// license:BSD-3-Clause // copyright-holders:Patrick Mackinlay /* * An implementation of the INMOS G300, G332 and G364 CVC (Colour Video * Controller) devices. * * References: * * http://bitsavers.org/components/inmos/graphics/72-TRN-204-01_Graphics_Databook_Second_Edition_1990.pdf * * TODO * - cursor */ #include "emu.h" #include "ims_cvc.h" #include "screen.h" #define LOG_GENERAL (1U << 0) #define LOG_CONFIG (1U << 1) //#define VERBOSE (LOG_GENERAL|LOG_CONFIG) #include "logmacro.h" DEFINE_DEVICE_TYPE(G300, g300_device, "g300", "INMOS G300 Colour Video Controller") DEFINE_DEVICE_TYPE(G332, g332_device, "g332", "INMOS G332 Colour Video Controller") DEFINE_DEVICE_TYPE(G364, g364_device, "g364", "INMOS G364 Colour Video Controller") ims_cvc_device::ims_cvc_device(const machine_config &mconfig, device_type type, const char *tag, device_t *owner, uint32_t clock) : device_t(mconfig, type, tag, owner, clock) , device_palette_interface(mconfig, *this) , m_screen(*this, finder_base::DUMMY_TAG) , m_vram(*this, finder_base::DUMMY_TAG) { } g300_device::g300_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock) : ims_cvc_device(mconfig, G300, tag, owner, clock) { } g332_device::g332_device(const machine_config &mconfig, device_type type, const char *tag, device_t *owner, uint32_t clock) : ims_cvc_device(mconfig, type, tag, owner, clock) , m_microport(*this, "microport") { } g332_device::g332_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock) : g332_device(mconfig, G332, tag, owner, clock) { } g364_device::g364_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock) : g332_device(mconfig, G364, tag, owner, clock) { } void g332_device::device_add_mconfig(machine_config &config) { ADDRESS_MAP_BANK(config, m_microport).set_map(&g332_device::microport_map).set_options(ENDIANNESS_LITTLE, 32, 32); } void g300_device::map(address_map &map) { // datasheet gives unshifted addresses const int shift = 2; // colour palette map(0x000 << shift, (0x0ff << shift) | 0x3).rw(FUNC(g300_device::colour_palette_r), FUNC(g300_device::colour_palette_w)); // data path registers map(0x121 << shift, (0x121 << shift) | 0x3).rw(FUNC(g300_device::halfsync_r), FUNC(g300_device::halfsync_w)); map(0x122 << shift, (0x122 << shift) | 0x3).rw(FUNC(g300_device::backporch_r), FUNC(g300_device::backporch_w)); map(0x123 << shift, (0x123 << shift) | 0x3).rw(FUNC(g300_device::display_r), FUNC(g300_device::display_w)); map(0x124 << shift, (0x124 << shift) | 0x3).rw(FUNC(g300_device::shortdisplay_r), FUNC(g300_device::shortdisplay_w)); map(0x125 << shift, (0x125 << shift) | 0x3).rw(FUNC(g300_device::broadpulse_r), FUNC(g300_device::broadpulse_w)); map(0x126 << shift, (0x126 << shift) | 0x3).rw(FUNC(g300_device::vsync_r), FUNC(g300_device::vsync_w)); map(0x127 << shift, (0x127 << shift) | 0x3).rw(FUNC(g300_device::vblank_r), FUNC(g300_device::vblank_w)); map(0x128 << shift, (0x128 << shift) | 0x3).rw(FUNC(g300_device::vdisplay_r), FUNC(g300_device::vdisplay_w)); map(0x129 << shift, (0x129 << shift) | 0x3).rw(FUNC(g300_device::linetime_r), FUNC(g300_device::linetime_w)); map(0x12a << shift, (0x12a << shift) | 0x3).rw(FUNC(g300_device::tos_r), FUNC(g300_device::tos_w)); map(0x12b << shift, (0x12b << shift) | 0x3).rw(FUNC(g300_device::meminit_r), FUNC(g300_device::meminit_w)); map(0x12c << shift, (0x12c << shift) | 0x3).rw(FUNC(g300_device::transferdelay_r), FUNC(g300_device::transferdelay_w)); map(0x140 << shift, (0x140 << shift) | 