// license:BSD-3-Clause // copyright-holders:Aaron Giles /********************************************************************* debugcmd.cpp Debugger command interface engine. *********************************************************************/ #include "emu.h" #include "emuopts.h" #include "debugger.h" #include "debugcmd.h" #include "debugcon.h" #include "debugcpu.h" #include "debugbuf.h" #include "express.h" #include "debughlp.h" #include "debugvw.h" #include "points.h" #include "natkeyboard.h" #include "render.h" #include #include #include /*************************************************************************** CONSTANTS ***************************************************************************/ const size_t debugger_commands::MAX_GLOBALS = 1000; /*************************************************************************** FUNCTIONS ***************************************************************************/ /*------------------------------------------------- cheat_address_is_valid - return true if the given address is valid for cheating -------------------------------------------------*/ bool debugger_commands::cheat_address_is_valid(address_space &space, offs_t address) { return space.device().memory().translate(space.spacenum(), TRANSLATE_READ, address) && (space.get_write_ptr(address) != nullptr); } /*------------------------------------------------- cheat_sign_extend - sign-extend a value to the current cheat width, if signed -------------------------------------------------*/ u64 debugger_commands::cheat_sign_extend(const cheat_system *cheatsys, u64 value) { if (cheatsys->signed_cheat) { switch (cheatsys->width) { case 1: value = s8(value); break; case 2: value = s16(value); break; case 4: value = s32(value); break; } } return value; } /*------------------------------------------------- cheat_byte_swap - swap a value -------------------------------------------------*/ u64 debugger_commands::cheat_byte_swap(const cheat_system *cheatsys, u64 value) { if (cheatsys->swapped_cheat) { switch (cheatsys->width) { case 2: value = swapendian_int16(value); break; case 4: value = swapendian_int32(value); break; case 8: value = swapendian_int64(value); break; } } return value; } /*------------------------------------------------- cheat_read_extended - read a value from memory in the given address space, sign-extending and swapping if necessary -------------------------------------------------*/ u64 debugger_commands::cheat_read_extended(const cheat_system *cheatsys, address_space &space, offs_t address) { address &= space.logaddrmask(); u64 value = space.unmap(); if (space.device().memory().translate(space.spacenum(), TRANSLATE_READ_DEBUG, address)) { switch (cheatsys->width) { case 1: value = space.read_byte(address); break; case 2: value = space.read_word_unaligned(address); break; case 4: value = space.read_dword_unaligned(address); break; case 8: value = space.read_qword_unaligned(address); break; } } return cheat_sign_extend(cheatsys, cheat_byte_swap(cheatsys, value)); } debugger_commands::debugger_commands(running_machine& machine, debugger_cpu& cpu, debugger_console& console) : m_machine(machine) , m_cpu(cpu) , m_console(console) { m_global_array = std::make_unique(MAX_GLOBALS); symbol_table &symtable = m_cpu.global_symtable(); /* add a few simple global functions */ using namespace std::placeholders; symtable.add("min", 2, 2, std::bind(&debugger_commands::execute_min, this, _1, _2)); symtable.add("max", 2, 2, std::bind(&debugger_commands::execute_max, this, _1, _2)); symtable.add("if", 3, 3, std::bind(&debugger_commands::execute_if, this, _1, _2)); symtable.add("abs", 1, 1, std::bind(&debugger_commands::execute_abs, this, _1, _2)); symtable.add("bit", 2, 3, std::bind(&debugger_commands::execute_bit, this, _1, _2)); symtable.add("s8", 1, 1, std::bind(&debugger_commands::execute_s8, this, _1, _2)); symtable.add("s16", 1, 1, std::bind(&debugger_commands::execute_s16, this, _1, _2)); symtable.add("s32", 1, 1, std::bind(&debugger_commands::execute_s32, this, _1, _2)); symtable.add("cpunum", std::bind(&debugger_commands::get_cpunum, this)); /* add all single-entry save state globals */ for (int itemnum = 0; itemnum < MAX_GLOBALS; itemnum++) { void *base; u32 valsize, valcount, blockcount, stride; /* stop when we run out of items */ const char* name = m_machine.save().indexed_item(itemnum, base, valsize, valcount, blockcount, stride); if (!name) break; /* if this is a single-entry global, add it */ if ((valcount == 1) && (blockcount == 1) && strstr(name, "/globals/")) { char symname[100]; sprintf(symname, ".%s", strrchr(name, '/') + 1); m_global_array[itemnum].base = base; m_global_array[itemnum].size = valsize; symtable.add( symname, std::bind(&debugger_commands::global_get, this, &m_global_array[itemnum]), std::bind(&debugger_commands::global_set, this, &m_global_array[itemnum], _1)); } } /* add all the commands */ m_console.register_command("help", CMDFLAG_NONE, 0, 0, 1, std::bind(&debugger_commands::execute_help, this, _1, _2)); m_console.register_command("print", CMDFLAG_NONE, 0, 1, MAX_COMMAND_PARAMS, std::bind(&debugger_commands::execute_print, this, _1, _2)); m_console.register_command("printf", CMDFLAG_NONE, 0, 1, MAX_COMMAND_PARAMS, std::bind(&debugger_commands::execute_printf, this, _1, _2)); m_console.register_command("logerror", CMDFLAG_NONE, 0, 1, MAX_COMMAND_PARAMS, std::bind(&debugger_commands::execute_logerror, this, _1, _2)); m_console.register_command("tracelog", CMDFLAG_NONE, 0, 1, MAX_COMMAND_PARAMS, std::bind(&debugger_commands::execute_tracelog, this, _1, _2)); m_console.register_command("tracesym", CMDFLAG_NONE, 0, 1, MAX_COMMAND_PARAMS, std::bind(&debugger_commands::execute_tracesym, this, _1, _2)); m_console.register_command("quit", CMDFLAG_NONE, 0, 0, 0, std::bind(&debugger_commands::execute_quit, this, _1, _2)); m_console.register_command("exit", CMDFLAG_NONE, 0, 0, 0, std::bind(&debugger_commands::execute_quit, this, _1, _2)); m_console.register_command("do", CMDFLAG_NONE, 0, 1, 1, std::bind(&debugger_commands::execute_do, this, _1, _2)); m_console.register_command("step", CMDFLAG_NONE, 0, 0, 1, std::bind(&debugger_commands::execute_step, this, _1, _2)); m_console.register_command("s", CMDFLAG_NONE, 0, 0, 1, std::bind(&debugger_commands::execute_step, this, _1, _2)); m_console.register_command("over", CMDFLAG_NONE, 0, 0, 1, std::bind(&debugger_commands::execute_over, this, _1, _2)); m_console.register_command("o", CMDFLAG_NONE, 0, 0, 1, std::bind(&debugger_commands::execute_over, this, _1, _2)); m_console.register_command("out" , CMDFLAG_NONE, 0, 0, 0, std::bind(&debugger_commands::execute_out, this, _1, _2)); m_console.register_command("go", CMDFLAG_NONE, 0, 0, 1, std::bind(&debugger_commands::execute_go, this, _1, _2)); m_console.register_command("g", CMDFLAG_NONE, 0, 0, 1, std::bind(&debugger_commands::execute_go, this, _1, _2)); m_console.register_command("gvblank", CMDFLAG_NONE, 0, 0, 0, std::bind(&debugger_commands::execute_go_vblank, this, _1, _2)); m_console.register_command("gv", CMDFLAG_NONE, 0, 0, 0, std::bind(&debugger_commands::execute_go_vblank, this, _1, _2)); m_console.register_command("gint", CMDFLAG_NONE, 0, 0, 1, std::bind(&debugger_commands::execute_go_interrupt, this, _1, _2)); m_console.register_command("gi", CMDFLAG_NONE, 0, 0, 1, std::bind(&debugger_commands::execute_go_interrupt, this, _1, _2)); m_console.register_command("gex", CMDFLAG_NONE, 0, 0, 2, std::bind(&debugger_commands::execute_go_exception, this, _1, _2)); m_console.register_command("ge", CMDFLAG_NONE, 0, 0, 2, std::bind(&debugger_commands::execute_go_exception, this, _1, _2)); m_console.register_command("gtime", CMDFLAG_NONE, 0, 0, 1, std::bind(&debugger_commands::execute_go_time, this, _1, _2)); m_console.register_command("gt", CMDFLAG_NONE, 0, 0, 1, std::bind(&debugger_commands::execute_go_time, this, _1, _2)); m_console.register_command("gp", CMDFLAG_NONE, 0, 0, 1, std::bind(&debugger_commands::execute_go_privilege, this, _1, _2)); m_console.register_command("next", CMDFLAG_NONE, 0, 0, 0, std::bind(&debugger_commands::execute_next, this, _1, _2)); m_console.register_command("n", CMDFLAG_NONE, 0, 0, 0, std::bind(&debugger_commands::execute_next, this, _1, _2)); m_console.register_command("focus", CMDFLAG_NONE, 0, 1, 1, std::bind(&debugger_commands::execute_focus, this, _1, _2)); m_console.register_command("ignore", CMDFLAG_NONE, 0, 0, MAX_COMMAND_PARAMS, std::bind(&debugger_commands::execute_ignore, this, _1, _2)); m_console.register_command("observe", CMDFLAG_NONE, 0, 0, MAX_COMMAND_PARAMS, std::bind(&debugger_commands::execute_observe, this, _1, _2)); m_console.register_command("suspend", CMDFLAG_NONE, 0, 0, MAX_COMMAND_PARAMS, std::bind(&debugger_commands::execute_suspend, this, _1, _2)); m_console.register_command("resume", CMDFLAG_NONE, 0, 0, MAX_COMMAND_PARAMS, std::bind(&debugger_commands::execute_resume, this, _1, _2)); m_console.register_command("cpulist", CMDFLAG_NONE, 0, 0, 0, std::bind(&debugger_commands::execute_cpulist, this, _1, _2)); m_console.register_command("comadd", CMDFLAG_NONE, 0, 1, 2, std::bind(&debugger_commands::execute_comment_add, this, _1, _2)); m_console.register_command("//", CMDFLAG_NONE, 0, 1, 2, std::bind(&debugger_commands::execute_comment_add, this, _1, _2)); m_console.register_command("comdelete", CMDFLAG_NONE, 0, 1, 1, std::bind(&debugger_commands::execute_comment_del, this, _1, _2)); m_console.register_command("comsave", CMDFLAG_NONE, 0, 0, 0, std::bind(&debugger_commands::execute_comment_save, this, _1, _2)); m_console.register_command("comlist", CMDFLAG_NONE, 0, 0, 0, std::bind(&debugger_commands::execute_comment_list, this, _1, _2)); m_console.register_command("commit", CMDFLAG_NONE, 0, 1, 2, std::bind(&debugger_commands::execute_comment_commit, this, _1, _2)); m_console.register_command("/*", CMDFLAG_NONE, 0, 1, 2, std::bind(&debugger_commands::execute_comment_commit, this, _1, _2)); m_console.register_command("bpset", CMDFLAG_NONE, 0, 1, 3, std::bind(&debugger_commands::execute_bpset, this, _1, _2)); m_console.register_command("bp", CMDFLAG_NONE, 0, 1, 3, std::bind(&debugger_commands::execute_bpset, this, _1, _2)); m_console.register_command("bpclear", CMDFLAG_NONE, 0, 0, 1, std::bind(&debugger_commands::execute_bpclear, this, _1, _2)); m_console.register_command("bpdisable", CMDFLAG_NONE, 0, 0, 1, std::bind(&debugger_commands::execute_bpdisenable, this, _1, _2)); m_console.register_command("bpenable", CMDFLAG_NONE, 1, 0, 1, std::bind(&debugger_commands::execute_bpdisenable, this, _1, _2)); m_console.register_command("bplist", CMDFLAG_NONE, 0, 0, 0, std::bind(&debugger_commands::execute_bplist, this, _1, _2)); m_console.register_command("wpset", CMDFLAG_NONE, AS_PROGRAM, 3, 5, std::bind(&debugger_commands::execute_wpset, this, _1, _2)); m_console.register_command("wp", CMDFLAG_NONE, AS_PROGRAM, 3, 5, std::bind(&debugger_commands::execute_wpset, this, _1, _2)); m_console.register_command("wpdset", CMDFLAG_NONE, AS_DATA, 3, 5, std::bind(&debugger_commands::execute_wpset, this, _1, _2)); m_console.register_command("wpd", CMDFLAG_NONE, AS_DATA, 3, 5, std::bind(&debugger_commands::execute_wpset, this, _1, _2)); m_console.register_command("wpiset", CMDFLAG_NONE, AS_IO, 3, 5, std::bind(&debugger_commands::execute_wpset, this, _1, _2)); m_console.register_command("wpi", CMDFLAG_NONE, AS_IO, 3, 5, std::bind(&debugger_commands::execute_wpset, this, _1, _2)); m_console.register_command("wposet", CMDFLAG_NONE, AS_OPCODES, 3, 5, std::bind(&debugger_commands::execute_wpset, this, _1, _2)); m_console.register_command("wpo", CMDFLAG_NONE, AS_OPCODES, 3, 5, std::bind(&debugger_commands::execute_wpset, this, _1, _2)); m_console.register_command("wpclear", CMDFLAG_NONE, 0, 0, 1, std::bind(&debugger_commands::execute_wpclear, this, _1, _2)); m_console.register_command("wpdisable", CMDFLAG_NONE, 0, 0, 1, std::bind(&debugger_commands::execute_wpdisenable, this, _1, _2)); m_console.register_command("wpenable", CMDFLAG_NONE, 1, 0, 1, std::bind(&debugger_commands::execute_wpdisenable, this, _1, _2)); m_console.register_command("wplist", CMDFLAG_NONE, 0, 0, 0, std::bind(&debugger_commands::execute_wplist, this, _1, _2)); m_console.register_command("rpset", CMDFLAG_NONE, 0, 1, 2, std::bind(&debugger_commands::execute_rpset, this, _1, _2)); m_console.register_command("rp", CMDFLAG_NONE, 0, 1, 2, std::bind(&debugger_commands::execute_rpset, this, _1, _2)); m_console.register_command("rpclear", CMDFLAG_NONE, 0, 0, 1, std::bind(&debugger_commands::execute_rpclear, this, _1, _2)); m_console.register_command("rpdisable", CMDFLAG_NONE, 0, 0, 1, std::bind(&debugger_commands::execute_rpdisenable, this, _1, _2)); m_console.register_command("rpenable", CMDFLAG_NONE, 1, 0, 1, std::bind(&debugger_commands::execute_rpdisenable, this, _1, _2)); m_console.register_command("rplist", CMDFLAG_NONE, 0, 0, 0, std::bind(&debugger_commands::execute_rplist, this, _1, _2)); m_console.register_command("hotspot", CMDFLAG_NONE, 0, 0, 3, std::bind(&debugger_commands::execute_hotspot, this, _1, _2)); m_console.register_command("statesave", CMDFLAG_NONE, 0, 1, 1, std::bind(&debugger_commands::execute_statesave, this, _1, _2)); m_console.register_command("ss", CMDFLAG_NONE, 0, 1, 1, std::bind(&debugger_commands::execute_statesave, this, _1, _2)); m_console.register_command("stateload", CMDFLAG_NONE, 0, 1, 1, std::bind(&debugger_commands::execute_stateload, this, _1, _2)); m_console.register_command("sl", CMDFLAG_NONE, 0, 1, 1, std::bind(&debugger_commands::execute_stateload, this, _1, _2)); m_console.register_command("rewind", CMDFLAG_NONE, 0, 0, 0, std::bind(&debugger_commands::execute_rewind, this, _1, _2)); m_console.register_command("rw", CMDFLAG_NONE, 0, 0, 0, std::bind(&debugger_commands::execute_rewind, this, _1, _2)); m_console.register_command("save", CMDFLAG_NONE, AS_PROGRAM, 3, 4, std::bind(&debugger_commands::execute_save, this, _1, _2)); m_console.register_command("saved", CMDFLAG_NONE, AS_DATA, 3, 4, std::bind(&debugger_commands::execute_save, this, _1, _2)); m_console.register_command("savei", CMDFLAG_NONE, AS_IO, 3, 4, std::bind(&debugger_commands::execute_save, this, _1, _2)); m_console.register_command("saveo", CMDFLAG_NONE, AS_OPCODES, 3, 4, std::bind(&debugger_commands::execute_save, this, _1, _2)); m_console.register_command("saver", CMDFLAG_NONE, 0, 4, 4, std::bind(&debugger_commands::execute_saveregion, this, _1, _2)); m_console.register_command("load", CMDFLAG_NONE, AS_PROGRAM, 2, 4, std::bind(&debugger_commands::execute_load, this, _1, _2)); m_console.register_command("loadd", CMDFLAG_NONE, AS_DATA, 2, 