/*************************************************************************** drcuml.c Universal machine language for dynamic recompiling CPU cores. **************************************************************************** Copyright Aaron Giles All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name 'MAME' nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY AARON GILES ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL AARON GILES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. **************************************************************************** Future improvements/changes: * UML optimizer: - constant folding * Write a back-end validator: - checks all combinations of memory/register/immediate on all params - checks behavior of all opcodes * Extend registers to 16? Depends on if PPC can use them * Support for FPU exceptions * New instructions? - FCOPYI, ICOPYF copy raw between float and integer registers - VALID opcode_desc,handle,param checksum/compare code referenced by opcode_desc; if not matching, generate exception with handle,param - RECALL handle change code at caller to call handle in the future ***************************************************************************/ #include "emu.h" #include "drcuml.h" #include "drcbec.h" #include "drcbex86.h" #include "drcbex64.h" using namespace uml; //************************************************************************** // DEBUGGING //************************************************************************** #define VALIDATE_BACKEND (0) #define LOG_SIMPLIFICATIONS (0) //************************************************************************** // TYPE DEFINITIONS //************************************************************************** // structure describing back-end validation test struct bevalidate_test { opcode_t opcode; UINT8 size; UINT8 iflags; UINT8 flags; UINT64 param[4]; }; //************************************************************************** // DRC BACKEND INTERFACE //************************************************************************** //------------------------------------------------- // drcbe_interface - constructor //------------------------------------------------- drcbe_interface::drcbe_interface(drcuml_state &drcuml, drc_cache &cache, device_t &device) : m_drcuml(drcuml), m_cache(cache), m_device(device), m_state(*(drcuml_machine_state *)cache.alloc_near(sizeof(m_state))), m_accessors((data_accessors *)cache.alloc_near(sizeof(*m_accessors) * ADDRESS_SPACES)) { // reset the machine state memset(m_accessors, 0, sizeof(*m_accessors) * ADDRESS_SPACES); memset(&m_state, 0, sizeof(m_state)); // find the spaces and fetch memory accessors device_memory_interface *memory; if (device.interface(memory)) for (address_spacenum spacenum = AS_0; spacenum < ARRAY_LENGTH(m_space); spacenum++) { m_space[spacenum] = memory->space(spacenum); if (m_space[spacenum] != NULL) m_space[spacenum]->accessors(m_accessors[spacenum]); } } //------------------------------------------------- // ~drcbe_interface - destructor //------------------------------------------------- drcbe_interface::~drcbe_interface() { } //************************************************************************** // DRCUML STATE //************************************************************************** //------------------------------------------------- // drcuml_state - constructor //------------------------------------------------- drcuml_state::drcuml_state(device_t &device, drc_cache &cache, UINT32 flags, int modes, int addrbits, int ignorebits) : m_device(device), m_cache(cache), m_beintf((flags & DRCUML_OPTION_USE_C) ? *static_cast(auto_alloc(device.machine(), drcbe_c(*this, device, cache, flags, modes, addrbits, ignorebits))) : *static_cast(auto_alloc(device.machine(), drcbe_native(*this, device, cache, flags, modes, addrbits, ignorebits)))), m_umllog(NULL), m_blocklist(device.machine().respool()), m_symlist(device.machine().respool()) { // if we're to log, create the logfile if (flags & DRCUML_OPTION_LOG_UML) m_umllog = fopen("drcuml.asm", "w"); } //------------------------------------------------- // ~drcuml_state - destructor //------------------------------------------------- drcuml_state::~drcuml_state() { // free the back-end auto_free(m_device.machine(), &m_beintf); // close any files if (m_umllog != NULL) fclose(m_umllog); } //------------------------------------------------- // reset - reset the state completely, flushing // the cache and all information //------------------------------------------------- void drcuml_state::reset() { // if we error here, we are screwed try { // flush the cache m_cache.flush(); // reset all handle code pointers for (code_handle *handle = m_handlelist.first(); handle != NULL; handle = handle->next()) *handle->m_code = NULL; // call the backend to reset m_beintf.reset(); // do a one-time validation if requested /* if (VALIDATE_BACKEND) { static bool validated = false; if (!validated) { validated = true; validate_backend(this); } }*/ } catch (drcuml_block::abort_compilation &) { fatalerror("Out of cache space in drcuml_state::reset"); } } //------------------------------------------------- // begin_block - begin a new code block //------------------------------------------------- drcuml_block *drcuml_state::begin_block(UINT32 maxinst) { // find an inactive block that matches our qualifications drcuml_block *bestblock = NULL; for (drcuml_block *block = m_blocklist.first(); block != NULL; block = block->next()) if (!block->inuse() && block->maxinst() >= maxinst && (bestblock == NULL || block->maxinst() < bestblock->maxinst())) bestblock = block; // if we failed to find one, allocate a new one if (bestblock == NULL) bestblock = &m_blocklist.append(*auto_alloc(m_device.machine(), drcuml_block(*this, maxinst * 3/2))); // start the block bestblock->begin(); return bestblock; } //------------------------------------------------- // handle_alloc - allocate a new handle //------------------------------------------------- code_handle *drcuml_state::handle_alloc(const char *name) { // allocate the handle, add it to our list, and return it return &m_handlelist.append(*auto_alloc(m_device.machine(), code_handle(*this, name))); } //------------------------------------------------- // symbol_add - add a symbol to the internal // symbol table //------------------------------------------------- void drcuml_state::symbol_add(void *base, UINT32 length, const char *name) { m_symlist.append(*auto_alloc(m_device.machine(), symbol(base, length, name))); } //------------------------------------------------- // symbol_find - look up a symbol from the // internal symbol table or return NULL if not // found //------------------------------------------------- const char *drcuml_state::symbol_find(void *base, UINT32 *offset) { drccodeptr search = drccodeptr(base); // simple linear search for (symbol *cursym = m_symlist.first(); cursym != NULL; cursym = cursym->next()) if (search >= cursym->m_base && search < cursym->m_base + cursym->m_length) { // if no offset pointer, only match perfectly if (offset == NULL && search != cursym->m_base) continue; // return the offset and name if (offset != NULL) *offset = search - cursym->m_base; return cursym->m_name; } // not found; return NULL return NULL; } //------------------------------------------------- // log_printf - directly printf to the UML log // if generated //------------------------------------------------- void drcuml_state::log_printf(const char *format, ...) { // if we have a file, print to it if (m_umllog != NULL) { va_list va; // do the printf va_start(va, format); vfprintf(m_umllog, format, va); va_end(va); } } //************************************************************************** // DRCUML BLOCK //************************************************************************** //------------------------------------------------- // drcuml_block - constructor //------------------------------------------------- drcuml_block::drcuml_block(drcuml_state &drcuml, UINT32 maxinst) : m_drcuml(drcuml), m_next(NULL), m_nextinst(0), m_maxinst(maxinst * 3/2), m_inst(auto_alloc_array(drcuml.device().machine(), instruction, m_maxinst)), m_inuse(false) { } //------------------------------------------------- // ~drcuml_block - destructor //------------------------------------------------- drcuml_block::~drcuml_block() { // free the instruction list auto_free(m_drcuml.device().machine(), m_inst); } //------------------------------------------------- // begin - begin code generation //------------------------------------------------- void drcuml_block::begin() { // set up the block information and return it m_inuse = true; m_nextinst = 0; } //------------------------------------------------- // end - complete a code block and commit it to // the cache via the back-end //------------------------------------------------- void drcuml_block::end() { assert(m_inuse); // optimize the resulting code first optimize(); // if we have a logfile, generate a disassembly of the block if (m_drcuml.logging()) disassemble(); // generate the code via the back-end m_drcuml.generate(*this, m_inst, m_nextinst); // block is no longer in use m_inuse = false; } //------------------------------------------------- // abort - abort a code block in progress //------------------------------------------------- void drcuml_block::abort() { assert(m_inuse); // block is no longer in use m_inuse = false; // unwind throw abort_compilation(); } //------------------------------------------------- // append - append an opcode to the block //------------------------------------------------- uml::instruction &drcuml_block::append() { // get a pointer to the next instruction instruction &curinst = m_inst[m_nextinst++]; if (m_nextinst > m_maxinst) fatalerror("Overran maxinst in drcuml_block_append"); return curinst; } //------------------------------------------------- // comment - attach a comment to the current // output location in the specified block //------------------------------------------------- void drcuml_block::append_comment(const char *format, ...) { // do the printf astring temp; va_list va; va_start(va, format); temp.vprintf(format, va); va_end(va); // allocate space in the cache to hold the comment char *comment = (char *)m_drcuml.cache().alloc_temporary(temp.len() + 1); if (comment == NULL) return; strcpy(comment, temp); // add an instruction with a pointer append().comment(comment); } //------------------------------------------------- // optimize - apply various optimizations to a // block of code //------------------------------------------------- void drcuml_block::optimize() { UINT32 mapvar[MAPVAR_COUNT] = { 0 }; // iterate over instructions for (int instnum = 0; instnum < m_nextinst; instnum++) { instruction &inst = m_inst[instnum]; // first compute what flags we need UINT8 accumflags = 0; UINT8 remainingflags = inst.output_flags(); // scan ahead until we run out of possible remaining flags for (int scannum = instnum + 1; remainingflags != 0 && scannum < m_nextinst; scannum++) { // any input flags are required const instruction &scan = m_inst[scannum]; accumflags |= scan.input_flags(); // if the scanahead instruction is unconditional, assume his flags are modified if (scan.condition() == COND_ALWAYS) remainingflags &= ~scan.modified_flags(); } inst.set_flags(accumflags); // track mapvars if (inst.opcode() == OP_MAPVAR) mapvar[inst.param(0).mapvar() - MAPVAR_M0] = inst.param(1).immediate(); // convert all mapvar parameters to immediates else if (inst.opcode() != OP_RECOVER) for (int pnum = 0; pnum < inst.numparams(); pnum++) if (inst.param(pnum).is_mapvar()) inst.set_mapvar(pnum, mapvar[inst.param(pnum).mapvar() - MAPVAR_M0]); // now that flags are correct, simplify the instruction inst.simplify(); } } //------------------------------------------------- // disassemble - disassemble a block of // instructions to the log //------------------------------------------------- void drcuml_block::disassemble() { astring comment; astring dasm; // iterate over instructions and output int firstcomment = -1; for (int instnum = 0; instnum < m_nextinst; instnum++) { const instruction &inst = m_inst[instnum]; bool flushcomments = false; // remember comments and mapvars for later if (inst.opcode() == OP_COMMENT || inst.opcode() == OP_MAPVAR) { if (firstcomment == -1) firstcomment = instnum; } // print labels, handles, and hashes left justified else if (inst.opcode() == OP_LABEL) m_drcuml.log_printf("$%X:\n", UINT32(inst.param(0).label())); else if (inst.opcode() == OP_HANDLE) m_drcuml.log_printf("%s:\n", inst.param(0).handle().string()); else if (inst.opcode() == OP_HASH) m_drcuml.log_printf("(%X,%X):\n", UINT32(inst.param(0).immediate()), UINT32(inst.param(1).immediate())); // indent everything else with a tab else { m_inst[instnum].disasm(dasm, &m_drcuml); // include the first accumulated comment with this line if (firstcomment != -1) { m_drcuml.log_printf("\t%-50.50s; %s\n", dasm.cstr(), get_comment_text(m_inst[firstcomment], comment)); firstcomment++; flushcomments = TRUE; } else m_drcuml.log_printf("\t%s\n", dasm.cstr()); } // flush any comments pending if (firstcomment != -1 && (flushcomments || instnum == m_nextinst - 1)) { while (firstcomment <= instnum) { const char *text = get_comment_text(m_inst[firstcomment++], comment); if (text != NULL) m_drcuml.log_printf("\t%50s; %s\n", "", text); } firstcomment = -1; } } m_drcuml.log_printf("\n\n"); m_drcuml.log_flush(); } //------------------------------------------------- // get_comment_text - determine the text // associated with a comment or mapvar //------------------------------------------------- const char *drcuml_block::get_comment_text(const instruction &inst, astring &comment) { // comments return their strings if (inst.opcode() == OP_COMMENT) return comment.cpy(inst.param(0).string()); // mapvars comment about their values else if (inst.opcode() == OP_MAPVAR) return comment.format("m%d = $%X", (int)inst.param(0).mapvar() - MAPVAR_M0, (UINT32)inst.param(1).immediate()); // everything else is NULL return NULL; } #if 0 /*************************************************************************** BACK-END VALIDATION ***************************************************************************/ //------------------------------------------------- // effective_test_psize - return the effective // parameter size based on the size and fixed // array