0x3).rw(FUNC(g300_device::mask_r), FUNC(g300_device::mask_w)); map(0x160 << shift, (0x160 << shift) | 0x3).rw(FUNC(g300_device::control_r), FUNC(g300_device::control_w)); map(0x180 << shift, (0x180 << shift) | 0x3).rw(FUNC(g300_device::tos_r), FUNC(g300_device::tos_w)); map(0x1a0 << shift, (0x1a0 << shift) | 0x3).w(FUNC(g300_device::boot_w)); } void g332_device::map(address_map &map) { map(0x0000, 0x1fff).m(m_microport, FUNC(address_map_bank_device::amap32)); } void g332_device::microport_map(address_map &map) { // datasheet uses unshifted addresses: configure the device map for 64 bit // address mode, bank device does handles additional shift for 32 bit mode const int shift = 3; map(0x000 << shift, (0x000 << shift) | 0x7).w(FUNC(g332_device::boot_w)); // data path registers map(0x021 << shift, (0x021 << shift) | 0x7).rw(FUNC(g332_device::halfsync_r), FUNC(g332_device::halfsync_w)); map(0x022 << shift, (0x022 << shift) | 0x7).rw(FUNC(g332_device::backporch_r), FUNC(g332_device::backporch_w)); map(0x023 << shift, (0x023 << shift) | 0x7).rw(FUNC(g332_device::display_r), FUNC(g332_device::display_w)); map(0x024 << shift, (0x024 << shift) | 0x7).rw(FUNC(g332_device::shortdisplay_r), FUNC(g332_device::shortdisplay_w)); map(0x025 << shift, (0x025 << shift) | 0x7).rw(FUNC(g332_device::broadpulse_r), FUNC(g332_device::broadpulse_w)); map(0x026 << shift, (0x026 << shift) | 0x7).rw(FUNC(g332_device::vsync_r), FUNC(g332_device::vsync_w)); map(0x027 << shift, (0x027 << shift) | 0x7).rw(FUNC(g332_device::vpreequalise_r), FUNC(g332_device::vpreequalise_w)); map(0x028 << shift, (0x028 << shift) | 0x7).rw(FUNC(g332_device::vpostequalise_r), FUNC(g332_device::vpostequalise_w)); map(0x029 << shift, (0x029 << shift) | 0x7).rw(FUNC(g332_device::vblank_r), FUNC(g332_device::vblank_w)); map(0x02a << shift, (0x02a << shift) | 0x7).rw(FUNC(g332_device::vdisplay_r), FUNC(g332_device::vdisplay_w)); map(0x02b << shift, (0x02b << shift) | 0x7).rw(FUNC(g332_device::linetime_r), FUNC(g332_device::linetime_w)); map(0x02c << shift, (0x02c << shift) | 0x7).rw(FUNC(g332_device::linestart_r), FUNC(g332_device::linestart_w)); map(0x02d << shift, (0x02d << shift) | 0x7).rw(FUNC(g332_device::meminit_r), FUNC(g332_device::meminit_w)); map(0x02e << shift, (0x02e << shift) | 0x7).rw(FUNC(g332_device::transferdelay_r), FUNC(g332_device::transferdelay_w)); map(0x040 << shift, (0x040 << shift) | 0x7).rw(FUNC(g332_device::mask_r), FUNC(g332_device::mask_w)); map(0x060 << shift, (0x060 << shift) | 0x7).rw(FUNC(g332_device::control_a_r), FUNC(g332_device::control_a_w)); map(0x070 << shift, (0x070 << shift) | 0x7).rw(FUNC(g332_device::control_b_r), FUNC(g332_device::control_b_w)); map(0x080 << shift, (0x080 << shift) | 0x7).rw(FUNC(g332_device::tos_r), FUNC(g332_device::tos_w)); // cursor palette (0a1-0a3) map(0x0a1 << shift, (0x0a3 << shift) | 0x7).rw(FUNC(g332_device::cursor_palette_r), FUNC(g332_device::cursor_palette_w)); // checksum registers (0c0-0c2) // colour palette map(0x100 << shift, (0x1ff << shift) | 0x7).rw(FUNC(g332_device::colour_palette_r), FUNC(g332_device::colour_palette_w)); // cursor store (200-3ff) // cursor position (0c7) } void ims_cvc_device::device_start() { save_item(NAME(m_halfsync)); save_item(NAME(m_backporch)); save_item(NAME(m_display)); save_item(NAME(m_shortdisplay)); save_item(NAME(m_broadpulse)); save_item(NAME(m_vsync)); save_item(NAME(m_vblank)); save_item(NAME(m_vdisplay)); save_item(NAME(m_linetime)); save_item(NAME(m_meminit)); save_item(NAME(m_transferdelay)); save_item(NAME(m_mask)); save_item(NAME(m_tos)); save_item(NAME(m_boot)); } void