4, std::bind(&debugger_commands::execute_load, this, _1, _2)); m_console.register_command("loadi", CMDFLAG_NONE, AS_IO, 2, 4, std::bind(&debugger_commands::execute_load, this, _1, _2)); m_console.register_command("loado", CMDFLAG_NONE, AS_OPCODES, 2, 4, std::bind(&debugger_commands::execute_load, this, _1, _2)); m_console.register_command("loadr", CMDFLAG_NONE, 0, 4, 4, std::bind(&debugger_commands::execute_loadregion, this, _1, _2)); m_console.register_command("dump", CMDFLAG_NONE, AS_PROGRAM, 3, 7, std::bind(&debugger_commands::execute_dump, this, _1, _2)); m_console.register_command("dumpd", CMDFLAG_NONE, AS_DATA, 3, 7, std::bind(&debugger_commands::execute_dump, this, _1, _2)); m_console.register_command("dumpi", CMDFLAG_NONE, AS_IO, 3, 7, std::bind(&debugger_commands::execute_dump, this, _1, _2)); m_console.register_command("dumpo", CMDFLAG_NONE, AS_OPCODES, 3, 7, std::bind(&debugger_commands::execute_dump, this, _1, _2)); m_console.register_command("strdump", CMDFLAG_NONE, AS_PROGRAM, 3, 5, std::bind(&debugger_commands::execute_strdump, this, _1, _2)); m_console.register_command("strdumpd", CMDFLAG_NONE, AS_DATA, 3, 5, std::bind(&debugger_commands::execute_strdump, this, _1, _2)); m_console.register_command("strdumpi", CMDFLAG_NONE, AS_IO, 3, 5, std::bind(&debugger_commands::execute_strdump, this, _1, _2)); m_console.register_command("strdumpo", CMDFLAG_NONE, AS_OPCODES, 3, 5, std::bind(&debugger_commands::execute_strdump, this, _1, _2)); m_console.register_command("cheatinit", CMDFLAG_NONE, 0, 0, 4, std::bind(&debugger_commands::execute_cheatinit, this, _1, _2)); m_console.register_command("ci", CMDFLAG_NONE, 0, 0, 4, std::bind(&debugger_commands::execute_cheatinit, this, _1, _2)); m_console.register_command("cheatrange",CMDFLAG_NONE, 1, 2, 2, std::bind(&debugger_commands::execute_cheatinit, this, _1, _2)); m_console.register_command("cr", CMDFLAG_NONE, 1, 2, 2, std::bind(&debugger_commands::execute_cheatinit, this, _1, _2)); m_console.register_command("cheatnext", CMDFLAG_NONE, 0, 1, 2, std::bind(&debugger_commands::execute_cheatnext, this, _1, _2)); m_console.register_command("cn", CMDFLAG_NONE, 0, 1, 2, std::bind(&debugger_commands::execute_cheatnext, this, _1, _2)); m_console.register_command("cheatnextf",CMDFLAG_NONE, 1, 1, 2, std::bind(&debugger_commands::execute_cheatnext, this, _1, _2)); m_console.register_command("cnf", CMDFLAG_NONE, 1, 1, 2, std::bind(&debugger_commands::execute_cheatnext, this, _1, _2)); m_console.register_command("cheatlist", CMDFLAG_NONE, 0, 0, 1, std::bind(&debugger_commands::execute_cheatlist, this, _1, _2)); m_console.register_command("cl", CMDFLAG_NONE, 0, 0, 1, std::bind(&debugger_commands::execute_cheatlist, this, _1, _2)); m_console.register_command("cheatundo", CMDFLAG_NONE, 0, 0, 0, std::bind(&debugger_commands::execute_cheatundo, this, _1, _2)); m_console.register_command("cu", CMDFLAG_NONE, 0, 0, 0, std::bind(&debugger_commands::execute_cheatundo, this, _1, _2)); m_console.register_command("f", CMDFLAG_KEEP_QUOTES, AS_PROGRAM, 3, MAX_COMMAND_PARAMS, std::bind(&debugger_commands::execute_find, this, _1, _2)); m_console.register_command("find", CMDFLAG_KEEP_QUOTES, AS_PROGRAM, 3, MAX_COMMAND_PARAMS, std::bind(&debugger_commands::execute_find, this, _1, _2)); m_console.register_command("fd", CMDFLAG_KEEP_QUOTES, AS_DATA, 3, MAX_COMMAND_PARAMS, std::bind(&debugger_commands::execute_find, this, _1, _2)); m_console.register_command("findd", CMDFLAG_KEEP_QUOTES, AS_DATA, 3, MAX_COMMAND_PARAMS, std::bind(&debugger_commands::execute_find, this, _1, _2)); m_console.register_command("fi", CMDFLAG_KEEP_QUOTES, AS_IO, 3, MAX_COMMAND_PARAMS, std::bind(&debugger_commands::execute_find, this, _1, _2)); m_console.register_command("findi", CMDFLAG_KEEP_QUOTES, AS_IO, 3, MAX_COMMAND_PARAMS, std::bind(&debugger_commands::execute_find, this, _1, _2)); m_console.register_command("fo", CMDFLAG_KEEP_QUOTES, AS_OPCODES, 3, MAX_COMMAND_PARAMS, std::bind(&debugger_commands::execute_find, this, _1, _2)); m_console.register_command("findo", CMDFLAG_KEEP_QUOTES, AS_OPCODES, 3, MAX_COMMAND_PARAMS, std::bind(&debugger_commands::execute_find, this, _1, _2)); m_console.register_command("fill", CMDFLAG_KEEP_QUOTES, AS_PROGRAM, 3, MAX_COMMAND_PARAMS, std::bind(&debugger_commands::execute_fill, this, _1, _2)); m_console.register_command("filld", CMDFLAG_KEEP_QUOTES, AS_DATA, 3, MAX_COMMAND_PARAMS, std::bind(&debugger_commands::execute_fill, this, _1, _2)); m_console.register_command("filli", CMDFLAG_KEEP_QUOTES, AS_IO, 3, MAX_COMMAND_PARAMS, std::bind(&debugger_commands::execute_fill, this, _1, _2)); m_console.register_command("fillo", CMDFLAG_KEEP_QUOTES, AS_OPCODES, 3, MAX_COMMAND_PARAMS, std::bind(&debugger_commands::execute_fill, this, _1, _2)); m_console.register_command("dasm", CMDFLAG_NONE, 0, 3, 5, std::bind(&debugger_commands::execute_dasm, this, _1, _2)); m_console.register_command("trace", CMDFLAG_NONE, 0, 1, 4, std::bind(&debugger_commands::execute_trace, this, _1, _2)); m_console.register_command("traceover", CMDFLAG_NONE, 0, 1, 4, std::bind(&debugger_commands::execute_traceover, this, _1, _2)); m_console.register_command("traceflush",CMDFLAG_NONE, 0, 0, 0, std::bind(&debugger_commands::execute_traceflush, this, _1, _2)); m_console.register_command("history", CMDFLAG_NONE, 0, 0, 2, std::bind(&debugger_commands::execute_history, this, _1, _2)); m_console.register_command("trackpc", CMDFLAG_NONE, 0, 0, 3, std::bind(&debugger_commands::execute_trackpc, this, _1, _2)); m_console.register_command("trackmem", CMDFLAG_NONE, 0, 0, 3, std::bind(&debugger_commands::execute_trackmem, this, _1, _2)); m_console.register_command("pcatmemp", CMDFLAG_NONE, AS_PROGRAM, 1, 2, std::bind(&debugger_commands::execute_pcatmem, this, _1, _2)); m_console.register_command("pcatmemd", CMDFLAG_NONE, AS_DATA, 1, 2, std::bind(&debugger_commands::execute_pcatmem, this, _1, _2)); m_console.register_command("pcatmemi", CMDFLAG_NONE, AS_IO, 1, 2, std::bind(&debugger_commands::execute_pcatmem, this, _1, _2)); m_console.register_command("pcatmemo", CMDFLAG_NONE, AS_OPCODES, 1, 2, std::bind(&debugger_commands::execute_pcatmem, this, _1, _2)); m_console.register_command("snap", CMDFLAG_NONE, 0, 0, 1, std::bind(&debugger_commands::execute_snap, this, _1, _2)); m_console.register_command("source", CMDFLAG_NONE, 0, 1, 1, std::bind(&debugger_commands::execute_source, this, _1, _2)); m_console.register_command("map", CMDFLAG_NONE, AS_PROGRAM, 1, 1, std::bind(&debugger_commands::execute_map, this, _1, _2)); m_console.register_command("mapd", CMDFLAG_NONE, AS_DATA, 1, 1, std::bind(&debugger_commands::execute_map, this, _1, _2)); m_console.register_command("mapi", CMDFLAG_NONE, AS_IO, 1, 1, std::bind(&debugger_commands::execute_map, this, _1, _2)); m_console.register_command("mapo", CMDFLAG_NONE, AS_OPCODES, 1, 1, std::bind(&debugger_commands::execute_map, this, _1, _2)); m_console.register_command("memdump", CMDFLAG_NONE, 0, 0, 1, std::bind(&debugger_commands::execute_memdump, this, _1, _2)); m_console.register_command("symlist", CMDFLAG_NONE, 0, 0, 1, std::bind(&debugger_commands::execute_symlist, this, _1, _2)); m_console.register_command("softreset", CMDFLAG_NONE, 0, 0, 1, std::bind(&debugger_commands::execute_softreset, this, _1, _2)); m_console.register_command("hardreset", CMDFLAG_NONE, 0, 0, 1, std::bind(&debugger_commands::execute_hardreset, this, _1, _2)); m_console.register_command("images", CMDFLAG_NONE, 0, 0, 0, std::bind(&debugger_commands::execute_images, this, _1, _2)); m_console.register_command("mount", CMDFLAG_NONE, 0, 2, 2, std::bind(&debugger_commands::execute_mount, this, _1, _2)); m_console.register_command("unmount", CMDFLAG_NONE, 0, 1, 1, std::bind(&debugger_commands::execute_unmount, this, _1, _2)); m_console.register_command("input", CMDFLAG_NONE, 0, 1, 1, std::bind(&debugger_commands::execute_input, this, _1, _2)); m_console.register_command("dumpkbd", CMDFLAG_NONE, 0, 0, 1, std::bind(&debugger_commands::execute_dumpkbd, this, _1, _2)); /* set up the initial debugscript if specified */ const char* name = m_machine.options().debug_script(); if (name[0] != 0) m_console.source_script(name); m_cheat.cpu[0] = m_cheat.cpu[1] = 0; } //------------------------------------------------- // execute_min - return the minimum of two values //------------------------------------------------- u64 debugger_commands::execute_min(int params, const u64 *param) { return (param[0] < param[1]) ? param[0] : param[1]; } //------------------------------------------------- // execute_max - return the maximum of two values //------------------------------------------------- u64 debugger_commands::execute_max(int params, const u64 *param) { return (param[0] > param[1]) ? param[0] : param[1]; } //------------------------------------------------- // execute_if - if (a) return b; else return c; //------------------------------------------------- u64 debugger_commands::execute_if(int params, const u64 *param) { return param[0] ? param[1] : param[2]; } //------------------------------------------------- // execute_abs - return the absolute value //------------------------------------------------- u64 debugger_commands::execute_abs(int params, const u64 *param) { return std::abs(s64(param[0])); } //------------------------------------------------- // execute_bit - extract bit field from value //------------------------------------------------- u64 debugger_commands::execute_bit(int params, const u64 *param) { if (params == 2) return BIT(param[0], param[1]); else return BIT(param[0], param[1], param[2]); } //------------------------------------------------- // execute_s8 - sign-extend from 8 bits //------------------------------------------------- u64 debugger_commands::execute_s8(int params, const u64 *param) { return s8(param[0]); } //------------------------------------------------- // execute_s16 - sign-extend from 16 bits //------------------------------------------------- u64 debugger_commands::execute_s16(int params, const u64 *param) { return s16(param[0]); } //------------------------------------------------- // execute_s32 - sign-extend from 32 bits //------------------------------------------------- u64 debugger_commands::execute_s32(int params, const u64 *param) { return s32(param[0]); } //------------------------------------------------- // get_cpunum - getter callback for the // 'cpunum' symbol //------------------------------------------------- u64 debugger_commands::get_cpunum() { execute_interface_iterator iter(m_machine.root_device()); return iter.indexof(m_console.get_visible_cpu()->execute()); } /*************************************************************************** GLOBAL ACCESSORS ***************************************************************************/ /*------------------------------------------------- global_get - symbol table getter for globals -------------------------------------------------*/ u64 debugger_commands::global_get(global_entry *global) { switch (global->size) { case 1: return *(u8 *)global->base; case 2: return *(u16 *)global->base; case 4: return *(u32 *)global->base; case 8: return *(u64 *)global->base; } return ~0; } /*------------------------------------------------- global_set - symbol table setter for globals -------------------------------------------------*/ void debugger_commands::global_set(global_entry *global, u64 value) { switch (global->size) { case 1: *(u8 *)global->base = value; break; case 2: *(u16 *)global->base = value; break; case 4: *(u32 *)global->base = value; break; case 8: *(u64 *)global->base = value; break; } } /*************************************************************************** PARAMETER VALIDATION HELPERS ***************************************************************************/ /*------------------------------------------------- validate_number_parameter - validates a number parameter -------------------------------------------------*/ bool debugger_commands::validate_number_parameter(const std::string ¶m, u64 &result) { /* evaluate the expression; success if no error */ try { result = parsed_expression(m_console.visible_symtable(), param.c_str()).execute(); return true; } catch (expression_error &error) { /* print an error pointing to the character that caused it */ m_console.printf("Error in expression: %s\n", param); m_console.printf(" %*s^", error.offset(), ""); m_console.printf("%s\n", error.code_string()); return false; } } /*------------------------------------------------- validate_boolean_parameter - validates a boolean parameter -------------------------------------------------*/ bool debugger_commands::validate_boolean_parameter(const std::string ¶m, bool &result) { /* nullptr parameter does nothing and returns no error */ if (param.empty()) return true; /* evaluate the expression; success if no error */ bool is_true = core_stricmp(param.c_str(), "true") == 0 || param == "1"; bool is_false = core_stricmp(param.c_str(), "false") == 0 || param == "0"; if (!is_true && !is_false) { m_console.printf("Invalid boolean '%s'\n", param); return false; } result = is_true; return true; } /*------------------------------------------------- validate_cpu_parameter - validates a parameter as a cpu -------------------------------------------------*/ bool debugger_commands::validate_cpu_parameter(const char *param, device_t *&result) { /* if no parameter, use the visible CPU */ if (param == nullptr) { result = m_console.get_visible_cpu(); if (!result) { m_console.printf("No valid CPU is currently selected\n"); return false; } return true; } /* first look for a tag match */ result = m_machine.root_device().subdevice(param); if (result) return true; /* then evaluate as an expression; on an error assume it was a tag */ u64 cpunum; try { cpunum = parsed_expression(m_console.visible_symtable(), param).execute(); } catch (expression_error &) { m_console.printf("Unable to find CPU '%s'\n", param); return false; } // attempt to find by numerical index int index = 0; for (device_execute_interface &exec : execute_interface_iterator(m_machine.root_device())) { // real CPUs should have pcbase const device_state_interface *state; if (exec.device().interface(state) && state->state_find_entry(STATE_GENPCBASE) != nullptr && index++ == cpunum) { result = &exec.device(); return true; } } /* if out of range, complain */ m_console.printf("Invalid CPU index %d\n", (int)cpunum); return false; } /*------------------------------------------------- validate_cpu_space_parameter - validates a parameter as a cpu and retrieves the given address space -------------------------------------------------*/ bool debugger_commands::validate_cpu_space_parameter(const