of parameter values //------------------------------------------------- inline UINT8 effective_test_psize(const opcode_info &opinfo, int pnum, int instsize, const UINT64 *params) { switch (opinfo.param[pnum].size) { case PSIZE_4: return 4; case PSIZE_8: return 8; case PSIZE_OP: return instsize; case PSIZE_P1: return 1 << (params[0] & 3); case PSIZE_P2: return 1 << (params[1] & 3); case PSIZE_P3: return 1 << (params[2] & 3); case PSIZE_P4: return 1 << (params[3] & 3); } return instsize; } #define TEST_ENTRY_2(op, size, p1, p2, flags) { OP_##op, size, 0, flags, { U64(p1), U64(p2) } }, #define TEST_ENTRY_2F(op, size, p1, p2, iflags, flags) { OP_##op, size, iflags, flags, { U64(p1), U64(p2) } }, #define TEST_ENTRY_3(op, size, p1, p2, p3, flags) { OP_##op, size, 0, flags, { U64(p1), U64(p2), U64(p3) } }, #define TEST_ENTRY_3F(op, size, p1, p2, p3, iflags, flags) { OP_##op, size, iflags, flags, { U64(p1), U64(p2), U64(p3) } }, #define TEST_ENTRY_4(op, size, p1, p2, p3, p4, flags) { OP_##op, size, 0, flags, { U64(p1), U64(p2), U64(p3), U64(p4) } }, #define TEST_ENTRY_4F(op, size, p1, p2, p3, p4, iflags, flags) { OP_##op, size, iflags, flags, { U64(p1), U64(p2), U64(p3), U64(p4) } }, static const bevalidate_test bevalidate_test_list[] = { TEST_ENTRY_3(ADD, 4, 0x7fffffff, 0x12345678, 0x6dcba987, 0) TEST_ENTRY_3(ADD, 4, 0x80000000, 0x12345678, 0x6dcba988, FLAG_V | FLAG_S) TEST_ENTRY_3(ADD, 4, 0xffffffff, 0x92345678, 0x6dcba987, FLAG_S) TEST_ENTRY_3(ADD, 4, 0x00000000, 0x92345678, 0x6dcba988, FLAG_C | FLAG_Z) TEST_ENTRY_3(ADD, 8, 0x7fffffffffffffff, 0x0123456789abcdef, 0x7edcba9876543210, 0) TEST_ENTRY_3(ADD, 8, 0x8000000000000000, 0x0123456789abcdef, 0x7edcba9876543211, FLAG_V | FLAG_S) TEST_ENTRY_3(ADD, 8, 0xffffffffffffffff, 0x8123456789abcdef, 0x7edcba9876543210, FLAG_S) TEST_ENTRY_3(ADD, 8, 0x0000000000000000, 0x8123456789abcdef, 0x7edcba9876543211, FLAG_C | FLAG_Z) TEST_ENTRY_3F(ADDC, 4, 0x7fffffff, 0x12345678, 0x6dcba987, 0, 0) TEST_ENTRY_3F(ADDC, 4, 0x7fffffff, 0x12345678, 0x6dcba986, FLAG_C, 0) TEST_ENTRY_3F(ADDC, 4, 0x80000000, 0x12345678, 0x6dcba988, 0, FLAG_V | FLAG_S) TEST_ENTRY_3F(ADDC, 4, 0x80000000, 0x12345678, 0x6dcba987, FLAG_C, FLAG_V | FLAG_S) TEST_ENTRY_3F(ADDC, 4, 0xffffffff, 0x92345678, 0x6dcba987, 0, FLAG_S) TEST_ENTRY_3F(ADDC, 4, 0xffffffff, 0x92345678, 0x6dcba986, FLAG_C, FLAG_S) TEST_ENTRY_3F(ADDC, 4, 0x00000000, 0x92345678, 0x6dcba988, 0, FLAG_C | FLAG_Z) TEST_ENTRY_3F(ADDC, 4, 0x00000000, 0x92345678, 0x6dcba987, FLAG_C, FLAG_C | FLAG_Z) TEST_ENTRY_3F(ADDC, 4, 0x12345678, 0x12345678, 0xffffffff, FLAG_C, FLAG_C) TEST_ENTRY_3F(ADDC, 8, 0x7fffffffffffffff, 0x0123456789abcdef, 0x7edcba9876543210, 0, 0) TEST_ENTRY_3F(ADDC, 8, 0x7fffffffffffffff, 0x0123456789abcdef, 0x7edcba987654320f, FLAG_C, 0) TEST_ENTRY_3F(ADDC, 8, 0x8000000000000000, 0x0123456789abcdef, 0x7edcba9876543211, 0, FLAG_V | FLAG_S) TEST_ENTRY_3F(ADDC, 8, 0x8000000000000000, 0x0123456789abcdef, 0x7edcba9876543210, FLAG_C, FLAG_V | FLAG_S) TEST_ENTRY_3F(ADDC, 8, 0xffffffffffffffff, 0x8123456789abcdef, 0x7edcba9876543210, 0, FLAG_S) TEST_ENTRY_3F(ADDC, 8, 0xffffffffffffffff, 0x8123456789abcdef, 0x7edcba987654320f, FLAG_C, FLAG_S) TEST_ENTRY_3F(ADDC, 8, 0x0000000000000000, 0x8123456789abcdef, 0x7edcba9876543211, 0, FLAG_C | FLAG_Z) TEST_ENTRY_3F(ADDC, 8, 0x0000000000000000, 0x8123456789abcdef, 0x7edcba9876543210, FLAG_C, FLAG_C | FLAG_Z) TEST_ENTRY_3F(ADDC, 8, 0x123456789abcdef0, 0x123456789abcdef0, 0xffffffffffffffff, FLAG_C, FLAG_C) TEST_ENTRY_3(SUB, 4, 0x12345678, 0x7fffffff, 0x6dcba987, 0) TEST_ENTRY_3(SUB, 4, 0x12345678, 0x80000000, 0x6dcba988, FLAG_V) TEST_ENTRY_3(SUB, 4, 0x92345678, 0xffffffff, 0x6dcba987, FLAG_S) TEST_ENTRY_3(SUB, 4, 0x92345678, 0x00000000, 0x6dcba988, FLAG_C | FLAG_S) TEST_ENTRY_3(SUB, 4, 0x00000000, 0x12345678, 0x12345678, FLAG_Z) TEST_ENTRY_3(SUB, 8, 0x0123456789abcdef, 0x7fffffffffffffff, 0x7edcba9876543210, 0) TEST_ENTRY_3(SUB, 8, 0x0123456789abcdef, 0x8000000000000000, 0x7edcba9876543211, FLAG_V) TEST_ENTRY_3(SUB, 8, 0x8123456789abcdef, 0xffffffffffffffff, 0x7edcba9876543210, FLAG_S) TEST_ENTRY_3(SUB, 8, 0x8123456789abcdef, 0x0000000000000000, 0x7edcba9876543211, FLAG_C | FLAG_S) TEST_ENTRY_3(SUB, 8, 0x0000000000000000, 0x0123456789abcdef, 0x0123456789abcdef, FLAG_Z) TEST_ENTRY_3F(SUBB, 4, 0x12345678, 0x7fffffff, 0x6dcba987, 0, 0) TEST_ENTRY_3F(SUBB, 4, 0x12345678, 0x7fffffff, 0x6dcba986, FLAG_C, 0) TEST_ENTRY_3F(SUBB, 4, 0x12345678, 0x80000000, 0x6dcba988, 0, FLAG_V) TEST_ENTRY_3F(SUBB, 4, 0x12345678, 0x80000000, 0x6dcba987, FLAG_C, FLAG_V) TEST_ENTRY_3F(SUBB, 4, 0x92345678, 0xffffffff, 0x6dcba987, 0, FLAG_S) TEST_ENTRY_3F(SUBB, 4, 0x92345678, 0xffffffff, 0x6dcba986, FLAG_C, FLAG_S) TEST_ENTRY_3F(SUBB, 4, 0x92345678, 0x00000000, 0x6dcba988, 0, FLAG_C | FLAG_S) TEST_ENTRY_3F(SUBB, 4, 0x92345678, 0x00000000, 0x6dcba987, FLAG_C, FLAG_C | FLAG_S) TEST_ENTRY_3F(SUBB, 4, 0x12345678, 0x12345678, 0xffffffff, FLAG_C, FLAG_C) TEST_ENTRY_3F(SUBB, 4, 0x00000000, 0x12345678, 0x12345677, FLAG_C, FLAG_Z) TEST_ENTRY_3F(SUBB, 8, 0x0123456789abcdef, 0x7fffffffffffffff, 0x7edcba9876543210, 0, 0) TEST_ENTRY_3F(SUBB, 8, 0x0123456789abcdef, 0x7fffffffffffffff, 0x7edcba987654320f, FLAG_C, 0) TEST_ENTRY_3F(SUBB, 8, 0x0123456789abcdef, 0x8000000000000000, 0x7edcba9876543211, 0, FLAG_V) TEST_ENTRY_3F(SUBB, 8, 0x0123456789abcdef, 0x8000000000000000, 0x7edcba9876543210, FLAG_C, FLAG_V) TEST_ENTRY_3F(SUBB, 8, 0x8123456789abcdef, 0xffffffffffffffff, 0x7edcba9876543210, 0, FLAG_S) TEST_ENTRY_3F(SUBB, 8, 0x8123456789abcdef, 0xffffffffffffffff, 0x7edcba987654320f, FLAG_C, FLAG_S) TEST_ENTRY_3F(SUBB, 8, 0x8123456789abcdef, 0x0000000000000000, 0x7edcba9876543211, 0, FLAG_C | FLAG_S) TEST_ENTRY_3F(SUBB, 8, 0x8123456789abcdef, 0x0000000000000000, 0x7edcba9876543210, FLAG_C, FLAG_C | FLAG_S) TEST_ENTRY_3F(SUBB, 8, 0x123456789abcdef0, 0x123456789abcdef0, 0xffffffffffffffff, FLAG_C, FLAG_C) TEST_ENTRY_3F(SUBB, 8, 0x0000000000000000, 0x123456789abcdef0, 0x123456789abcdeef, FLAG_C, FLAG_Z) TEST_ENTRY_2(CMP, 4, 0x7fffffff, 0x6dcba987, 0) TEST_ENTRY_2(CMP, 4, 0x80000000, 0x6dcba988, FLAG_V) TEST_ENTRY_2(CMP, 4, 0xffffffff, 0x6dcba987, FLAG_S) TEST_ENTRY_2(CMP, 4, 0x00000000, 0x6dcba988, FLAG_C | FLAG_S) TEST_ENTRY_2(CMP, 4, 0x12345678, 0x12345678, FLAG_Z) TEST_ENTRY_2(CMP, 8, 0x7fffffffffffffff, 0x7edcba9876543210, 0) TEST_ENTRY_2(CMP, 8, 0x8000000000000000, 0x7edcba9876543211, FLAG_V) TEST_ENTRY_2(CMP, 8, 0xffffffffffffffff, 0x7edcba9876543210, FLAG_S) TEST_ENTRY_2(CMP, 8, 0x0000000000000000, 0x7edcba9876543211, FLAG_C | FLAG_S) TEST_ENTRY_2(CMP, 8, 0x0123456789abcdef, 0x0123456789abcdef, FLAG_Z) TEST_ENTRY_4(MULU, 4, 0x77777777, 0x00000000, 0x11111111, 0x00000007, 0) TEST_ENTRY_4(MULU, 4, 0xffffffff, 0x00000000, 0x11111111, 0x0000000f, 0) TEST_ENTRY_4(MULU, 4, 0x00000000, 0x00000000, 0x11111111, 0x00000000, FLAG_Z) TEST_ENTRY_4(MULU, 4, 0xea61d951, 0x37c048d0, 0x77777777, 0x77777777, FLAG_V) TEST_ENTRY_4(MULU, 4, 0x32323233, 0xcdcdcdcc, 0xcdcdcdcd, 0xffffffff, FLAG_V | FLAG_S) TEST_ENTRY_4(MULU, 8, 0x7777777777777777, 0x0000000000000000, 0x1111111111111111, 0x0000000000000007, 0) TEST_ENTRY_4(MULU, 8, 0xffffffffffffffff, 0x0000000000000000, 0x1111111111111111, 0x000000000000000f, 0) TEST_ENTRY_4(MULU, 8, 0x0000000000000000, 0x0000000000000000, 0x1111111111111111, 0x0000000000000000, FLAG_Z) TEST_ENTRY_4(MULU, 8, 0x0c83fb72ea61d951, 0x37c048d159e26af3, 0x7777777777777777, 0x7777777777777777, FLAG_V) TEST_ENTRY_4(MULU, 8, 0x3232323232323233, 0xcdcdcdcdcdcdcdcc, 0xcdcdcdcdcdcdcdcd, 0xffffffffffffffff, FLAG_V | FLAG_S) TEST_ENTRY_4(MULS, 4, 0x77777777, 0x00000000, 0x11111111, 0x00000007, 0) TEST_ENTRY_4(MULS, 4, 0xffffffff, 0x00000000, 0x11111111, 0x0000000f, FLAG_V) TEST_ENTRY_4(MULS, 4, 0x00000000, 0x00000000, 0x11111111, 0x00000000, FLAG_Z) TEST_ENTRY_4(MULS, 4, 0x9e26af38, 0xc83fb72e, 0x77777777, 0x88888888, FLAG_V | FLAG_S) TEST_ENTRY_4(MULS, 4, 0x32323233, 0x00000000, 0xcdcdcdcd, 0xffffffff, 0) TEST_ENTRY_4(MULS, 8, 0x7777777777777777, 0x0000000000000000, 0x1111111111111111, 0x0000000000000007, 0) TEST_ENTRY_4(MULS, 8, 0xffffffffffffffff, 0x0000000000000000, 0x1111111111111111, 0x000000000000000f, FLAG_V) TEST_ENTRY_4(MULS, 8, 0x0000000000000000, 0x0000000000000000, 0x1111111111111111, 0x0000000000000000, FLAG_Z) TEST_ENTRY_4(MULS, 8, 0x7c048d159e26af38, 0xc83fb72ea61d950c, 0x7777777777777777, 0x8888888888888888, FLAG_V | FLAG_S) TEST_ENTRY_4(MULS, 8, 0x3232323232323233, 0x0000000000000000, 0xcdcdcdcdcdcdcdcd, 0xffffffffffffffff, 0) TEST_ENTRY_4(DIVU, 4, 0x02702702, 0x00000003, 0x11111111, 0x00000007, 0) TEST_ENTRY_4(DIVU, 4, 0x00000000, 0x11111111, 0x11111111, 0x11111112, FLAG_Z) TEST_ENTRY_4(DIVU, 4, 0x7fffffff, 0x00000000, 0xfffffffe, 0x00000002, 0) TEST_ENTRY_4(DIVU, 4, 0xfffffffe, 0x00000000, 0xfffffffe, 0x00000001, FLAG_S) TEST_ENTRY_4(DIVU, 4, UNDEFINED, UNDEFINED, 0xffffffff, 0x00000000, FLAG_V) TEST_ENTRY_4(DIVU, 8, 0x0270270270270270, 0x0000000000000001, 0x1111111111111111, 0x0000000000000007, 0) TEST_ENTRY_4(DIVU, 8, 0x0000000000000000, 0x1111111111111111, 0x1111111111111111, 0x1111111111111112, FLAG_Z) TEST_ENTRY_4(DIVU, 8, 0x7fffffffffffffff, 0x0000000000000000, 0xfffffffffffffffe, 0x0000000000000002, 0) TEST_ENTRY_4(DIVU, 8, 0xfffffffffffffffe, 0x0000000000000000, 0xfffffffffffffffe, 0x0000000000000001, FLAG_S) TEST_ENTRY_4(DIVU, 8, UNDEFINED, UNDEFINED, 0xffffffffffffffff, 0x0000000000000000, FLAG_V) TEST_ENTRY_4(DIVS, 4, 0x02702702, 0x00000003, 0x11111111, 0x00000007, 0) TEST_ENTRY_4(DIVS, 4, 0x00000000, 0x11111111, 0x11111111, 0x11111112, FLAG_Z) TEST_ENTRY_4(DIVS, 4, 0xffffffff, 0x00000000, 0xfffffffe, 0x00000002, FLAG_S) TEST_ENTRY_4(DIVS, 4, UNDEFINED, UNDEFINED, 