------------------------- // soundlatch_clear_byte_w - global write handlers // for clearing sound latches //------------------------------------------------- void driver_device::soundlatch_clear(UINT8 index) { m_latched_value[index] = m_latch_clear_value; } WRITE8_MEMBER( driver_device::soundlatch_clear_byte_w ) { soundlatch_clear(0); } WRITE8_MEMBER( driver_device::soundlatch2_clear_byte_w ) { soundlatch_clear(1); } WRITE8_MEMBER( driver_device::soundlatch3_clear_byte_w ) { soundlatch_clear(2); } WRITE8_MEMBER( driver_device::soundlatch4_clear_byte_w ) { soundlatch_clear(3); } //************************************************************************** // GENERIC FLIP SCREEN HANDLING //************************************************************************** //------------------------------------------------- // updateflip - handle global flipping //------------------------------------------------- void driver_device::updateflip() { // push the flip state to all tilemaps machine().tilemap().set_flip_all((TILEMAP_FLIPX & m_flip_screen_x) | (TILEMAP_FLIPY & m_flip_screen_y)); // flip the visible area within the screen width/height int width = machine().primary_screen->width(); int height = machine().primary_screen->height(); rectangle visarea = machine().primary_screen->visible_area(); if (m_flip_screen_x) { int temp = width - visarea.min_x - 1; visarea.min_x = width - visarea.max_x - 1; visarea.max_x = temp; } if (m_flip_screen_y) { int temp = height - visarea.min_y - 1; visarea.min_y = height - visarea.max_y - 1; visarea.max_y = temp; } // reconfigure the screen with the new visible area attoseconds_t period = machine().primary_screen->frame_period().attoseconds; machine().primary_screen->configure(width, height, visarea, period); } //------------------------------------------------- // flip_screen_set - set global flip //------------------------------------------------- void driver_device::flip_screen_set(UINT32 on) { // normalize to all 1 if (on) on = ~0; // if something's changed, handle it if (m_flip_screen_x != on || m_flip_screen_y != on) { if (!on) updateflip(); // flip visarea back m_flip_screen_x = m_flip_screen_y = on; updateflip(); } } //------------------------------------------------- // flip_screen_set_no_update - set global flip // do not call update_flip. //------------------------------------------------- void driver_device::flip_screen_set_no_update(UINT32 on) { // flip_screen_y is not updated on purpose // this function is for drivers which // where writing to flip_screen_x to // bypass update_flip if (on) on = ~0; m_flip_screen_x = on; } //------------------------------------------------- // flip_screen_x_set - set global horizontal flip //------------------------------------------------- void driver_device::flip_screen_x_set(UINT32 on) { // normalize to all 1 if (on) on = ~0; // if something's changed, handle it if (m_flip_screen_x != on) { m_flip_screen_x = on; updateflip(); } } //------------------------------------------------- // flip_screen_y_set - set global vertical flip //------------------------------------------------- void driver_device::flip_screen_y_set(UINT32 on) { // normalize to all 1 if (on) on = ~0; // if something's changed, handle it if (m_flip_screen_y != on) { m_flip_screen_y = on; updateflip(); } } //************************************************************************** // 8-BIT PALETTE WRITE HANDLERS //************************************************************************** // 3-3-2 RGB palette write handlers WRITE8_MEMBER( driver_device::paletteram_BBGGGRRR_byte_w ) { palette_8bit_byte_w<3,3,2, 0,3,6>(space, offset, data, mem_mask); } WRITE8_MEMBER( driver_device::paletteram_RRRGGGBB_byte_w ) { palette_8bit_byte_w<3,3,2, 5,2,0>(space, offset, data, mem_mask); } WRITE8_MEMBER( driver_device::paletteram_BBGGRRII_byte_w ) { m_generic_paletteram_8[offset] = data; int i = (data >> 0) & 3; palette_set_color_rgb(machine(), offset, pal4bit(((data >> 0) & 0x0c) | i), pal4bit(((data >> 2) & 0x0c) | i), pal4bit(((data >> 4) & 0x0c) | i)); } //************************************************************************** // 16-BIT PALETTE WRITE HANDLERS //************************************************************************** // 4-4-4 RGB palette write handlers WRITE8_MEMBER( driver_device::paletteram_xxxxBBBBGGGGRRRR_byte_le_w ) { palette_16bit_byte_le_w<4,4,4, 0,4,8>(space, offset, data, mem_mask); } WRITE8_MEMBER( driver_device::paletteram_xxxxBBBBGGGGRRRR_byte_be_w ) { palette_16bit_byte_be_w<4,4,4, 0,4,8>(space, offset, data, mem_mask); } WRITE8_MEMBER( driver_device::paletteram_xxxxBBBBGGGGRRRR_byte_split_lo_w ) { palette_16bit_byte_split_lo_w<4,4,4, 0,4,8>(space, offset, data, mem_mask); } WRITE8_MEMBER( driver_device::paletteram_xxxxBBBBGGGGRRRR_byte_split_hi_w ) { palette_16bit_byte_split_hi_w<4,4,4, 0,4,8>(space, offset, data, mem_mask); } WRITE16_MEMBER( driver_device::paletteram_xxxxBBBBGGGGRRRR_word_w ) { palette_16bit_word_w<4,4,4, 0,4,8>(space, offset, data, mem_mask); } WRITE8_MEMBER( driver_device::paletteram_xxxxBBBBRRRRGGGG_byte_le_w ) { palette_16bit_byte_le_w<4,4,4, 4,0,8>(space, offset, data, mem_mask); } WRITE8_MEMBER( driver_device::paletteram_xxxxBBBBRRRRGGGG_byte_be_w ) { palette_16bit_byte_be_w<4,4,4, 4,0,8>(space, offset, data, mem_mask); } WRITE8_MEMBER( driver_device::paletteram_xxxxBBBBRRRRGGGG_byte_split_lo_w ) { palette_16bit_byte_split_lo_w<4,4,4, 4,0,8>(space, offset, data, mem_mask); } WRITE8_MEMBER( driver_device::paletteram_xxxxBBBBRRRRGGGG_byte_split_hi_w ) { palette_16bit_byte_split_hi_w<4,4,4, 4,0,8>(space, offset, data, mem_mask); } WRITE16_MEMBER( driver_device::paletteram_xxxxBBBBRRRRGGGG_word_w ) { palette_16bit_word_w<4,4,4, 4,0,8>(space, offset, data, mem_mask); } WRITE8_MEMBER( driver_device::paletteram_xxxxRRRRBBBBGGGG_byte_split_lo_w ) { palette_16bit_byte_split_lo_w<4,4,4, 8,0,4>(space, offset, data, mem_mask); } WRITE8_MEMBER( driver_device::paletteram_xxxxRRRRBBBBGGGG_byte_split_hi_w ) { palette_16bit_byte_split_hi_w<4,4,4, 8,0,4>(space, offset, data, mem_mask); } WRITE8_MEMBER( driver_device::paletteram_xxxxRRRRGGGGBBBB_byte_le_w ) { palette_16bit_byte_le_w<4,4,4, 8,4,0>(space, offset, data, mem_mask); } WRITE8_MEMBER( driver_device::paletteram_xxxxRRRRGGGGBBBB_byte_be_w ) { palette_16bit_byte_be_w<4,4,4, 8,4,0>(space, offset, data, mem_mask); } WRITE8_MEMBER( driver_device::paletteram_xxxxRRRRGGGGBBBB_byte_split_lo_w ) { palette_16bit_byte_split_lo_w<4,4,4, 8,4,0>(space, offset, data, mem_mask); } WRITE8_MEMBER( driver_device::paletteram_xxxxRRRRGGGGBBBB_byte_split_hi_w ) { palette_16bit_byte_split_hi_w<4,4,4, 8,4,0>(space, offset, data, mem_mask); } WRITE16_MEMBER( driver_device::paletteram_xxxxRRRRGGGGBBBB_word_w ) { palette_16bit_word_w<4,4,4, 8,4,0>(space, offset, data, mem_mask); } WRITE8_MEMBER( driver_device::paletteram_RRRRGGGGBBBBxxxx_byte_be_w ) { palette_16bit_byte_be_w<4,4,4, 12,8,4>(space, offset, data, mem_mask); } WRITE8_MEMBER( driver_device::paletteram_RRRRGGGGBBBBxxxx_byte_split_lo_w ) { palette_16bit_byte_split_lo_w<4,4,4, 12,8,4>(space, offset, data, mem_mask); } WRITE8_MEMBER( driver_device::paletteram_RRRRGGGGBBBBxxxx_byte_split_hi_w ) { palette_16bit_byte_split_hi_w<4,4,4, 12,8,4>(space, offset, data, mem_mask); } WRITE16_MEMBER( driver_device::paletteram_RRRRGGGGBBBBxxxx_word_w ) { palette_16bit_word_w<4,4,4, 12,8,4>(space, offset, data, mem_mask); } // 4-4-4-4 IRGB palette write handlers template inline void set_color_irgb(running_machine &machine, pen_t color, UINT16 data) { static const UINT8 ztable[16] = { 0x0, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0x10, 0x11 }; UINT8 i = ztable[(data >> _IShift) & 15]; UINT8 r = ((data >> _RShift) & 15) * i; UINT8 g = ((data >> _GShift) & 15) * i; UINT8 b = ((data >> _BShift) & 15) * i; palette_set_color_rgb(machine, color, r, g, b); } WRITE16_MEMBER( driver_device::paletteram_IIIIRRRRGGGGBBBB_word_w ) { COMBINE_DATA(&m_generic_paletteram_16[offset]); set_color_irgb<12,8,4,0>(machine(), offset, m_generic_paletteram_16[offset]); } WRITE16_MEMBER( driver_device::paletteram_RRRRGGGGBBBBIIII_word_w ) { COMBINE_DATA(&m_generic_paletteram_16[offset]); set_color_irgb<0,12,8,4>(machine(), offset, m_generic_paletteram_16[offset]); } // 5-5-5 RGB palette write handlers WRITE8_MEMBER( driver_device::paletteram_xBBBBBGGGGGRRRRR_byte_le_w ) { palette_16bit_byte_le_w<5,5,5, 0,5,10>(space, offset, data, mem_mask); } WRITE8_MEMBER( driver_device::paletteram_xBBBBBGGGGGRRRRR_byte_be_w ) { palette_16bit_byte_be_w<5,5,5, 0,5,10>(space, offset, data, mem_mask); } WRITE8_MEMBER( driver_device::paletteram_xBBBBBGGGGGRRRRR_byte_split_lo_w ) { palette_16bit_byte_split_lo_w<5,5,5, 0,5,10>(space, offset, data, mem_mask); } WRITE8_MEMBER( driver_device::paletteram_xBBBBBGGGGGRRRRR_byte_split_hi_w ) { palette_16bit_byte_split_hi_w<5,5,5, 0,5,10>(space, offset, data, mem_mask); } WRITE16_MEMBER( driver_device::paletteram_xBBBBBGGGGGRRRRR_word_w ) { palette_16bit_word_w<5,5,5, 0,5,10>(space, offset, data, mem_mask); } WRITE8_MEMBER( driver_device::paletteram_xBBBBBRRRRRGGGGG_byte_split_lo_w ) { palette_16bit_byte_split_lo_w<5,5,5, 5,0,10>(space, offset, data, mem_mask); } WRITE8_MEMBER( driver_device::paletteram_xBBBBBRRRRRGGGGG_byte_split_hi_w ) { palette_16bit_byte_split_hi_w<5,5,5, 5,0,10>(space, offset, data, mem_mask); } WRITE8_MEMBER( driver_device::paletteram_xRRRRRGGGGGBBBBB_byte_le_w ) { palette_16bit_byte_le_w<5,5,5, 10,5,0>(space, offset, data, mem_mask); } WRITE8_MEMBER( driver_device::paletteram_xRRRRRGGGGGBBBBB_byte_be_w ) { palette_16bit_byte_be_w<5,5,5, 10,5,0>(space, offset, data, mem_mask); } WRITE8_MEMBER( driver_device::paletteram_xRRRRRGGGGGBBBBB_byte_split_lo_w ) { palette_16bit_byte_split_lo_w<5,5,5, 10,5,0>(space, offset, data, mem_mask); } WRITE8_MEMBER( driver_device::paletteram_xRRRRRGGGGGBBBBB_byte_split_hi_w ) { palette_16bit_byte_split_hi_w<5,5,5, 10,5,0>(space, offset, data, mem_mask); } WRITE16_MEMBER( driver_device::paletteram_xRRRRRGGGGGBBBBB_word_w ) { palette_16bit_word_w<5,5,5, 10,5,0>(space, offset, data, mem_mask); } WRITE32_MEMBER( driver_device::paletteram_xRRRRRGGGGGBBBBB_dword_be_w ) { palette_16bit_dword_be_w<5,5,5, 10,5,0>(space, offset, data, mem_mask); } WRITE32_MEMBER( driver_device::paletteram_xRRRRRGGGGGBBBBB_dword_le_w ) { palette_16bit_dword_le_w<5,5,5, 10,5,0>(space, offset, data, mem_mask); } WRITE8_MEMBER( driver_device::paletteram_xGGGGGRRRRRBBBBB_byte_le_w ) { palette_16bit_byte_le_w<5,5,5, 5,10,0>(space, offset, data, mem_mask); } WRITE16_MEMBER( driver_device::paletteram_xGGGGGRRRRRBBBBB_word_w ) { palette_16bit_word_w<5,5,5, 5,10,0>(space, offset, data, mem_mask); } WRITE16_MEMBER( driver_device::paletteram_xGGGGGBBBBBRRRRR_word_w ) { palette_16bit_word_w<5,5,5, 0,10,5>(space, offset, data, mem_mask); } WRITE16_MEMBER( driver_device::paletteram_RRRRRGGGGGBBBBBx_word_w ) { palette_16bit_word_w<5,5,5, 11,6,1>(space, offset, data, mem_mask); } WRITE16_MEMBER( driver_device::paletteram_GGGGGRRRRRBBBBBx_word_w ) { palette_16bit_word_w<5,5,5, 6,11,1>(space, offset, data, mem_mask); } WRITE16_MEMBER( driver_device::paletteram_RRRRGGGGBBBBRGBx_word_w ) { COMBINE_DATA(&m_generic_paletteram_16[offset]); data = m_generic_paletteram_16[offset]; palette_set_color_rgb(machine(), offset, pal5bit(((data >> 11) & 0x1e) | ((data >> 3) & 0x01)), pal5bit(((data >> 7) & 0x1e) | ((data >> 2) & 0x01)), pal5bit(((data >> 3) & 0x1e) | ((data >> 1) & 0x01))); } //************************************************************************** // 32-BIT PALETTE WRITE HANDLERS //************************************************************************** // 8-8-8 RGB palette write handlers WRITE16_MEMBER( driver_device::paletteram_xrgb_word_be_w ) { palette_32bit_word_be_w<8,8,8, 16,8,0>(space, offset, data, mem_mask); } WRITE16_MEMBER( driver_device::paletteram_xbgr_word_be_w ) { palette_32bit_word_be_w<8,8,8, 0,8,16>(space, offset, data, mem_mask); }