char *param, int spacenum, address_space *&result) { /* first do the standard CPU thing */ device_t *cpu; if (!validate_cpu_parameter(param, cpu)) return false; /* fetch the space pointer */ if (!cpu->memory().has_space(spacenum)) { m_console.printf("No matching memory space found for CPU '%s'\n", cpu->tag()); return false; } result = &cpu->memory().space(spacenum); return true; } /*------------------------------------------------- validate_memory_region_parameter - validates a parameter as a memory region name and retrieves the given memory region -------------------------------------------------*/ bool debugger_commands::validate_memory_region_parameter(const std::string ¶m, memory_region *&result) { auto ®ions = m_machine.memory().regions(); auto iter = regions.find(param); if(iter == regions.end()) { m_console.printf("No matching memory region found for '%s'\n", param); return false; } result = iter->second.get(); return true; } /*------------------------------------------------- debug_command_parameter_expression - validates an expression parameter -------------------------------------------------*/ bool debugger_commands::debug_command_parameter_expression(const std::string ¶m, parsed_expression &result) { /* parse the expression; success if no error */ try { result.parse(param.c_str()); return true; } catch (expression_error &err) { /* output an error */ m_console.printf("Error in expression: %s\n", param); m_console.printf(" %*s^", err.offset(), ""); m_console.printf("%s\n", err.code_string()); return false; } } /*------------------------------------------------- debug_command_parameter_command - validates a command parameter -------------------------------------------------*/ bool debugger_commands::debug_command_parameter_command(const char *param) { /* nullptr parameter does nothing and returns no error */ if (param == nullptr) return true; /* validate the comment; success if no error */ CMDERR err = m_console.validate_command(param); if (err.error_class() == CMDERR::NONE) return true; /* output an error */ m_console.printf("Error in command: %s\n", param); m_console.printf(" %*s^", err.error_offset(), ""); m_console.printf("%s\n", debugger_console::cmderr_to_string(err)); return 0; } /*------------------------------------------------- execute_help - execute the help command -------------------------------------------------*/ void debugger_commands::execute_help(int ref, const std::vector ¶ms) { if (params.size() == 0) m_console.printf_wrap(80, "%s\n", debug_get_help("")); else m_console.printf_wrap(80, "%s\n", debug_get_help(params[0].c_str())); } /*------------------------------------------------- execute_print - execute the print command -------------------------------------------------*/ void debugger_commands::execute_print(int ref, const std::vector ¶ms) { /* validate the other parameters */ u64 values[MAX_COMMAND_PARAMS]; for (int i = 0; i < params.size(); i++) if (!validate_number_parameter(params[i], values[i])) return; /* then print each one */ for (int i = 0; i < params.size(); i++) m_console.printf("%X", values[i]); m_console.printf("\n"); } /*------------------------------------------------- mini_printf - safe printf to a buffer -------------------------------------------------*/ int debugger_commands::mini_printf(char *buffer, const char *format, int params, u64 *param) { const char *f = format; char *p = buffer; /* parse the string looking for % signs */ for (;;) { char c = *f++; if (!c) break; /* escape sequences */ if (c == '\\') { c = *f++; if (!c) break; switch (c) { case '\\': *p++ = c; break; case 'n': *p++ = '\n'; break; default: break; } continue; } /* formatting */ else if (c == '%') { int width = 0; int zerofill = 0; /* parse out the width */ for (;;) { c = *f++; if (!c || c < '0' || c > '9') break; if (c == '0' && width == 0) zerofill = 1; width = width * 10 + (c - '0'); } if (!c) break; /* get the format */ switch (c) { case '%': *p++ = c; break; case 'X': case 'x': if (params == 0) { m_console.printf("Not enough parameters for format!\n"); return 0; } if (u32(*param >> 32) != 0) p += sprintf(p, zerofill ? "%0*X" : "%*X", (width <= 8) ? 1 : width - 8, u32(*param >> 32)); else if (width > 8) p += sprintf(p, zerofill ? "%0*X" : "%*X", width - 8, 0); p += sprintf(p, zerofill ? "%0*X" : "%*X", (width < 8) ? width : 8, u32(*param)); param++; params--; break; case 'D': case 'd': if (params == 0) { m_console.printf("Not enough parameters for format!\n"); return 0; } p += sprintf(p, zerofill ? "%0*d" : "%*d", width, u32(*param)); param++; params--; break; case 'C': case 'c': if (params == 0) { m_console.printf("Not enough parameters for format!\n"); return 0; } p += sprintf(p, "%c", char(*param)); param++; params--; break; } } /* normal stuff */ else *p++ = c; } /* NULL-terminate and exit */ *p = 0; return 1; } /*------------------------------------------------- execute_printf - execute the printf command -------------------------------------------------*/ void debugger_commands::execute_printf(int ref, const std::vector ¶ms) { /* validate the other parameters */ u64 values[MAX_COMMAND_PARAMS]; for (int i = 1; i < params.size(); i++) if (!validate_number_parameter(params[i], values[i])) return; /* then do a printf */ char buffer[1024]; if (mini_printf(buffer, params[0].c_str(), params.size() - 1, &values[1])) m_console.printf("%s\n", buffer); } /*------------------------------------------------- execute_logerror - execute the logerror command -------------------------------------------------*/ void debugger_commands::execute_logerror(int ref, const std::vector ¶ms) { /* validate the other parameters */ u64 values[MAX_COMMAND_PARAMS]; for (int i = 1; i < params.size(); i++) if (!validate_number_parameter(params[i], values[i])) return; /* then do a printf */ char buffer[1024]; if (mini_printf(buffer, params[0].c_str(), params.size() - 1, &values[1])) m_machine.logerror("%s", buffer); } /*------------------------------------------------- execute_tracelog - execute the tracelog command -------------------------------------------------*/ void debugger_commands::execute_tracelog(int ref, const std::vector ¶ms) { /* validate the other parameters */ u64 values[MAX_COMMAND_PARAMS]; for (int i = 1; i < params.size(); i++) if (!validate_number_parameter(params[i], values[i])) return; /* then do a printf */ char buffer[1024]; if (mini_printf(buffer, params[0].c_str(), params.size() - 1, &values[1])) m_console.get_visible_cpu()->debug()->trace_printf("%s", buffer); } /*------------------------------------------------- execute_tracesym - execute the tracesym command -------------------------------------------------*/ void debugger_commands::execute_tracesym(int ref, const std::vector ¶ms) { // build a format string appropriate for the parameters and validate them std::stringstream format; u64 values[MAX_COMMAND_PARAMS]; for (int i = 0; i < params.size(); i++) { // find this symbol symbol_entry *sym = m_console.visible_symtable().find(params[i].c_str()); if (!sym) { m_console.printf("Unknown symbol: %s\n", params[i].c_str()); return; } // build the format string util::stream_format(format, "%s=%s ", params[i], sym->format().empty() ? "%16X" : sym->format()); // validate the parameter if (!validate_number_parameter(params[i], values[i])) return; } // then do a printf char buffer[1024]; if (mini_printf(buffer, format.str().c_str(), params.size(), values)) m_console.get_visible_cpu()->debug()->trace_printf("%s", buffer); } /*------------------------------------------------- execute_quit - execute the quit command -------------------------------------------------*/ void debugger_commands::execute_quit(int ref, const std::vector ¶ms) { osd_printf_warning("Exited via the debugger\n"); m_machine.schedule_exit(); } /*------------------------------------------------- execute_do - execute the do command -------------------------------------------------*/ void debugger_commands::execute_do(int ref, const std::vector ¶ms) { u64 dummy; validate_number_parameter(params[0], dummy); } /*------------------------------------------------- execute_step - execute the step command -------------------------------------------------*/ void debugger_commands::execute_step(int ref, const std::vector ¶ms) { /* if we have a parameter, use it */ u64 steps = 1; if (params.size() > 0 && !validate_number_parameter(params[0], steps)) return; m_console.get_visible_cpu()->debug()->single_step(steps); } /*------------------------------------------------- execute_over - execute the over command -------------------------------------------------*/ void debugger_commands::execute_over(int ref, const std::vector ¶ms) { /* if we have a parameter, use it */ u64 steps = 1; if (params.size() > 0 && !validate_number_parameter(params[0], steps)) return; m_console.get_visible_cpu()->debug()->single_step_over(steps); } /*------------------------------------------------- execute_out - execute the out command -------------------------------------------------*/ void debugger_commands::execute_out(int ref, const std::vector ¶ms) { m_console.get_visible_cpu()->debug()->single_step_out(); } /*------------------------------------------------- execute_go - execute the go command -------------------------------------------------*/ void debugger_commands::execute_go(int ref, const std::vector ¶ms) { u64 addr = ~0; /* if we have a parameter, use it instead */ if (params.size() > 0 && !validate_number_parameter(params[0], addr)) return; m_console.get_visible_cpu()->debug()->go(addr); } /*------------------------------------------------- execute_go_vblank - execute the govblank command -------------------------------------------------*/ void debugger_commands::execute_go_vblank(int ref, const std::vector ¶ms) { m_console.get_visible_cpu()->debug()->go_vblank(); } /*------------------------------------------------- execute_go_interrupt - execute the goint command -------------------------------------------------*/ void debugger_commands::execute_go_interrupt(int ref, const std::vector ¶ms) { u64 irqline = -1; /* if we have a parameter, use it instead */ if (params.size() > 0 && !validate_number_parameter(params[0], irqline)) return; m_console.get_visible_cpu()->debug()->go_interrupt(irqline); } /*------------------------------------------------- execute_go_exception - execute the goex command -------------------------------------------------*/ void debugger_commands::execute_go_exception(int ref, const std::vector ¶ms) { u64 exception = -1; /* if we have a parameter, use it instead */ if (params.size() > 0 && !validate_number_parameter(params[0], exception)) return; parsed_expression condition(m_console.visible_symtable()); if (params.size() > 1 && !debug_command_parameter_expression(params[1], condition)) return; m_console.get_visible_cpu()->debug()->go_exception(exception, (condition.is_empty()) ? "1" : condition.original_string()); } /*------------------------------------------------- execute_go_time - execute the gtime command -------------------------------------------------*/ void debugger_commands::execute_go_time(int ref, const std::vector ¶ms) { u64 milliseconds = -1; /* if we have a parameter, use it instead */ if (params.size() > 0 && !validate_number_parameter(params[0], milliseconds)) return; m_console.get_visible_cpu()->debug()->go_milliseconds(milliseconds); } /*------------------------------------------------- execute_go_privilege - execute the gp command -------------------------------------------------*/ void debugger_commands::execute_go_privilege(int ref, const std::vector ¶ms) { parsed_expression condition(m_console.visible_symtable()); if (params.size() > 0 && !debug_command_parameter_expression(params[0], condition)) return; m_console.get_visible_cpu()->debug()->go_privilege((condition.is_empty()) ? "1" : condition.original_string()); } /*------------------------------------------------- execute_next - execute the next command -------------------------------------------------*/ void debugger_commands::execute_next(int ref, const std::vector ¶ms) { m_console.get_visible_cpu()->debug()->go_next_device(); } /*------------------------------------------------- execute_focus - execute the focus command -------------------------------------------------*/ void debugger_commands::execute_focus(int ref, const std::vector ¶ms) { /* validate params */ device_t *cpu; if (!validate_cpu_parameter(params[0].c_str(), cpu)) return; /* first clear the ignore flag on the focused CPU */ cpu->debug()->ignore(false); /* then loop over CPUs and set the ignore flags on all other CPUs */ for (device_execute_interface &exec : execute_interface_iterator(m_machine.root_device())) if (&exec.device() != cpu) exec.device().debug()->ignore(true); m_console.printf("Now focused on CPU '%s'\n", cpu->tag()); } /*------------------------------------------------- execute_ignore - execute the ignore command -------------------------------------------------*/ void debugger_commands::execute_ignore(int ref, const std::vector ¶ms) { /* if there are no parameters, dump the ignore list */ if (params.empty()) { std::string buffer; /* loop over all executable devices */ for (device_execute_interface &exec : execute_interface_iterator(m_machine.root_device())) /* build up a comma-separated list */ if (!exec.device().debug()->observing()) { if (buffer.empty()) buffer = string_format("Currently ignoring device '%s'", exec.device().tag()); else buffer.append(string_format(", '%s'", exec.device().tag())); } /* special message for none */ if (buffer.empty()) buffer = string_format("Not currently ignoring any devices"); m_console.printf("%s\n", buffer.c_str()); } /* otherwise clear the ignore flag on all requested CPUs */ else { device_t *devicelist[MAX_COMMAND_PARAMS]; /* validate parameters */ for (int paramnum = 0; paramnum < params.size(); paramnum++) if (!validate_cpu_parameter(params[paramnum].c_str(), devicelist[paramnum])) return; /* set the ignore flags */ for (int paramnum = 0; paramnum < params.size(); paramnum++) { /* make sure this isn't the last live CPU */ bool gotone = false; for (device_execute_interface &exec : execute_interface_iterator(m_machine.root_device())) if (&exec.device() != devicelist[paramnum] && exec.device().debug()->observing()) { gotone = true; break; } if (!gotone) { m_console.printf("Can't ignore all devices!