0xffffffff, 0x00000000, FLAG_V) TEST_ENTRY_4(DIVS, 8, 0x0270270270270270, 0x0000000000000001, 0x1111111111111111, 0x0000000000000007, 0) TEST_ENTRY_4(DIVS, 8, 0x0000000000000000, 0x1111111111111111, 0x1111111111111111, 0x1111111111111112, FLAG_Z) TEST_ENTRY_4(DIVS, 8, 0xffffffffffffffff, 0x0000000000000000, 0xfffffffffffffffe, 0x0000000000000002, FLAG_S) TEST_ENTRY_4(DIVS, 8, UNDEFINED, UNDEFINED, 0xffffffffffffffff, 0x0000000000000000, FLAG_V) }; /*------------------------------------------------- validate_backend - execute a number of generic tests on the backend code generator -------------------------------------------------*/ static void validate_backend(drcuml_state *drcuml) { code_handle *handles[3]; int tnum; // allocate handles for the code handles[0] = drcuml->handle_alloc("test_entry"); handles[1] = drcuml->handle_alloc("code_start"); handles[2] = drcuml->handle_alloc("code_end"); // iterate over test entries printf("Backend validation....\n"); for (tnum = 31; tnum < ARRAY_LENGTH(bevalidate_test_list); tnum++) { const bevalidate_test *test = &bevalidate_test_list[tnum]; parameter param[ARRAY_LENGTH(test->param)]; char mnemonic[20], *dst; const char *src; // progress dst = mnemonic; for (src = opcode_info_table[test->opcode()]->mnemonic; *src != 0; src++) { if (*src == '!') { if (test->size == 8) *dst++ = 'd'; } else if (*src == '#') *dst++ = (test->size == 8) ? 'd' : 's'; else *dst++ = *src; } *dst = 0; printf("Executing test %d/%d (%s)", tnum + 1, (int)ARRAY_LENGTH(bevalidate_test_list), mnemonic); // reset parameter list and iterate memset(param, 0, sizeof(param)); bevalidate_iterate_over_params(drcuml, handles, test, param, 0); printf("\n"); } fatalerror("All tests passed!"); } /*------------------------------------------------- bevalidate_iterate_over_params - iterate over all supported types and values of a parameter and recursively hand off to the next parameter, or else move on to iterate over the flags -------------------------------------------------*/ static void bevalidate_iterate_over_params(drcuml_state *drcuml, code_handle **handles, const bevalidate_test *test, parameter *paramlist, int pnum) { const opcode_info *opinfo = opcode_info_table[test->opcode()]; drcuml_ptype ptype; // if no parameters, execute now if (pnum >= ARRAY_LENGTH(opinfo->param) || opinfo->param[pnum].typemask == PTYPES_NONE) { bevalidate_iterate_over_flags(drcuml, handles, test, paramlist); return; } // iterate over valid parameter types for (ptype = parameter::PTYPE_IMMEDIATE; ptype < parameter::PTYPE_MAX; ptype++) if (opinfo->param[pnum].typemask & (1 << ptype)) { int pindex, pcount; // mapvars can only do 32-bit tests if (ptype == parameter::PTYPE_MAPVAR && effective_test_psize(opinfo, pnum, test->size, test->param) == 8) continue; // for some parameter types, we wish to iterate over all possibilities switch (ptype) { case parameter::PTYPE_INT_REGISTER: pcount = REG_I_END - REG_I0; break; case parameter::PTYPE_FLOAT_REGISTER: pcount = REG_F_END - REG_F0; break; default: pcount = 1; break; } // iterate over possibilities for (pindex = 0; pindex < pcount; pindex++) { int skip = FALSE; int pscannum; // for param 0, print a dot if (pnum == 0) printf("."); // can't duplicate multiple source parameters unless they are immediates if (ptype != parameter::PTYPE_IMMEDIATE && (opinfo->param[pnum].output & PIO_IN)) // loop over all parameters we've done before; if the parameter is a source and matches us, skip this case for (pscannum = 0; pscannum < pnum; pscannum++) if ((opinfo->param[pscannum].output & PIO_IN) && ptype == paramlist[pscannum].type && pindex == paramlist[pscannum].value) skip = TRUE; // can't duplicate multiple dest parameters if (opinfo->param[pnum].output & PIO_OUT) // loop over all parameters we've done before; if the parameter is a source and matches us, skip this case for (pscannum = 0; pscannum < pnum; pscannum++) if ((opinfo->param[pscannum].output & PIO_OUT) && ptype == paramlist[pscannum].type && pindex == paramlist[pscannum].value) skip = TRUE; // iterate over the next parameter in line if (!skip) { paramlist[pnum].type = ptype; paramlist[pnum].value = pindex; bevalidate_iterate_over_params(drcuml, handles, test, paramlist, pnum + 1); } } } } /*------------------------------------------------- bevalidate_iterate_over_flags - iterate over all supported flag masks -------------------------------------------------*/ static void bevalidate_iterate_over_flags(drcuml_state *drcuml, code_handle **handles, const bevalidate_test *test, parameter *paramlist) { const opcode_info *opinfo = opcode_info_table[test->opcode()]; UINT8 flagmask = opinfo->outflags; UINT8 curmask; // iterate over all possible flag combinations for (curmask = 0; curmask <= flagmask; curmask++) if ((curmask & flagmask) == curmask) bevalidate_execute(drcuml, handles, test, paramlist, curmask); } /*------------------------------------------------- bevalidate_execute - execute a single instance of a test, generating code and verifying the results -------------------------------------------------*/ static void bevalidate_execute(drcuml_state *drcuml, code_handle **handles, const bevalidate_test *test, const parameter *paramlist, UINT8 flagmask) { parameter params[ARRAY_LENGTH(test->param)]; drcuml_machine_state istate, fstate; instruction testinst; drcuml_block *block; UINT64 *parammem; int numparams; // allocate memory for parameters parammem = (UINT64 *)drcuml->cache->alloc_near(sizeof(UINT64) * (ARRAY_LENGTH(test->param) + 1)); // flush the cache drcuml->reset(); // start a new block block = drcuml->block_begin(30); UML_HANDLE(block, handles[0]); // set up a random initial state bevalidate_initialize_random_state(drcuml, block, &istate); // then populate the state with the parameters numparams = bevalidate_populate_state(block, &istate, test, paramlist, params, parammem); // generate the code UML_RESTORE(block, &istate); UML_HANDLE(block, handles[1]); switch (numparams) { case 0: block->append(test->opcode(), test->size); break; case 1: block->append(test->opcode(), test->size, params[0]); break; case 2: block->append(test->opcode(), test->size, params[0], params[1]); break; case 3: block->append(test->opcode(), test->size, params[0], params[1], params[2]); break; case 4: block->append(test->opcode(), test->size, params[0], params[1], params[2], params[3]); break; } testinst = block->inst[block->nextinst - 1]; UML_HANDLE(block, handles[2]); UML_GETFLGS(block, MEM(¶mmem[ARRAY_LENGTH(test->param)]), flagmask); UML_SAVE(block, &fstate); UML_EXIT(block, IMM(0)); // end the block block->end(); // execute drcuml->execute(*handles[0]); // verify the results bevalidate_verify_state(drcuml, &istate, &fstate, test, *(UINT32 *)¶mmem[ARRAY_LENGTH(test->param)], params, &testinst, handles[1]->code, handles[2]->code, flagmask); // free memory drcuml->cache->dealloc(parammem, sizeof(UINT64) * (ARRAY_LENGTH(test->param) + 1)); } /*------------------------------------------------- bevalidate_initialize_random_state - initialize the machine state to randomness -------------------------------------------------*/ static void bevalidate_initialize_random_state(drcuml_state *drcuml, drcuml_block *block, drcuml_machine_state *state) { running_machine &machine = drcuml->device->machine(); int regnum; // initialize core state to random values state->fmod = machine.rand() & 0x03; state->flags = machine.rand() & 0x1f; state->exp = machine.rand(); // initialize integer registers to random values for (regnum = 0; regnum < ARRAY_LENGTH(state->r); regnum++) { state->r[regnum].w.h = machine.rand(); state->r[regnum].w.l = machine.rand(); } // initialize float registers to random values for (regnum = 0; regnum < ARRAY_LENGTH(state->f); regnum++) { *(UINT32 *)&state->f[regnum].s.h = machine.rand(); *(UINT32 *)&state->f[regnum].s.l = machine.rand(); } // initialize map variables to random values for (regnum = 0; regnum < MAPVAR_COUNT; regnum++) UML_MAPVAR(block, MVAR(regnum), machine.rand()); } /*------------------------------------------------- bevalidate_populate_state - populate the machine state with the proper values prior to executing a test -------------------------------------------------*/ static int bevalidate_populate_state(drcuml_block *block, drcuml_machine_state *state, const bevalidate_test *test, const parameter *paramlist, parameter *params, UINT64 *parammem) { const opcode_info *opinfo = opcode_info_table[test->opcode()]; int numparams = ARRAY_LENGTH(test->param); int pnum; // copy flags as-is state->flags = test->iflags; // iterate over parameters for (pnum = 0; pnum < ARRAY_LENGTH(test->param); pnum++) { int psize = effective_test_psize(opinfo, pnum, test->size, test->param); parameter *curparam = ¶ms[pnum]; // start with a copy of the parameter from the list *curparam = paramlist[pnum]; // switch off the type switch (curparam->type) { // immediate parameters: take the value from the test entry case parameter::PTYPE_IMMEDIATE: curparam->value = test->param[pnum]; break; // register parameters: set the register value in the state and set the parameter value to the register index case parameter::PTYPE_INT_REGISTER: state->r[curparam->value].d = test->param[pnum]; curparam->value += REG_I0; break; // register parameters: set the register value in the state and set the parameter value to the register index case parameter::PTYPE_FLOAT_REGISTER: state->f[curparam->value].d = test->param[pnum]; curparam->value += REG_F0; break; // memory parameters: set the memory value in the parameter space and set the parameter value to point to it case parameter::PTYPE_MEMORY: curparam->value = (FPTR)¶mmem[pnum]; if (psize == 4) *(UINT32 *)(FPTR)curparam->value = test->param[pnum]; else *(UINT64 *)(FPTR)curparam->value = test->param[pnum]; break; // map variables: issue a MAPVAR instruction to set the value and set the parameter value to the mapvar index case parameter::PTYPE_MAPVAR: UML_MAPVAR(block, MVAR(curparam->value), test->param[pnum]); curparam->value += MAPVAR_M0; break; // use anything else to count the number of parameters default: numparams = MIN(numparams, pnum); break; } } // return the total number of parameters return numparams; } /*------------------------------------------------- bevalidate_verify_state - verify the final state after executing a test, and report any discrepancies -------------------------------------------------*/ static int bevalidate_verify_state(drcuml_state *drcuml, const drcuml_machine_state *istate, drcuml_machine_state *state, const bevalidate_test *test, UINT32 flags, const parameter *params, const instruction *testinst, drccodeptr codestart, drccodeptr codeend, UINT8 flagmask) { const opcode_info *opinfo = opcode_info_table[test->opcode()]; UINT8 ireg[REG_I_END - REG_I0] = { 0 }; UINT8 freg[REG_F_END - REG_F0] = { 0 }; char errorbuf[1024]; char *errend = errorbuf; int pnum, regnum; *errend = 0; // check flags if (flags != (test->flags & flagmask)) { errend += sprintf(errend, " Flags ... result:%c%c%c%c%c expected:%c%c%c%c%c\n", (flagmask & FLAG_U) ? ((flags & FLAG_U) ? 'U' : '.') : '-', (flagmask & FLAG_S) ? ((flags & FLAG_S) ? 'S' : '.') : '-', (flagmask & FLAG_Z) ? ((flags & FLAG_Z) ? 'Z' : '.') : '-', (flagmask & FLAG_V) ? ((flags & FLAG_V) ? 'V' : '.') : '-', (flagmask & FLAG_C) ? ((flags & FLAG_C) ? 'C' : '.') : '-', (flagmask & FLAG_U) ? ((test->flags & FLAG_U) ? 'U' : '.') : '-', (flagmask & FLAG_S) ? ((test->flags & FLAG_S) ? 'S' : '.') : '-', (flagmask & FLAG_Z) ? ((test->flags & FLAG_Z) ? 'Z' : '.') : '-', (flagmask & FLAG_V) ? ((test->flags & FLAG_V) ? 'V' : '.') : '-', (flagmask & FLAG_C) ? ((test->flags & FLAG_C) ? 'C' : '.') : '-'); } // check destination parameters for (pnum = 0; pnum < ARRAY_LENGTH(test->param); pnum++) if (opinfo->param[pnum].output & PIO_OUT) { int psize = effective_test_psize(opinfo, pnum, test->size, test->param); UINT64 mask = U64(0xffffffffffffffff) >> (64 - 8 * psize); UINT64 result = 0; // fetch the result from the parameters switch (params[pnum].type) { // integer registers fetch from the state case parameter::PTYPE_INT_REGISTER: ireg[params[pnum].value - REG_I0] = 1; result = state->r[params[pnum].value - REG_I0].d; break; // float registers fetch from the state case parameter::PTYPE_FLOAT_REGISTER: freg[params[pnum].value - REG_I0] = 1; result = state->f[params[pnum].value - REG_F0].d; break; // memory registers fetch from the memory address case parameter::PTYPE_MEMORY: if (psize == 4) result = *(UINT32 *)(FPTR)params[pnum].value; else result = *(UINT64 *)(FPTR)params[pnum].value; break; default: break; } // check against the mask if (test->param[pnum] != UNDEFINED_U64 && (result & mask) != (test->param[pnum] & mask)) { if ((UINT32)mask == mask) errend += sprintf(errend, " Parameter %d ... result:%08X expected:%08X\n", pnum, (UINT32)(result & mask), (UINT32)(test->param[pnum] & mask)); else errend += sprintf(errend, " Parameter %d ... result:%08X%08X expected:%08X%08X\n", pnum, (UINT32)((result & mask) >> 32), (UINT32)(result & mask), (UINT32)((test->param[pnum] & mask) >> 32), (UINT32)(test->param[pnum] & mask)); } } // check source integer parameters for unexpected alterations for (regnum = 0; regnum < ARRAY_LENGTH(state->r); regnum++) if (ireg[regnum] == 0 && istate->r[regnum].d != state->r[regnum].d) errend += sprintf(errend, " Register i%d ... result:%08X%08X originally:%08X%08X\n", regnum, (UINT32)(state->r[regnum].d >> 32), (UINT32)state->r[regnum].d, (UINT32)(istate->r[regnum].d >> 32), (UINT32)istate->r[regnum].d); // check source float parameters for unexpected alterations for (regnum = 0; regnum < ARRAY_LENGTH(state->f); regnum++) if (freg[regnum] == 0 && *(UINT64 *)&istate->f[regnum].d != *(UINT64 *)&state->f[regnum].d) errend += sprintf(errend, " Register f%d ... result:%08X%08X originally:%08X%08X\n", regnum, (UINT32)(*(UINT64 *)&state->f[regnum].d >> 32), (UINT32)*(UINT64 *)&state->f[regnum].d, (UINT32)(*(UINT64 *)&istate->f[regnum].d >> 32), (UINT32)*(UINT64 *)&istate->f[regnum].d); // output the error if we have one if (errend != errorbuf) { char disasm[256]; // disassemble the test instruction testinst->disasm(disasm, drcuml); // output a description of what went wrong printf("\n"); printf("----------------------------------------------\n"); printf("Backend validation error:\n"); printf(" %s\n", disasm); printf("\n"); printf("Errors:\n"); printf("%s\n", errorbuf); fatalerror("Error during validation"); } return errend != errorbuf; } #endif