\n"); return; } devicelist[paramnum]->debug()->ignore(true); m_console.printf("Now ignoring device '%s'\n", devicelist[paramnum]->tag()); } } } /*------------------------------------------------- execute_observe - execute the observe command -------------------------------------------------*/ void debugger_commands::execute_observe(int ref, const std::vector ¶ms) { /* if there are no parameters, dump the ignore list */ if (params.empty()) { std::string buffer; /* loop over all executable devices */ for (device_execute_interface &exec : execute_interface_iterator(m_machine.root_device())) /* build up a comma-separated list */ if (exec.device().debug()->observing()) { if (buffer.empty()) buffer = string_format("Currently observing CPU '%s'", exec.device().tag()); else buffer.append(string_format(", '%s'", exec.device().tag())); } /* special message for none */ if (buffer.empty()) buffer = string_format("Not currently observing any devices"); m_console.printf("%s\n", buffer.c_str()); } /* otherwise set the ignore flag on all requested CPUs */ else { device_t *devicelist[MAX_COMMAND_PARAMS]; /* validate parameters */ for (int paramnum = 0; paramnum < params.size(); paramnum++) if (!validate_cpu_parameter(params[paramnum].c_str(), devicelist[paramnum])) return; /* clear the ignore flags */ for (int paramnum = 0; paramnum < params.size(); paramnum++) { devicelist[paramnum]->debug()->ignore(false); m_console.printf("Now observing device '%s'\n", devicelist[paramnum]->tag()); } } } /*------------------------------------------------- execute_suspend - suspend execution on cpu -------------------------------------------------*/ void debugger_commands::execute_suspend(int ref, const std::vector ¶ms) { /* if there are no parameters, dump the ignore list */ if (params.empty()) { std::string buffer; /* loop over all executable devices */ for (device_execute_interface &exec : execute_interface_iterator(m_machine.root_device())) /* build up a comma-separated list */ if (exec.device().debug()->suspended()) { if (buffer.empty()) buffer = string_format("Currently suspended device '%s'", exec.device().tag()); else buffer.append(string_format(", '%s'", exec.device().tag())); } /* special message for none */ if (buffer.empty()) buffer = string_format("No currently suspended devices"); m_console.printf("%s\n", buffer.c_str()); } else { device_t *devicelist[MAX_COMMAND_PARAMS]; /* validate parameters */ for (int paramnum = 0; paramnum < params.size(); paramnum++) if (!validate_cpu_parameter(params[paramnum].c_str(), devicelist[paramnum])) return; for (int paramnum = 0; paramnum < params.size(); paramnum++) { /* make sure this isn't the last live CPU */ bool gotone = false; for (device_execute_interface &exec : execute_interface_iterator(m_machine.root_device())) if (&exec.device() != devicelist[paramnum] && !exec.device().debug()->suspended()) { gotone = true; break; } if (!gotone) { m_console.printf("Can't suspend all devices!\n"); return; } devicelist[paramnum]->debug()->suspend(true); m_console.printf("Suspended device '%s'\n", devicelist[paramnum]->tag()); } } } /*------------------------------------------------- execute_resume - Resume execution on CPU -------------------------------------------------*/ void debugger_commands::execute_resume(int ref, const std::vector ¶ms) { /* if there are no parameters, dump the ignore list */ if (params.empty()) { std::string buffer; /* loop over all executable devices */ for (device_execute_interface &exec : execute_interface_iterator(m_machine.root_device())) /* build up a comma-separated list */ if (exec.device().debug()->suspended()) { if (buffer.empty()) buffer = string_format("Currently suspended device '%s'", exec.device().tag()); else buffer.append(string_format(", '%s'", exec.device().tag())); } /* special message for none */ if (buffer.empty()) buffer = string_format("No currently suspended devices"); m_console.printf("%s\n", buffer.c_str()); } else { device_t *devicelist[MAX_COMMAND_PARAMS]; /* validate parameters */ for (int paramnum = 0; paramnum < params.size(); paramnum++) if (!validate_cpu_parameter(params[paramnum].c_str(), devicelist[paramnum])) return; for (int paramnum = 0; paramnum < params.size(); paramnum++) { devicelist[paramnum]->debug()->suspend(false); m_console.printf("Resumed device '%s'\n", devicelist[paramnum]->tag()); } } } //------------------------------------------------- // execute_cpulist - list all CPUs //------------------------------------------------- void debugger_commands::execute_cpulist(int ref, const std::vector ¶ms) { int index = 0; for (device_execute_interface &exec : execute_interface_iterator(m_machine.root_device())) { device_state_interface *state; if (exec.device().interface(state) && state->state_find_entry(STATE_GENPCBASE) != nullptr) m_console.printf("[%s%d] %s\n", &exec.device() == m_console.get_visible_cpu() ? "*" : "", index++, exec.device().tag()); } } /*------------------------------------------------- execute_comment - add a comment to a line -------------------------------------------------*/ void debugger_commands::execute_comment_add(int ref, const std::vector ¶ms) { device_t *cpu; u64 address; /* param 1 is the address for the comment */ if (!validate_number_parameter(params[0], address)) return; /* CPU parameter is implicit */ if (!validate_cpu_parameter(nullptr, cpu)) return; /* make sure param 2 exists */ if (params[1].empty()) { m_console.printf("Error : comment text empty\n"); return; } /* Now try adding the comment */ cpu->debug()->comment_add(address, params[1].c_str(), 0x00ff0000); cpu->machine().debug_view().update_all(DVT_DISASSEMBLY); } /*------------------------------------------------------ execute_comment_del - remove a comment from an addr --------------------------------------------------------*/ void debugger_commands::execute_comment_del(int ref, const std::vector ¶ms) { device_t *cpu; u64 address; /* param 1 can either be a command or the address for the comment */ if (!validate_number_parameter(params[0], address)) return; /* CPU parameter is implicit */ if (!validate_cpu_parameter(nullptr, cpu)) return; /* If it's a number, it must be an address */ /* The bankoff and cbn will be pulled from what's currently active */ cpu->debug()->comment_remove(address); cpu->machine().debug_view().update_all(DVT_DISASSEMBLY); } /** * @fn void execute_comment_list(running_machine &machine, int ref, int params, const char *param[]) * @brief Print current list of comments in debugger * * */ void debugger_commands::execute_comment_list(int ref, const std::vector ¶ms) { if (!m_machine.debugger().cpu().comment_load(false)) m_console.printf("Error while parsing XML file\n"); } /** * @fn void execute_comment_commit(running_machine &machine, int ref, int params, const char *param[]) * @brief Add and Save current list of comments in debugger * */ void debugger_commands::execute_comment_commit(int ref, const std::vector ¶ms) { execute_comment_add(ref, params); execute_comment_save(ref, params); } /*------------------------------------------------- execute_comment - add a comment to a line -------------------------------------------------*/ void debugger_commands::execute_comment_save(int ref, const std::vector ¶ms) { if (m_cpu.comment_save()) m_console.printf("Comment successfully saved\n"); else m_console.printf("Comment not saved\n"); } // TODO: add color hex editing capabilities for comments, see below for more info /** * @fn void execute_comment_color(running_machine &machine, int ref, int params, const char *param[]) * @brief Modifies comment given at address $xx with given color * Useful for marking comment with a different color scheme (for example by marking start and end of a given function visually). * @param[in] "address,color" First is the comment address in the current context, color can be hexadecimal or shorthanded to common 1bpp RGB names. * * @todo check if the comment exists in the first place, bail out with error if not. * @todo add shorthand for color modify and save * */ /*------------------------------------------------- execute_bpset - execute the breakpoint set command -------------------------------------------------*/ void debugger_commands::execute_bpset(int ref, const std::vector ¶ms) { device_t *cpu; u64 address; int bpnum; const char *action = nullptr; /* CPU is implicit */ if (!validate_cpu_parameter(nullptr, cpu)) return; /* param 1 is the address */ if (!validate_number_parameter(params[0], address)) return; /* param 2 is the condition */ parsed_expression condition(cpu->debug()->symtable()); if (params.size() > 1 && !debug_command_parameter_expression(params[1], condition)) return; /* param 3 is the action */ if (params.size() > 2 && !debug_command_parameter_command(action = params[2].c_str())) return; /* set the breakpoint */ bpnum = cpu->debug()->breakpoint_set(address, (condition.is_empty()) ? nullptr : condition.original_string(), action); m_console.printf("Breakpoint %X set\n", bpnum); } /*------------------------------------------------- execute_bpclear - execute the breakpoint clear command -------------------------------------------------*/ void debugger_commands::execute_bpclear(int ref, const std::vector ¶ms) { u64 bpindex; /* if 0 parameters, clear all */ if (params.empty()) { for (device_t &device : device_iterator(m_machine.root_device())) device.debug()->breakpoint_clear_all(); m_console.printf("Cleared all breakpoints\n"); } /* otherwise, clear the specific one */ else if (!validate_number_parameter(params[0], bpindex)) return; else { bool found = false; for (device_t &device : device_iterator(m_machine.root_device())) if (device.debug()->breakpoint_clear(bpindex)) found = true; if (found) m_console.printf("Breakpoint %X cleared\n", u32(bpindex)); else m_console.printf("Invalid breakpoint number %X\n", u32(bpindex)); } } /*------------------------------------------------- execute_bpdisenable - execute the breakpoint disable/enable commands -------------------------------------------------*/ void debugger_commands::execute_bpdisenable(int ref, const std::vector ¶ms) { u64 bpindex; /* if 0 parameters, clear all */ if (params.empty()) { for (device_t &device : device_iterator(m_machine.root_device())) device.debug()->breakpoint_enable_all(ref); if (ref == 0) m_console.printf("Disabled all breakpoints\n"); else m_console.printf("Enabled all breakpoints\n"); } /* otherwise, clear the specific one */ else if (!validate_number_parameter(params[0], bpindex)) return; else { bool found = false; for (device_t &device : device_iterator(m_machine.root_device())) if (device.debug()->breakpoint_enable(bpindex, ref)) found = true; if (found) m_console.printf("Breakpoint %X %s\n", u32(bpindex), ref ? "enabled" : "disabled"); else m_console.printf("Invalid breakpoint number %X\n", u32(bpindex)); } } /*------------------------------------------------- execute_bplist - execute the breakpoint list command -------------------------------------------------*/ void debugger_commands::execute_bplist(int ref, const std::vector ¶ms) { int printed = 0; std::string buffer; /* loop over all CPUs */ for (device_t &device : device_iterator(m_machine.root_device())) if (!device.debug()->breakpoint_list().empty()) { m_console.printf("Device '%s' breakpoints:\n", device.tag()); /* loop over the breakpoints */ for (const auto &bpp : device.debug()->breakpoint_list()) { debug_breakpoint &bp = *bpp.second; buffer = string_format("%c%4X @ %0*X", bp.enabled() ? ' ' : 'D', bp.index(), device.debug()->logaddrchars(), bp.address()); if (std::string(bp.condition()).compare("1") != 0) buffer.append(string_format(" if %s", bp.condition())); if (std::string(bp.action()).compare("") != 0) buffer.append(string_format(" do %s", bp.action())); m_console.printf("%s\n", buffer.c_str()); printed++; } } if (printed == 0) m_console.printf("No breakpoints currently installed\n"); } /*------------------------------------------------- execute_wpset - execute the watchpoint set command -------------------------------------------------*/ void debugger_commands::execute_wpset(int ref, const std::vector ¶ms) { address_space *space; const char *action = nullptr; u64 address, length; read_or_write type; int wpnum; /* CPU is implicit */ if (!validate_cpu_space_parameter(nullptr, ref, space)) return; /* param 1 is the address */ if (!validate_number_parameter(params[0], address)) return; /* param 2 is the length */ if (!validate_number_parameter(params[1], length)) return; /* param 3 is the type */ if (params[2] == "r") type = read_or_write::READ; else if (params[2] == "w") type = read_or_write::WRITE; else if (params[2] == "rw" || params[2] == "wr") type = read_or_write::READWRITE; else { m_console.printf("Invalid watchpoint type: expected r, w, or rw\n"); return; } /* param 4 is the condition */ parsed_expression condition(space->device().debug()->symtable()); if (params.size() > 3 && !debug_command_parameter_expression(params[3], condition)) return; /* param 5 is the action */ if (params.size() > 4 && !debug_command_parameter_command(action = params[4].c_str())) return; /* set the watchpoint */ wpnum = space->device().debug()->watchpoint_set(*space, type, address, length, (condition.is_empty()) ? nullptr : condition.original_string(), action); m_console.printf("Watchpoint %X set\n", wpnum); } /*------------------------------------------------- execute_wpclear - execute the watchpoint clear command -------------------------------------------------*/ void debugger_commands::execute_wpclear(int ref, const std::vector ¶ms) { u64 wpindex; /* if 0 parameters, clear all */ if (params.empty()) { for (device_t &device : device_iterator(m_machine.root_device())) device.debug()->watchpoint_clear_all(); m_console.printf("Cleared all watchpoints\n"); } /* otherwise, clear the specific one */ else if (!validate_number_parameter(params[0], wpindex)) return; else { bool found = false; for (device_t &device : device_iterator(m_machine.root_device())) if (device.debug()->watchpoint_clear(wpindex)) found = true; if (found) m_console.printf("Watchpoint %X cleared\n", u32(wpindex)); else m_console.printf("Invalid watchpoint number %X\n", u32(wpindex)); } } /*------------------------------------------------- execute_wpdisenable - execute the watchpoint disable/enable commands -------------------------------------------------*/ void debugger_commands::execute_wpdisenable(int ref, const std::vector ¶ms) { u64 wpindex; /* if 0 parameters, clear all */ if (params.empty()) { for (device_t &device : device_iterator(m_machine.root_device())) device.debug()->watchpoint_enable_all(ref); if (ref == 0) m_console.printf("Disabled all watchpoints\n"); else m_console.printf("Enabled all watchpoints\n"); } /* otherwise, clear the specific one */ else if (!validate_number_parameter(params[0], wpindex)) return; else { bool found = false; for (device_t &device : device_iterator(m_machine.root_device())) if (device.debug()->watchpoint_enable(wpindex, ref)) found = true; if (found) m_console.printf("Watchpoint %X %s\n", u32(wpindex), ref ? "enabled" : "disabled"); else m_console.printf("Invalid watchpoint number %X\n", u32(wpindex)); } } /*------------------------------------------------- execute_wplist - execute the watchpoint list command -------------------------------------------------*/ void debugger_commands::execute_wplist(int ref, const std::vector ¶ms) { int printed = 0; std::string buffer; /* loop over all CPUs */ for (device_t &device : device_iterator(m_machine.root_device())) for (int spacenum = 0; spacenum < device.debug()->watchpoint_space_count(); ++spacenum) if (!device.debug()->watchpoint_vector(spacenum).empty()) { static const char *const types[] = { "unkn ", "read ", "write", "r/w " }; m_console.printf("Device '%s' %s space watchpoints:\n", device.tag(), device.debug()->watchpoint_vector(spacenum).front()->space().name()); /* loop over the watchpoints */ for (const auto &wp : device.debug()->watchpoint_vector(spacenum)) { buffer = string_format("%c%4X @ %0*X-%0*X %s", wp->enabled() ? ' ' : 'D', wp->index(), wp->space().addrchars(), wp->address(), wp->space().addrchars(), wp->address() + wp->length() - 1, types[int(wp->type())]); if (std::string(wp->condition()).compare("1") != 0) buffer.append(string_format(" if %s", wp->condition())); if (std::string(wp->action()).compare("") != 0) buffer.append(string_format(" do %s", wp->action())); m_console.printf("%s\n", buffer.c_str()); printed++; } } if (printed == 0) m_console.printf("No watchpoints currently installed\n"); } /*------------------------------------------------- execute_rpset - execute the registerpoint set command -------------------------------------------------*/ void debugger_commands::execute_rpset(int ref, const std::vector ¶ms) { device_t *cpu; const char *action = nullptr; int bpnum; /* CPU is implicit */ if (!validate_cpu_parameter(nullptr, cpu)) return; /* param 1 is the condition */ parsed_expression condition(cpu->debug()->symtable()); if (params.size() > 0 && !debug_command_parameter_expression(params[0], condition)) return; /* param 2 is the action */ if (params.size() > 1 && !debug_command_parameter_command(action = params[1].c_str())) return; /* set the breakpoint */ bpnum = cpu->debug()->registerpoint_set(condition.original_string(), action); m_console.printf("Registerpoint %X set\n", bpnum); } /*------------------------------------------------- execute_rpclear - execute the registerpoint clear command -------------------------------------------------*/ void debugger_commands::execute_rpclear(int ref, const std::vector ¶ms) { u64 rpindex; /* if 0 parameters, clear all */ if (params.empty()) { for (device_t &device : device_iterator(m_machine.root_device())) device.debug()->registerpoint_clear_all(); m_console.printf("Cleared all registerpoints\n"); } /* otherwise, clear the specific one */ else if (!validate_number_parameter(params[0], rpindex)) return; else { bool found = false; for (device_t &device : device_iterator(m_machine.root_device())) if (device.debug()->registerpoint_clear(rpindex)) found = true; if (found) m_console.printf("Registerpoint %X cleared\n", u32(rpindex)); else m_console.printf("Invalid registerpoint number %X\n", u32(rpindex)); } } /*------------------------------------------------- execute_rpdisenable - execute the registerpoint disable/enable commands -------------------------------------------------*/ void debugger_commands::execute_rpdisenable(int ref, const std::vector ¶ms) { u64 rpindex; /* if 0 parameters, clear all */ if (params.empty()) { for (device_t &device : device_iterator(m_machine.root_device())) device.debug()->registerpoint_enable_all(ref); if (ref == 0) m_console.printf("Disabled all registerpoints\n"); else m_console.printf("Enabled all registeroints\n"); } /* otherwise, clear the specific one */ else if (!validate_number_parameter(params[0], rpindex)) return; else { bool found = false; for (device_t &device : device_iterator(m_machine.root_device())) if (device.debug()->registerpoint_enable(rpindex, ref)) found = true; if (found) m_console.printf("Registerpoint %X %s\n", u32(rpindex), ref ? "enabled" : "disabled"); else m_console.printf("Invalid registerpoint number %X\n", u32(rpindex)); } } /*------------------------------------------------- execute_rplist - execute the registerpoint list command -------------------------------------------------*/ void debugger_commands::execute_rplist(int ref, const std::vector ¶ms) { int printed = 0; std::string buffer; /* loop over all CPUs */ for (device_t &device : device_iterator(m_machine.root_device())) if (!device.debug()->registerpoint_list().empty()) { m_console.printf("Device '%s' registerpoints:\n", device.tag()); /* loop over the breakpoints */ for (const debug_registerpoint &rp : device.debug()->registerpoint_list()) { buffer = string_format("%c%4X if %s", rp.enabled() ? ' ' : 'D', rp.index(), rp.condition()); if (rp.action() != nullptr) buffer.append(string_format(" do %s", rp.action())); m_console.printf("%s\n", buffer.c_str()); printed++; } } if (printed == 0) m_console.printf("No registerpoints currently installed\n"); } /*------------------------------------------------- execute_hotspot - execute the hotspot command -------------------------------------------------*/ void debugger_commands::execute_hotspot(int ref, const std::vector ¶ms) { /* if no params, and there are live hotspots, clear them */ if (params.empty()) { bool cleared = false; /* loop over CPUs and find live spots */ for (device_t &device : device_iterator(m_machine.root_device())) if (device.debug()->hotspot_tracking_enabled()) { device.debug()->hotspot_track(0, 0); m_console.printf("Cleared hotspot tracking on CPU '%s'\n", device.tag()); cleared = true; } /* if we cleared, we're done */ if (cleared) return; } /* extract parameters */ device_t *device = nullptr; if (!validate_cpu_parameter(!params.empty() ? params[0].c_str() : nullptr, device)) return; u64 count = 64; if (params.size() > 1 && !validate_number_parameter(params[1], count)) return; u64 threshhold = 250; if (params.size() > 2 && !validate_number_parameter(params[2], threshhold)) return; /* attempt to install */ device->debug()->hotspot_track(count, threshhold); m_console.printf("Now tracking hotspots on CPU '%s' using %d slots with a threshold of %d\n", device->tag(), (int)count, (int)threshhold); } /*------------------------------------------------- execute_statesave - execute the statesave command -------------------------------------------------*/ void debugger_commands::execute_statesave(int ref, const std::vector ¶ms) { const std::string &filename(params[0]); m_machine.immediate_save(filename.c_str()); m_console.printf("State save attempted. Please refer to window message popup for results.\n"); } /*------------------------------------------------- execute_stateload - execute the stateload command -------------------------------------------------*/ void debugger_commands::execute_stateload(int ref, const std::vector ¶ms) { const std::string &filename(params[0]); m_machine.immediate_load(filename.c_str()); // clear all PC & memory tracks for (device_t &device : device_iterator(m_machine.root_device())) { device.debug()->track_pc_data_clear(); device.debug()->track_mem_data_clear(); } m_console.printf("State load attempted. Please refer to window message popup for results.\n"); } /*------------------------------------------------- execute_rewind - execute the rewind command -------------------------------------------------*/ void debugger_commands::execute_rewind(int ref, const std::vector ¶ms) { bool success = m_machine.rewind_step(); if (success) // clear all PC & memory tracks for (device_t &device : device_iterator(m_machine.root_device())) { device.debug()->track_pc_data_clear(); device.debug()->track_mem_data_clear(); } else m_console.printf("Rewind error occured. See error.log for details.\n"); } /*------------------------------------------------- execute_save - execute the save command -------------------------------------------------*/ void debugger_commands::execute_save(int ref, const std::vector ¶ms) { u64 offset, endoffset, length; address_space *space; FILE *f; /* validate parameters */ if (!validate_number_parameter(params[1], offset)) return; if (!validate_number_parameter(params[2], length)) return; if (!validate_cpu_space_parameter(params.size() > 3 ? params[3].c_str() : nullptr, ref, space)) return; /* determine the addresses to write */ endoffset = (offset + length - 1) & space->addrmask(); offset = offset & space->addrmask(); endoffset ++; /* open the file */ f = fopen(params[0].c_str(), "wb"); if (!f) { m_console.printf("Error opening file '%s'\n", params[0].c_str()); return; } /* now write the data out */ auto dis = space->device().machine().disable_side_effects(); switch (space->addr_shift()) { case -3: for (u64 i = offset; i != endoffset; i++) { offs_t curaddr = i; u64 data = space->device().memory().translate(space->spacenum(), TRANSLATE_READ_DEBUG, curaddr) ? space->read_qword(curaddr) : space->unmap(); fwrite(&data, 8, 1, f); } break; case -2: for (u64 i = offset; i != endoffset; i++) { offs_t curaddr = i; u32 data = space->device().memory().translate(space->spacenum(), TRANSLATE_READ_DEBUG, curaddr) ? space->read_dword(curaddr) : space->unmap(); fwrite(&data, 4, 1, f); } break; case -1: for (u64 i = offset; i != endoffset; i++) { offs_t curaddr = i; u16 data = space->device().memory().translate(space->spacenum(), TRANSLATE_READ_DEBUG, curaddr) ? space->read_word(curaddr) : space->unmap(); fwrite(&data, 2, 1, f); } break; case 0: for (u64 i = offset; i != endoffset; i++) { offs_t curaddr = i; u8 data = space->device().memory().translate(space->spacenum(), TRANSLATE_READ_DEBUG, curaddr) ? space->read_byte(curaddr) : space->unmap(); fwrite(&data, 1, 1, f); } break; case 3: offset &= ~15; endoffset &= ~15; for (u64 i = offset; i != endoffset; i+=16) { offs_t curaddr = i; u16 data = space->device().memory().translate(space->spacenum(), TRANSLATE_READ_DEBUG, curaddr) ? space->read_word(curaddr) : space->unmap(); fwrite(&data, 2, 1, f); } break; } /* close the file */ fclose(f); m_console.printf("Data saved successfully\n"); } /*------------------------------------------------- execute_saveregion - execute the save command on region memory -------------------------------------------------*/ void debugger_commands::execute_saveregion(int ref, const std::vector ¶ms) { u64 offset, length; memory_region *region; /* validate parameters */ if (!validate_number_parameter(params[1], offset)) return; if (!validate_number_parameter(params[2], length)) return; if (!validate_memory_region_parameter(params[3], region)) return; if (offset >= region->bytes()) { m_console.printf("Invalid offset\n"); return; } if ((length <= 0) || ((length + offset) >= region->bytes())) length = region->bytes() - offset; /* open the file */ FILE *f = fopen(params[0].c_str(), "wb"); if (!f) { m_console.printf("Error opening file '%s'\n", params[0].c_str()); return; } fwrite(region->base() + offset, 1, length, f); fclose(f); m_console.printf("Data saved successfully\n"); } /*------------------------------------------------- execute_load - execute the load command -------------------------------------------------*/ void debugger_commands::execute_load(int ref, const std::vector ¶ms) { u64 offset, endoffset, length = 0; address_space *space; // validate parameters if (!validate_number_parameter(params[1], offset)) return; if (params.size() > 2 && !validate_number_parameter(params[2], length)) return; if (!validate_cpu_space_parameter((params.size() > 3) ? params[3].c_str() : nullptr, ref, space)) return; // open the file std::ifstream f; f.open(params[0], std::ifstream::in | std::ifstream::binary); if (f.fail()) { m_console.printf("Error opening file '%s'\n", params[0].c_str()); return; } // determine the file size, if not specified if (params.size() <= 2) { f.seekg(0, std::ios::end); length = f.tellg(); f.seekg(0); if (space->addr_shift() < 0) length >>= -space->addr_shift(); else if (space->addr_shift() > 0) length <<= space->addr_shift(); } // determine the addresses to read endoffset = (offset + length - 1) & space->addrmask(); offset = offset & space->addrmask(); u64 i = 0; // now read the data in, ignore endoffset and load entire file if length has been set to zero (offset-1) switch (space->addr_shift()) { case -3: for (i = offset; f.good() && (i <= endoffset || endoffset == offset - 1); i++) { offs_t curaddr = i; u64 data; f.read((char *)&data, 8); if (f && space->device().memory().translate(space->spacenum(), TRANSLATE_WRITE_DEBUG, curaddr)) space->write_qword(curaddr, data); } break; case -2: for (i = offset; f.good() && (i <= endoffset || endoffset == offset - 1); i++) { offs_t curaddr = i; u32 data; f.read((char *)&data, 4); if (f && space->device().memory().translate(space->spacenum(), TRANSLATE_WRITE_DEBUG, curaddr)) space->write_dword(curaddr, data); } break; case -1: for (i = offset; f.good() && (i <= endoffset || endoffset == offset - 1); i++) { offs_t curaddr = i; u16 data; f.read((char *)&data, 2); if (f && space->device().memory().translate(space->spacenum(), TRANSLATE_WRITE_DEBUG, curaddr)) space->write_word(curaddr, data); } break; case 0: for (i = offset; f.good() && (i <= endoffset || endoffset == offset - 1); i++) { offs_t curaddr = i; u8 data; f.read((char *)&data, 1); if (f && space->device().memory().translate(space->spacenum(), TRANSLATE_WRITE_DEBUG, curaddr)) space->write_byte(curaddr, data); } break; case 3: offset &= ~15; endoffset &= ~15; for (i = offset; f.good() && (i <= endoffset || endoffset == offset - 16); i+=16) { offs_t curaddr = i; u16 data; f.read((char *)&data, 2); if (f && space->device().memory().translate(space->spacenum(), TRANSLATE_WRITE_DEBUG, curaddr)) space->write_word(curaddr, data); } break; } if (!f.good()) m_console.printf("I/O error, load failed\n"); else if (i == offset) m_console.printf("Length specified too large, load failed\n"); else m_console.printf("Data loaded successfully to memory : 0x%X to 0x%X\n", offset, i-1); } /*------------------------------------------------- execute_loadregion - execute the load command on region memory -------------------------------------------------*/ void debugger_commands::execute_loadregion(int ref, const std::vector ¶ms) { u64 offset, length; memory_region *region; /* validate parameters */ if (!validate_number_parameter(params[1], offset)) return; if (!validate_number_parameter(params[2], length)) return; if (!validate_memory_region_parameter(params[3], region)) return; if (offset >= region->bytes()) { m_console.printf("Invalid offset\n"); return; } if ((length <= 0) || ((length + offset) >= region->bytes())) length = region->bytes() - offset; /* open the file */ FILE *f = fopen(params[0].c_str(), "rb"); if (!f) { m_console.printf("Error opening file '%s'\n", params[0].c_str()); return; } fseek(f, 0L, SEEK_END); u64 size = ftell(f); rewind(f); // check file size if (length >= size) length = size; fread(region->base() + offset, 1, length, f); fclose(f); m_console.printf("Data loaded successfully to memory : 0x%X to 0x%X\n", offset, offset + length - 1); } /*------------------------------------------------- execute_dump - execute the dump command -------------------------------------------------*/ void debugger_commands::execute_dump(int ref, const std::vector ¶ms) { /* validate parameters */ u64 offset; if (!validate_number_parameter(params[1], offset)) return; u64 length; if (!validate_number_parameter(params[2], length)) return; u64 width = 0; if (params.size() > 3 && !validate_number_parameter(params[3], width)) return; u64 ascii = 1; if (params.size() > 4 && !validate_number_parameter(params[4], ascii)) return; address_space *space; if (!validate_cpu_space_parameter((params.size() > 6) ? params[6].c_str() : nullptr, ref, space)) return; u64 rowsize = space->byte_to_address(16); if (params.size() > 5 && !validate_number_parameter(params[5], rowsize)) return; int shift = space->addr_shift(); u64 granularity = shift >= 0 ? 1 : 1 << -shift; /* further validation */ if (width == 0) width = space->data_width() / 8; if (width < space->address_to_byte(1)) width = space->address_to_byte(1); if (width != 1 && width != 2 && width != 4 && width != 8) { m_console.printf("Invalid width! (must be 1,2,4 or 8)\n"); return; } if (width < granularity) { m_console.printf("Invalid width! (must be at least %d)\n", granularity); return; } if (rowsize == 0 || (rowsize % space->byte_to_address(width)) != 0) { m_console.printf("Invalid row size! (must be a positive multiple of %d)\n", space->byte_to_address(width)); return; } u64 endoffset = (offset + length - 1) & space->addrmask(); offset = offset & space->addrmask(); /* open the file */ FILE* f = fopen(params[0].c_str(), "w"); if (!f) { m_console.printf("Error opening file '%s'\n", params[0].c_str()); return; } /* now write the data out */ util::ovectorstream output; output.reserve(200); const unsigned delta = (shift >= 0) ? (width << shift) : (width >> -shift); auto dis = space->device().machine().disable_side_effects(); bool be = space->endianness() == ENDIANNESS_BIG; for (u64 i = offset; i <= endoffset; i += rowsize) { output.clear(); output.rdbuf()->clear(); /* print the address */ util::stream_format(output, "%0*X: ", space->logaddrchars(), i); /* print the bytes */ for (u64 j = 0; j < rowsize; j += delta) { if (i + j <= endoffset) { offs_t curaddr = i + j; if (space->device().memory().translate(space->spacenum(), TRANSLATE_READ_DEBUG, curaddr)) { switch (width) { case 8: util::stream_format(output, " %016X", space->read_qword_unaligned(i+j)); break; case 4: util::stream_format(output, " %08X", space->read_dword_unaligned(i+j)); break; case 2: util::stream_format(output, " %04X", space->read_word_unaligned(i+j)); break; case 1: util::stream_format(output, " %02X", space->read_byte(i+j)); break; } } else { util::stream_format(output, " %.*s", width * 2, "****************"); } } else util::stream_format(output, " %*s", width * 2, ""); } /* print the ASCII */ if (ascii) { util::stream_format(output, " "); for (u64 j = 0; j < rowsize && (i + j) <= endoffset; j += delta) { offs_t curaddr = i + j; if (space->device().memory().translate(space->spacenum(), TRANSLATE_READ_DEBUG, curaddr)) { u64 data = 0; switch (width) { case 8: data = space->read_qword_unaligned(i+j); break; case 4: data = space->read_dword_unaligned(i+j); break; case 2: data = space->read_word_unaligned(i+j); break; case 1: data = space->read_byte(i+j); break; } for (unsigned int b = 0; b != width; b++) { u8 byte = data >> (8 * (be ? (width-1-b) : b)); util::stream_format(output, "%c", (byte >= 32 && byte < 127) ? byte : '.'); } } else { util::stream_format(output, " "); } } } /* output the result */ auto const &text = output.vec(); fprintf(f, "%.*s\n", int(unsigned(text.size())), &text[0]); } /* close the file */ fclose(f); m_console.printf("Data dumped successfully\n"); } //------------------------------------------------- // execute_strdump - execute the strdump command //------------------------------------------------- void debugger_commands::execute_strdump(int ref, const std::vector ¶ms) { // validate parameters u64 offset; if (!validate_number_parameter(params[1], offset)) return; u64 length; if (!validate_number_parameter(params[2], length)) return; u64 term = 0; if (params.size() > 3 && !validate_number_parameter(params[3], term)) return; address_space *space; if (!validate_cpu_space_parameter((params.size() > 4) ? params[4].c_str() : nullptr, ref, space)) return; // further validation if (term >= 0x100 && term != u64(-0x80)) { m_console.printf("Invalid termination character\n"); return; } // open the file FILE *f = fopen(params[0].c_str(), "w"); if (!f) { m_console.printf("Error opening file '%s'\n", params[0].c_str()); return; } const int shift = space->addr_shift(); const unsigned delta = (shift >= 0) ? (1 << shift) : 1; const unsigned width = (shift >= 0) ? 1 : (1 << -shift); const bool be = space->endianness() == ENDIANNESS_BIG; offset = offset & space->addrmask(); if (shift > 0) length >>= shift; // now write the data out util::ovectorstream output; output.reserve(200); auto dis = space->device().machine().disable_side_effects(); bool terminated = true; while (length-- != 0) { if (terminated) { terminated = false; output.clear(); output.rdbuf()->clear(); // print the address util::stream_format(output, "%0*X: \"", space->logaddrchars(), offset); } // get the character data u64 data = 0; offs_t curaddr = offset; if (space->device().memory().translate(space->spacenum(), TRANSLATE_READ_DEBUG, curaddr)) { switch (width) { case 1: data = space->read_byte(curaddr); break; case 2: data = space->read_word(curaddr); if (be) data = swapendian_int16(data); break; case 4: data = space->read_dword(curaddr); if (be) data = swapendian_int32(data); break; case 8: data = space->read_qword(curaddr); if (be) data = swapendian_int64(data); break; } } // print the characters for (int n = 0; n < width; n++) { // check for termination within word if (terminated) { terminated = false; // output the result auto const &text = output.vec(); fprintf(f, "%.*s\"\n", int(unsigned(text.size())), &text[0]); output.clear(); output.rdbuf()->clear(); // print the address util::stream_format(output, "%0*X.%d: \"", space->logaddrchars(), offset, n); } u8 ch = data & 0xff; data >>= 8; // check for termination if (term == u64(-0x80)) { if (BIT(ch, 7)) { terminated = true; ch &= 0x7f; } } else if (ch == term) { terminated = true; continue; } // check for non-ASCII characters if (ch < 0x20 || ch >= 0x7f) { // use special or octal escape if (ch >= 0x07 && ch <= 0x0d) util::stream_format(output, "\\%c", "abtnvfr"[ch - 0x07]); else util::stream_format(output, "\\%03o", ch); } else { if (ch == '"' || ch == '\\') output << '\\'; output << char(ch); } } if (terminated) { // output the result auto const &text = output.vec(); fprintf(f, "%.*s\"\n", int(unsigned(text.size())), &text[0]); output.clear(); output.rdbuf()->clear(); } offset += delta; } if (!terminated) { // output the result auto const &text = output.vec(); fprintf(f, "%.*s\"\\\n", int(unsigned(text.size())), &text[0]); } // close the file fclose(f); m_console.printf("Data dumped successfully\n"); } /*------------------------------------------------- execute_cheatinit - initialize the cheat system -------------------------------------------------*/ void debugger_commands::execute_cheatinit(int ref, const std::vector ¶ms) { u64 offset, length = 0, real_length = 0; address_space *space; u32 active_cheat = 0; u64 curaddr; u8 i, region_count = 0; cheat_region_map cheat_region[100]; memset(cheat_region, 0, sizeof(cheat_region)); /* validate parameters */ if (!validate_cpu_space_parameter((params.size() > 3) ? params[3].c_str() : nullptr, AS_PROGRAM, space)) return; if (ref == 0) { m_cheat.width = 1; m_cheat.signed_cheat = false; m_cheat.swapped_cheat = false; if (!params.empty()) { char *srtpnt = (char*)params[0].c_str(); if (*srtpnt == 's') m_cheat.signed_cheat = true; else if (*srtpnt == 'u') m_cheat.signed_cheat = false; else { m_console.printf("Invalid sign: expected s or u\n"); return; } if (*(++srtpnt) == 'b') m_cheat.width = 1; else if (*srtpnt == 'w') m_cheat.width = 2; else if (*srtpnt == 'd') m_cheat.width = 4; else if (*srtpnt == 'q') m_cheat.width = 8; else { m_console.printf("Invalid width: expected b, w, d or q\n"); return; } if (*(++srtpnt) == 's') m_cheat.swapped_cheat = true; else m_cheat.swapped_cheat = false; } } /* initialize entire memory by default */ if (params.size() <= 1) { for (address_map_entry &entry : space->map()->m_entrylist) { cheat_region[region_count].offset = entry.m_addrstart & space->addrmask(); cheat_region[region_count].endoffset = entry.m_addrend & space->addrmask(); cheat_region[region_count].share = entry.m_share; cheat_region[region_count].disabled = (entry.m_write.m_type == AMH_RAM) ? false : true; /* disable double share regions */ if (entry.m_share != nullptr) for (i = 0; i < region_count; i++) if (cheat_region[i].share != nullptr) if (strcmp(cheat_region[i].share, entry.m_share) == 0) cheat_region[region_count].disabled = true; region_count++; } } else { /* validate parameters */ if (!validate_number_parameter(params[(ref == 0) ? 1 : 0], offset)) return; if (!validate_number_parameter(params[(ref == 0) ? 2 : 1], length)) return; /* force region to the specified range */ cheat_region[region_count].offset = offset & space->addrmask(); cheat_region[region_count].endoffset = (offset + length - 1) & space->addrmask(); cheat_region[region_count].share = nullptr; cheat_region[region_count].disabled = false; region_count++; } /* determine the writable extent of each region in total */ for (i = 0; i < region_count; i++) if (!cheat_region[i].disabled) for (curaddr = cheat_region[i].offset; curaddr <= cheat_region[i].endoffset; curaddr += m_cheat.width) if (cheat_address_is_valid(*space, curaddr)) real_length++; if (real_length == 0) { m_console.printf("No writable bytes found in this area\n"); return; } if (ref == 0) { /* initialize new cheat system */ m_cheat.cheatmap.resize(real_length); m_cheat.undo = 0; m_cheat.cpu[0] = params.size() > 3 ? params[3][0] : '0'; } else { /* add range to cheat system */ if (m_cheat.cpu[0] == 0) { m_console.printf("Use cheatinit before cheatrange\n"); return; } if (!validate_cpu_space_parameter(m_cheat.cpu, AS_PROGRAM, space)) return; active_cheat = m_cheat.cheatmap.size(); m_cheat.cheatmap.resize(m_cheat.cheatmap.size() + real_length); } /* initialize cheatmap in the selected space */ for (i = 0; i < region_count; i++) if (!cheat_region[i].disabled) for (curaddr = cheat_region[i].offset; curaddr <= cheat_region[i].endoffset; curaddr += m_cheat.width) if (cheat_address_is_valid(*space, curaddr)) { m_cheat.cheatmap[active_cheat].previous_value = cheat_read_extended(&m_cheat, *space, curaddr); m_cheat.cheatmap[active_cheat].first_value = m_cheat.cheatmap[active_cheat].previous_value; m_cheat.cheatmap[active_cheat].offset = curaddr; m_cheat.cheatmap[active_cheat].state = 1; m_cheat.cheatmap[active_cheat].undo = 0; active_cheat++; } /* give a detailed init message to avoid searches being mistakingly carried out on the wrong CPU */ device_t *cpu = nullptr; validate_cpu_parameter(m_cheat.cpu, cpu); m_console.printf("%u cheat initialized for CPU index %s ( aka %s )\n", active_cheat, m_cheat.cpu, cpu->tag()); } /*------------------------------------------------- execute_cheatnext - execute the search -------------------------------------------------*/ void debugger_commands::execute_cheatnext(int ref, const std::vector ¶ms) { address_space *space; u64 cheatindex; u32 active_cheat = 0; u8 condition; u64 comp_value = 0; enum { CHEAT_ALL = 0, CHEAT_EQUAL, CHEAT_NOTEQUAL, CHEAT_EQUALTO, CHEAT_NOTEQUALTO, CHEAT_DECREASE, CHEAT_INCREASE, CHEAT_DECREASE_OR_EQUAL, CHEAT_INCREASE_OR_EQUAL, CHEAT_DECREASEOF, CHEAT_INCREASEOF, CHEAT_SMALLEROF, CHEAT_GREATEROF, CHEAT_CHANGEDBY }; if (m_cheat.cpu[0] == 0) { m_console.printf("Use cheatinit before cheatnext\n"); return; } if (!validate_cpu_space_parameter(m_cheat.cpu, AS_PROGRAM, space)) return; if (params.size() > 1 && !validate_number_parameter(params[1], comp_value)) return; comp_value = cheat_sign_extend(&m_cheat, comp_value); /* decode condition */ if (params[0] == "all") condition = CHEAT_ALL; else if (params[0] == "equal" || params[0] == "eq") condition = (params.size() > 1) ? CHEAT_EQUALTO : CHEAT_EQUAL; else if (params[0] == "notequal" || params[0] == "ne") condition = (params.size() > 1) ? CHEAT_NOTEQUALTO : CHEAT_NOTEQUAL; else if (params[0] == "decrease" || params[0] == "de" || params[0] == "-") condition = (params.size() > 1) ? CHEAT_DECREASEOF : CHEAT_DECREASE; else if (params[0] == "increase" || params[0] == "in" || params[0] == "+") condition = (params.size() > 1) ? CHEAT_INCREASEOF : CHEAT_INCREASE; else if (params[0] == "decreaseorequal" || params[0] == "deeq") condition = CHEAT_DECREASE_OR_EQUAL; else if (params[0] == "increaseorequal" || params[0] == "ineq") condition = CHEAT_INCREASE_OR_EQUAL; else if (params[0] == "smallerof" || params[0] == "lt" || params[0] == "<") condition = CHEAT_SMALLEROF; else if (params[0] == "greaterof" || params[0] == "gt" || params[0] == ">") condition = CHEAT_GREATEROF; else if (params[0] == "changedby" || params[0] == "ch" || params[0] == "~") condition = CHEAT_CHANGEDBY; else { m_console.printf("Invalid condition type\n"); return; } m_cheat.undo++; /* execute the search */ for (cheatindex = 0; cheatindex < m_cheat.cheatmap.size(); cheatindex += 1) if (m_cheat.cheatmap[cheatindex].state == 1) { u64 cheat_value = cheat_read_extended(&m_cheat, *space, m_cheat.cheatmap[cheatindex].offset); u64 comp_byte = (ref == 0) ? m_cheat.cheatmap[cheatindex].previous_value : m_cheat.cheatmap[cheatindex].first_value; u8 disable_byte = false; switch (condition) { case CHEAT_ALL: break; case CHEAT_EQUAL: disable_byte = (cheat_value != comp_byte); break; case CHEAT_NOTEQUAL: disable_byte = (cheat_value == comp_byte); break; case CHEAT_EQUALTO: disable_byte = (cheat_value != comp_value); break; case CHEAT_NOTEQUALTO: disable_byte = (cheat_value == comp_value); break; case CHEAT_DECREASE: if (m_cheat.signed_cheat) disable_byte = (s64(cheat_value) >= s64(comp_byte)); else disable_byte = (u64(cheat_value) >= u64(comp_byte)); break; case CHEAT_INCREASE: if (m_cheat.signed_cheat) disable_byte = (s64(cheat_value) <= s64(comp_byte)); else disable_byte = (u64(cheat_value) <= u64(comp_byte)); break; case CHEAT_DECREASE_OR_EQUAL: if (m_cheat.signed_cheat) disable_byte = (s64(cheat_value) > s64(comp_byte)); else disable_byte = (u64(cheat_value) > u64(comp_byte)); break; case CHEAT_INCREASE_OR_EQUAL: if (m_cheat.signed_cheat) disable_byte = (s64(cheat_value) < s64(comp_byte)); else disable_byte = (u64(cheat_value) < u64(comp_byte)); break; case CHEAT_DECREASEOF: disable_byte = (cheat_value != comp_byte - comp_value); break; case CHEAT_INCREASEOF: disable_byte = (cheat_value != comp_byte + comp_value); break; case CHEAT_SMALLEROF: if (m_cheat.signed_cheat) disable_byte = (s64(cheat_value) >= s64(comp_value)); else disable_byte = (u64(cheat_value) >= u64(comp_value)); break; case CHEAT_GREATEROF: if (m_cheat.signed_cheat) disable_byte = (s64(cheat_value) <= s64(comp_value)); else disable_byte = (u64(cheat_value) <= u64(comp_value)); break; case CHEAT_CHANGEDBY: if (cheat_value > comp_byte) disable_byte = (cheat_value != comp_byte + comp_value); else disable_byte = (cheat_value != comp_byte - comp_value); break; } if (disable_byte) { m_cheat.cheatmap[cheatindex].state = 0; m_cheat.cheatmap[cheatindex].undo = m_cheat.undo; } else active_cheat++; /* update previous value */ m_cheat.cheatmap[cheatindex].previous_value = cheat_value; } if (active_cheat <= 5) execute_cheatlist(0, std::vector()); m_console.printf("%u cheats found\n", active_cheat); } /*------------------------------------------------- execute_cheatlist - show a list of active cheat -------------------------------------------------*/ void debugger_commands::execute_cheatlist(int ref, const std::vector ¶ms) { char spaceletter, sizeletter; address_space *space; device_t *cpu; u32 active_cheat = 0; u64 cheatindex; u64 sizemask; FILE *f = nullptr; if (m_cheat.cpu[0] == 0) { m_console.printf("Use cheatinit before cheatlist\n"); return; } if (!validate_cpu_space_parameter(m_cheat.cpu, AS_PROGRAM, space)) return; if (!validate_cpu_parameter(m_cheat.cpu, cpu)) return; if (params.size() > 0) f = fopen(params[0].c_str(), "w"); switch (space->spacenum()) { default: case AS_PROGRAM: spaceletter = 'p'; break; case AS_DATA: spaceletter = 'd'; break; case AS_IO: spaceletter = 'i'; break; case AS_OPCODES: spaceletter = 'o'; break; } switch (m_cheat.width) { default: case 1: sizeletter = 'b'; sizemask = 0xffU; break; case 2: sizeletter = 'w'; sizemask = 0xffffU; break; case 4: sizeletter = 'd'; sizemask = 0xffffffffU; break; case 8: sizeletter = 'q'; sizemask = 0xffffffffffffffffU; break; } /* write the cheat list */ util::ovectorstream output; for (cheatindex = 0; cheatindex < m_cheat.cheatmap.size(); cheatindex += 1) { if (m_cheat.cheatmap[cheatindex].state == 1) { u64 value = cheat_byte_swap(&m_cheat, cheat_read_extended(&m_cheat, *space, m_cheat.cheatmap[cheatindex].offset)) & sizemask; offs_t address = space->byte_to_address(m_cheat.cheatmap[cheatindex].offset); if (!params.empty()) { active_cheat++; output.clear(); output.rdbuf()->clear(); stream_format( output, " \n" " \n" " \n\n", active_cheat, space->logaddrchars(), address, m_cheat.width * 2, value, cpu->tag(), spaceletter, sizeletter, space->logaddrchars(), address, m_cheat.width * 2, cheat_byte_swap(&m_cheat, m_cheat.cheatmap[cheatindex].first_value) & sizemask); auto const &text(output.vec()); fprintf(f, "%.*s", int(unsigned(text.size())), &text[0]); } else { m_console.printf( "Address=%0*X Start=%0*X Current=%0*X\n", space->logaddrchars(), address, m_cheat.width * 2, cheat_byte_swap(&m_cheat, m_cheat.cheatmap[cheatindex].first_value) & sizemask, m_cheat.width * 2, value); } } } if (params.size() > 0) fclose(f); } /*------------------------------------------------- execute_cheatundo - undo the last search -------------------------------------------------*/ void debugger_commands::execute_cheatundo(int ref, const std::vector ¶ms) { u64 cheatindex; u32 undo_count = 0; if (m_cheat.undo > 0) { for (cheatindex = 0; cheatindex < m_cheat.cheatmap.size(); cheatindex += 1) { if (m_cheat.cheatmap[cheatindex].undo == m_cheat.undo) { m_cheat.cheatmap[cheatindex].state = 1; m_cheat.cheatmap[cheatindex].undo = 0; undo_count++; } } m_cheat.undo--; m_console.printf("%u cheat reactivated\n", undo_count); } else m_console.printf("Maximum undo reached\n"); } /*------------------------------------------------- execute_find - execute the find command -------------------------------------------------*/ void debugger_commands::execute_find(int ref, const std::vector ¶ms) { u64 offset, endoffset, length; address_space *space; u64 data_to_find[256]; u8 data_size[256]; int cur_data_size; int data_count = 0; int found = 0; /* validate parameters */ if (!validate_number_parameter(params[0], offset)) return; if (!validate_number_parameter(params[1], length)) return; if (!validate_cpu_space_parameter(nullptr, ref, space)) return; /* further validation */ endoffset = space->address_to_byte_end((offset + length - 1) & space->addrmask()); offset = space->address_to_byte(offset & space->addrmask()); cur_data_size = space->addr_shift() > 0 ? 2 : 1 << -space->addr_shift(); if (cur_data_size == 0) cur_data_size = 1; /* parse the data parameters */ for (int i = 2; i < params.size(); i++) { const char *pdata = params[i].c_str(); size_t pdatalen = strlen(pdata) - 1; /* check for a string */ if (pdata[0] == '"' && pdata[pdatalen] == '"') { for (int j = 1; j < pdatalen; j++) { data_to_find[data_count] = pdata[j]; data_size[data_count++] = 1; } } /* otherwise, validate as a number */ else { /* check for a 'b','w','d',or 'q' prefix */ data_size[data_count] = cur_data_size; if (tolower(u8(pdata[0])) == 'b' && pdata[1] == '.') { data_size[data_count] = cur_data_size = 1; pdata += 2; } if (tolower(u8(pdata[0])) == 'w' && pdata[1] == '.') { data_size[data_count] = cur_data_size = 2; pdata += 2; } if (tolower(u8(pdata[0])) == 'd' && pdata[1] == '.') { data_size[data_count] = cur_data_size = 4; pdata += 2; } if (tolower(u8(pdata[0])) == 'q' && pdata[1] == '.') { data_size[data_count] = cur_data_size = 8; pdata += 2; } /* look for a wildcard */ if (!strcmp(pdata, "?")) data_size[data_count++] |= 0x10; /* otherwise, validate as a number */ else if (!validate_number_parameter(pdata, data_to_find[data_count++])) return; } } /* now search */ device_memory_interface &memory = space->device().memory(); auto dis = space->device().machine().disable_side_effects(); for (u64 i = offset; i <= endoffset; i += data_size[0]) { int suboffset = 0; bool match = true; /* find the entire string */ for (int j = 0; j < data_count && match; j++) { offs_t address = space->byte_to_address(i + suboffset); switch (data_size[j]) { case 1: address &= space->logaddrmask(); if (memory.translate(space->spacenum(), TRANSLATE_READ_DEBUG, address)) match = space->read_byte(address) == u8(data_to_find[j]); else match = false; break; case 2: address &= space->logaddrmask(); if (memory.translate(space->spacenum(), TRANSLATE_READ_DEBUG, address)) match = space->read_word_unaligned(address) == u16(data_to_find[j]); else match = false; break; case 4: address &= space->logaddrmask(); if (memory.translate(space->spacenum(), TRANSLATE_READ_DEBUG, address)) match = space->read_dword_unaligned(address) == u32(data_to_find[j]); else match = false; break; case 8: address &= space->logaddrmask(); if (memory.translate(space->spacenum(), TRANSLATE_READ_DEBUG, address)) match = space->read_qword_unaligned(address) == u64(data_to_find[j]); else match = false; break; default: /* all other cases are wildcards */ break; } suboffset += data_size[j] & 0x0f; } /* did we find it? */ if (match) { found++; m_console.printf("Found at %0*X\n", space->addrchars(), u32(space->byte_to_address(i))); } } /* print something if not found */ if (found == 0) m_console.printf("Not found\n"); } //------------------------------------------------- // execute_fill - execute the fill command //------------------------------------------------- void debugger_commands::execute_fill(int ref, const std::vector ¶ms) { u64 offset, length; address_space *space; // validate parameters if (!validate_number_parameter(params[0], offset)) return; if (!validate_number_parameter(params[1], length)) return; if (!validate_cpu_space_parameter(nullptr, ref, space)) return; // further validation offset = space->address_to_byte(offset & space->addrmask()); int cur_data_size = space->addr_shift() > 0 ? 2 : 1 << -space->addr_shift(); if (cur_data_size == 0) cur_data_size = 1; // parse the data parameters u64 fill_data[256]; u8 fill_data_size[256]; int data_count = 0; for (int i = 2; i < params.size(); i++) { const char *pdata = params[i].c_str(); size_t pdatalen = strlen(pdata) - 1; // check for a string if (pdata[0] == '"' && pdata[pdatalen] == '"') { for (int j = 1; j < pdatalen; j++) { fill_data[data_count] = pdata[j]; fill_data_size[data_count++] = 1; } } // otherwise, validate as a number else { // check for a 'b','w','d',or 'q' prefix fill_data_size[data_count] = cur_data_size; if (tolower(u8(pdata[0])) == 'b' && pdata[1] == '.') { fill_data_size[data_count] = cur_data_size = 1; pdata += 2; } if (tolower(u8(pdata[0])) == 'w' && pdata[1] == '.') { fill_data_size[data_count] = cur_data_size = 2; pdata += 2; } if (tolower(u8(pdata[0])) == 'd' && pdata[1] == '.') { fill_data_size[data_count] = cur_data_size = 4; pdata += 2; } if (tolower(u8(pdata[0])) == 'q' && pdata[1] == '.') { fill_data_size[data_count] = cur_data_size = 8; pdata += 2; } // validate as a number if (!validate_number_parameter(pdata, fill_data[data_count++])) return; } } if (data_count == 0) return; // now fill memory device_memory_interface &memory = space->device().memory(); auto dis = space->device().machine().disable_side_effects(); u64 count = space->address_to_byte(length); while (count != 0) { // write the entire string for (int j = 0; j < data_count; j++) { offs_t address = space->byte_to_address(offset) & space->logaddrmask(); if (!memory.translate(space->spacenum(), TRANSLATE_WRITE_DEBUG, address)) { m_console.printf("Fill aborted due to page fault at %0*X\n", space->logaddrchars(), space->byte_to_address(offset) & space->logaddrmask()); length = 0; break; } switch (fill_data_size[j]) { case 1: space->write_byte(address, fill_data[j]); break; case 2: space->write_word_unaligned(address, fill_data[j]); break; case 4: space->write_dword_unaligned(address, fill_data[j]); break; case 8: space->read_qword_unaligned(address, fill_data[j]); break; } offset += fill_data_size[j]; if (count <= fill_data_size[j]) { count = 0; break; } else count -= fill_data_size[j]; } } } /*------------------------------------------------- execute_dasm - execute the dasm command -------------------------------------------------*/ void debugger_commands::execute_dasm(int ref, const std::vector ¶ms) { u64 offset, length, bytes = 1; address_space *space; /* validate parameters */ if (!validate_number_parameter(params[1], offset)) return; if (!validate_number_parameter(params[2], length)) return; if (params.size() > 3 && !validate_number_parameter(params[3], bytes)) return; if (!validate_cpu_space_parameter(params.size() > 4 ? params[4].c_str() : nullptr, AS_PROGRAM, space)) return; /* determine the width of the bytes */ device_disasm_interface *dasmintf; if (!space->device().interface(dasmintf)) { m_console.printf("No disassembler available for %s\n", space->device().name()); return; } /* build the data, check the maximum size of the opcodes and disasm */ std::vector pcs; std::vector instructions; std::vector tpc; std::vector topcodes; int max_opcodes_size = 0; int max_disasm_size = 0; debug_disasm_buffer buffer(space->device()); for (u64 i = 0; i < length; ) { std::string instruction; offs_t next_offset; offs_t size; u32 info; buffer.disassemble(offset, instruction, next_offset, size, info); pcs.push_back(offset); instructions.emplace_back(instruction); tpc.emplace_back(buffer.pc_to_string(offset)); topcodes.emplace_back(buffer.data_to_string(offset, size, true)); int osize = topcodes.back().size(); if(osize > max_opcodes_size) max_opcodes_size = osize; int dsize = instructions.back().size(); if(dsize > max_disasm_size) max_disasm_size = dsize; i += size; offset = next_offset; } /* write the data */ std::ofstream f(params[0]); if (!f.good()) { m_console.printf("Error opening file '%s'\n", params[0]); return; } if (bytes) { for(unsigned int i=0; i != pcs.size(); i++) { const char *comment = space->device().debug()->comment_text(pcs[i]); if (comment) util::stream_format(f, "%s: %-*s %-*s // %s\n", tpc[i], max_opcodes_size, topcodes[i], max_disasm_size, instructions[i], comment); else util::stream_format(f, "%s: %-*s %s\n", tpc[i], max_opcodes_size, topcodes[i], instructions[i]); } } else { for(unsigned int i=0; i != pcs.size(); i++) { const char *comment = space->device().debug()->comment_text(pcs[i]); if (comment) util::stream_format(f, "%s: %-*s // %s\n", tpc[i], max_disasm_size, instructions[i], comment); else util::stream_format(f, "%s: %s\n", tpc[i], instructions[i]); } } m_console.printf("Data dumped successfully\n"); } /*------------------------------------------------- execute_trace_internal - functionality for trace over and trace info -------------------------------------------------*/ void debugger_commands::execute_trace_internal(int ref, const std::vector ¶ms, bool trace_over) { const char *action = nullptr; bool detect_loops = true; bool logerror = false; device_t *cpu; FILE *f = nullptr; const char *mode; std::string filename = params[0]; /* replace macros */ strreplace(filename, "{game}", m_machine.basename()); /* validate parameters */ if (!validate_cpu_parameter(params.size() > 1 ? params[1].c_str() : nullptr, cpu)) return; if (params.size() > 2) { std::stringstream stream; stream.str(params[2]); std::string flag; while (std::getline(stream, flag, '|')) { if (!core_stricmp(flag.c_str(), "noloop")) detect_loops = false; else if (!core_stricmp(flag.c_str(), "logerror")) logerror = true; else { m_console.printf("Invalid flag '%s'\n", flag.c_str()); return; } } } if (!debug_command_parameter_command(action = (params.size() > 3) ? params[3].c_str() : nullptr)) return; /* open the file */ if (core_stricmp(filename.c_str(), "off") != 0) { mode = "w"; /* opening for append? */ if ((filename[0] == '>') && (filename[1] == '>')) { mode = "a"; filename = filename.substr(2); } f = fopen(filename.c_str(), mode); if (!f) { m_console.printf("Error opening file '%s'\n", params[0].c_str()); return; } } /* do it */ cpu->debug()->trace(f, trace_over, detect_loops, logerror, action); if (f) m_console.printf("Tracing CPU '%s' to file %s\n", cpu->tag(), filename.c_str()); else m_console.printf("Stopped tracing on CPU '%s'\n", cpu->tag()); } /*------------------------------------------------- execute_trace - execute the trace command -------------------------------------------------*/ void debugger_commands::execute_trace(int ref, const std::vector ¶ms) { execute_trace_internal(ref, params, false); } /*------------------------------------------------- execute_traceover - execute the trace over command -------------------------------------------------*/ void debugger_commands::execute_traceover(int ref, const std::vector ¶ms) { execute_trace_internal(ref, params, true); } /*------------------------------------------------- execute_traceflush - execute the trace flush command -------------------------------------------------*/ void debugger_commands::execute_traceflush(int ref, const std::vector ¶ms) { m_cpu.flush_traces(); } /*------------------------------------------------- execute_history - execute the history command -------------------------------------------------*/ void debugger_commands::execute_history(int ref, const std::vector ¶ms) { /* validate parameters */ address_space *space; if (!validate_cpu_space_parameter(!params.empty() ? params[0].c_str() : nullptr, AS_PROGRAM, space)) return; u64 count = device_debug::HISTORY_SIZE; if (params.size() > 1 && !validate_number_parameter(params[1], count)) return; /* further validation */ if (count > device_debug::HISTORY_SIZE) count = device_debug::HISTORY_SIZE; device_debug *debug = space->device().debug(); /* loop over lines */ device_disasm_interface *dasmintf; if (!space->device().interface(dasmintf)) { m_console.printf("No disassembler available for %s\n", space->device().name()); return; } debug_disasm_buffer buffer(space->device()); for (int index = 0; index < (int) count; index++) { offs_t pc = debug->history_pc(-index); std::string instruction; offs_t next_offset; offs_t size; u32 info; buffer.disassemble(pc, instruction, next_offset, size, info); m_console.printf("%s: %s\n", buffer.pc_to_string(pc), instruction); } } /*------------------------------------------------- execute_trackpc - execute the trackpc command -------------------------------------------------*/ void debugger_commands::execute_trackpc(int ref, const std::vector ¶ms) { // Gather the on/off switch (if present) bool turnOn = true; if (params.size() > 0 && !validate_boolean_parameter(params[0], turnOn)) return; // Gather the cpu id (if present) device_t *cpu = nullptr; if (!validate_cpu_parameter((params.size() > 1) ? params[1].c_str() : nullptr, cpu)) return; // Should we clear the existing data? bool clear = false; if (params.size() > 2 && !validate_boolean_parameter(params[2], clear)) return; cpu->debug()->set_track_pc((bool)turnOn); if (turnOn) { // Insert current pc if (m_console.get_visible_cpu() == cpu) { const offs_t pc = cpu->state().pcbase(); cpu->debug()->set_track_pc_visited(pc); } m_console.printf("PC tracking enabled\n"); } else { m_console.printf("PC tracking disabled\n"); } if (clear) cpu->debug()->track_pc_data_clear(); } /*------------------------------------------------- execute_trackmem - execute the trackmem command -------------------------------------------------*/ void debugger_commands::execute_trackmem(int ref, const std::vector ¶ms) { // Gather the on/off switch (if present) bool turnOn = true; if (params.size() > 0 && !validate_boolean_parameter(params[0], turnOn)) return; // Gather the cpu id (if present) device_t *cpu = nullptr; if (!validate_cpu_parameter((params.size() > 1) ? params[1].c_str() : nullptr, cpu)) return; // Should we clear the existing data? bool clear = false; if (params.size() > 2 && !validate_boolean_parameter(params[2], clear)) return; // Get the address space for the given cpu address_space *space; if (!validate_cpu_space_parameter((params.size() > 1) ? params[1].c_str() : nullptr, AS_PROGRAM, space)) return; // Inform the CPU it's time to start tracking memory writes cpu->debug()->set_track_mem(turnOn); // Clear out the existing data if requested if (clear) space->device().debug()->track_mem_data_clear(); } /*------------------------------------------------- execute_pcatmem - execute the pcatmem command -------------------------------------------------*/ void debugger_commands::execute_pcatmem(int ref, const std::vector ¶ms) { // Gather the required address parameter u64 address; if (!validate_number_parameter(params[0], address)) return; // Gather the cpu id (if present) device_t *cpu = nullptr; if (!validate_cpu_parameter((params.size() > 1) ? params[1].c_str() : nullptr, cpu)) return; // Get the address space for the given cpu address_space *space; if (!validate_cpu_space_parameter((params.size() > 1) ? params[1].c_str() : nullptr, ref, space)) return; // Translate the address offs_t a = address & space->logaddrmask(); if (!space->device().memory().translate(space->spacenum(), TRANSLATE_READ_DEBUG, a)) { m_console.printf("Bad address\n"); return; } // Get the value of memory at the address u64 data = space->unmap(); auto dis = space->device().machine().disable_side_effects(); switch (space->data_width()) { case 8: data = space->read_byte(a); break; case 16: data = space->read_word_unaligned(a); break; case 32: data = space->read_dword_unaligned(a); break; case 64: data = space->read_qword_unaligned(a); break; } // Recover the pc & print const int space_num = (int)ref; const offs_t result = space->device().debug()->track_mem_pc_from_space_address_data(space_num, address, data); if (result != (offs_t)(-1)) m_console.printf("%02x\n", result); else m_console.printf("UNKNOWN PC\n"); } /*------------------------------------------------- execute_snap - execute the snapshot command -------------------------------------------------*/ void debugger_commands::execute_snap(int ref, const std::vector ¶ms) { /* if no params, use the default behavior */ if (params.empty()) { m_machine.video().save_active_screen_snapshots(); m_console.printf("Saved snapshot\n"); } /* otherwise, we have to open the file ourselves */ else { const char *filename = params[0].c_str(); int scrnum = (params.size() > 1) ? atoi(params[1].c_str()) : 0; screen_device_iterator iter(m_machine.root_device()); screen_device *screen = iter.byindex(scrnum); if ((screen == nullptr) || !m_machine.render().is_live(*screen)) { m_console.printf("Invalid screen number '%d'\n", scrnum); return; } std::string fname(filename); if (fname.find(".png") == -1) fname.append(".png"); emu_file file(m_machine.options().snapshot_directory(), OPEN_FLAG_WRITE | OPEN_FLAG_CREATE | OPEN_FLAG_CREATE_PATHS); osd_file::error filerr = file.open(fname); if (filerr != osd_file::error::NONE) { m_console.printf("Error creating file '%s'\n", filename); return; } screen->machine().video().save_snapshot(screen, file); m_console.printf("Saved screen #%d snapshot as '%s'\n", scrnum, filename); } } /*------------------------------------------------- execute_source - execute the source command -------------------------------------------------*/ void debugger_commands::execute_source(int ref, const std::vector ¶ms) { m_console.source_script(params[0].c_str()); } /*------------------------------------------------- execute_map - execute the map command -------------------------------------------------*/ void debugger_commands::execute_map(int ref, const std::vector ¶ms) { address_space *space; offs_t taddress; u64 address; int intention; /* validate parameters */ if (!validate_number_parameter(params[0], address)) return; /* CPU is implicit */ if (!validate_cpu_space_parameter(nullptr, ref, space)) return; /* do the translation first */ for (intention = TRANSLATE_READ_DEBUG; intention <= TRANSLATE_FETCH_DEBUG; intention++) { static const char *const intnames[] = { "Read", "Write", "Fetch" }; taddress = address & space->addrmask(); if (space->device().memory().translate(space->spacenum(), intention, taddress)) { std::string mapname = space->get_handler_string((intention == TRANSLATE_WRITE_DEBUG) ? read_or_write::WRITE : read_or_write::READ, taddress); m_console.printf( "%7s: %0*X logical == %0*X physical -> %s\n", intnames[intention & 3], space->logaddrchars(), address, space->addrchars(), taddress, mapname); } else m_console.printf("%7s: %0*X logical is unmapped\n", intnames[intention & 3], space->logaddrchars(), address); } } /*------------------------------------------------- execute_memdump - execute the memdump command -------------------------------------------------*/ void debugger_commands::execute_memdump(int ref, const std::vector ¶ms) { FILE *file; const char *filename; filename = params.empty() ? "memdump.log" : params[0].c_str(); m_console.printf("Dumping memory to %s\n", filename); file = fopen(filename, "w"); if (file) { memory_interface_iterator iter(m_machine.root_device()); for (device_memory_interface &memory : iter) { for (int space = 0; space != memory.max_space_count(); space++) if (memory.has_space(space)) { address_space &sp = memory.space(space); bool octal = sp.is_octal(); int nc = octal ? (sp.addr_width() + 2) / 3 : (sp.addr_width() + 3) / 4; std::vector entries[2]; sp.dump_maps(entries[0], entries[1]); for (int mode = 0; mode < 2; mode ++) { fprintf(file, " device %s space %s %s:\n", memory.device().tag(), sp.name(), mode ? "write" : "read"); for (memory_entry &entry : entries[mode]) { if (octal) fprintf(file, "%0*o - %0*o", nc, entry.start, nc, entry.end); else fprintf(file, "%0*x - %0*x", nc, entry.start, nc, entry.end); fprintf(file, ": %s\n", entry.entry->name().c_str()); } fprintf(file, "\n"); } } } fclose(file); } } /*------------------------------------------------- execute_symlist - execute the symlist command -------------------------------------------------*/ void debugger_commands::execute_symlist(int ref, const std::vector ¶ms) { device_t *cpu = nullptr; const char *namelist[1000]; symbol_table *symtable; int symnum, count = 0; if (!params.empty()) { /* validate parameters */ if (!validate_cpu_parameter(params[0].c_str(), cpu)) return; symtable = &cpu->debug()->symtable(); m_console.printf("CPU '%s' symbols:\n", cpu->tag()); } else { symtable = &m_cpu.global_symtable(); m_console.printf("Global symbols:\n"); } /* gather names for all symbols */ for (auto &entry : symtable->entries()) { /* only display "register" type symbols */ if (!entry.second->is_function()) { namelist[count++] = entry.second->name(); if (count >= ARRAY_LENGTH(namelist)) break; } } /* sort the symbols */ if (count > 1) std::sort(&namelist[0], &namelist[count], [](const char *item1, const char *item2) { return strcmp(item1, item2) < 0; }); /* iterate over symbols and print out relevant ones */ for (symnum = 0; symnum < count; symnum++) { const symbol_entry *entry = symtable->find(namelist[symnum]); assert(entry != nullptr); u64 value = entry->value(); /* only display "register" type symbols */ m_console.printf("%s = %X", namelist[symnum], value); if (!entry->is_lval()) m_console.printf(" (read-only)"); m_console.printf("\n"); } } /*------------------------------------------------- execute_softreset - execute the softreset command -------------------------------------------------*/ void debugger_commands::execute_softreset(int ref, const std::vector ¶ms) { m_machine.schedule_soft_reset(); } /*------------------------------------------------- execute_hardreset - execute the hardreset command -------------------------------------------------*/ void debugger_commands::execute_hardreset(int ref, const std::vector ¶ms) { m_machine.schedule_hard_reset(); } /*------------------------------------------------- execute_images - lists all image devices with mounted files -------------------------------------------------*/ void debugger_commands::execute_images(int ref, const std::vector ¶ms) { image_interface_iterator iter(m_machine.root_device()); for (device_image_interface &img : iter) m_console.printf("%s: %s\n", img.brief_instance_name(), img.exists() ? img.filename() : "[empty slot]"); if (iter.first() == nullptr) m_console.printf("No image devices in this driver\n"); } /*------------------------------------------------- execute_mount - execute the image mount command -------------------------------------------------*/ void debugger_commands::execute_mount(int ref, const std::vector ¶ms) { bool done = false; for (device_image_interface &img : image_interface_iterator(m_machine.root_device())) { if (img.brief_instance_name() == params[0]) { if (img.load(params[1]) != image_init_result::PASS) m_console.printf("Unable to mount file %s on %s\n", params[1], params[0]); else m_console.printf("File %s mounted on %s\n", params[1], params[0]); done = true; break; } } if (!done) m_console.printf("There is no image device :%s\n", params[0].c_str()); } /*------------------------------------------------- execute_unmount - execute the image unmount command -------------------------------------------------*/ void debugger_commands::execute_unmount(int ref, const std::vector ¶ms) { bool done = false; for (device_image_interface &img : image_interface_iterator(m_machine.root_device())) { if (img.brief_instance_name() == params[0]) { img.unload(); m_console.printf("Unmounted file from : %s\n", params[0]); done = true; break; } } if (!done) m_console.printf("There is no image device :%s\n", params[0]); } /*------------------------------------------------- execute_input - debugger command to enter natural keyboard input -------------------------------------------------*/ void debugger_commands::execute_input(int ref, const std::vector ¶ms) { m_machine.ioport().natkeyboard().post_coded(params[0].c_str()); } /*------------------------------------------------- execute_dumpkbd - debugger command to natural keyboard codes -------------------------------------------------*/ void debugger_commands::execute_dumpkbd(int ref, const std::vector ¶ms) { // was there a file specified? const char *filename = !params.empty() ? params[0].c_str() : nullptr; FILE *file = nullptr; if (filename != nullptr) { // if so, open it file = fopen(filename, "w"); if (file == nullptr) { m_console.printf("Cannot open \"%s\"\n", filename); return; } } // loop through all codes std::string buffer = m_machine.ioport().natkeyboard().dump(); // and output it as appropriate if (file != nullptr) fprintf(file, "%s\n", buffer.c_str()); else m_console.printf("%s\n", buffer.c_str()); // cleanup if (file != nullptr) fclose(file); }