ims_cvc_device::device_reset() { } void g300_device::device_start() { ims_cvc_device::device_start(); save_item(NAME(m_control)); } void g332_device::device_start() { ims_cvc_device::device_start(); save_item(NAME(m_vpreequalise)); save_item(NAME(m_vpostequalise)); save_item(NAME(m_linestart)); save_item(NAME(m_control_a)); save_item(NAME(m_control_b)); } void g332_device::device_reset() { m_control_a = 0; } u32 g300_device::screen_update(screen_device &screen, bitmap_rgb32 &bitmap, const rectangle &cliprect) { offs_t address = m_tos; for (int y = screen.visible_area().min_y; y <= screen.visible_area().max_y; y++) for (int x = screen.visible_area().min_x; x <= screen.visible_area().max_x; x++) bitmap.pix(y, x) = pen_color(m_vram->read(address++) & m_mask); return 0; } u32 g332_device::screen_update(screen_device &screen, bitmap_rgb32 &bitmap, const rectangle &cliprect) { offs_t address = m_tos; switch (m_control_a & PIXEL_BITS) { case BPP_1: for (int y = screen.visible_area().min_y; y <= screen.visible_area().max_y; y++) for (int x = screen.visible_area().min_x; x <= screen.visible_area().max_x; x += 8) { u8 pixel_data = m_vram->read(address++); bitmap.pix(y, x + 0) = pen_color(pixel_data & 0x1 & m_mask); pixel_data >>= 1; bitmap.pix(y, x + 1) = pen_color(pixel_data & 0x1 & m_mask); pixel_data >>= 1; bitmap.pix(y, x + 2) = pen_color(pixel_data & 0x1 & m_mask); pixel_data >>= 1; bitmap.pix(y, x + 3) = pen_color(pixel_data & 0x1 & m_mask); pixel_data >>= 1; bitmap.pix(y, x + 4) = pen_color(pixel_data & 0x1 & m_mask); pixel_data >>= 1; bitmap.pix(y, x + 5) = pen_color(pixel_data & 0x1 & m_mask); pixel_data >>= 1; bitmap.pix(y, x + 6) = pen_color(pixel_data & 0x1 & m_mask); pixel_data >>= 1; bitmap.pix(y, x + 7) = pen_color(pixel_data & 0x1 & m_mask); } break; case BPP_2: for (int y = screen.visible_area().min_y; y <= screen.visible_area().max_y; y++) for (int x = screen.visible_area().min_x; x <= screen.visible_area().max_x; x += 4) { u8 pixel_data = m_vram->read(address++); bitmap.pix(y, x + 0) = pen_color(pixel_data & 0x3 & m_mask); pixel_data >>= 2; bitmap.pix(y, x + 1) = pen_color(pixel_data & 0x3 & m_mask); pixel_data >>= 2; bitmap.pix(y, x + 2) = pen_color(pixel_data & 0x3 & m_mask); pixel_data >>= 2; bitmap.pix(y, x + 3) = pen_color(pixel_data & 0x3 & m_mask); } break; case BPP_4: for (int y = screen.visible_area().min_y; y <= screen.visible_area().max_y; y++) for (int x = screen.visible_area().min_x; x <= screen.visible_area().max_x; x += 2) { u8 pixel_data = m_vram->read(address++); bitmap.pix(y, x + 0) = pen_color(pixel_data & 0xf & m_mask); pixel_data >>= 4; bitmap.pix(y, x + 1) = pen_color(pixel_data & 0xf & m_mask); } break; case BPP_8: for (int y = screen.visible_area().min_y; y <= screen.visible_area().max_y; y++) for (int x = screen.visible_area().min_x; x <= screen.visible_area().max_x; x++) bitmap.pix(y, x) = pen_color(m_vram->read(address++) & m_mask); break; } return 0; } u32 ims_cvc_device::colour_palette_r(offs_t offset) { return 0; } void ims_cvc_device::colour_palette_w(offs_t offset, u32 data, u32 mem_mask) { set_pen_color(offset >> 1, data >> 16, data >> 8, data >> 0); } u32 g332_device::cursor_palette_r(offs_t offset) { return 0; } void g332_device::cursor_palette_w(offs_t offset, u32 data, u32 mem_mask) { set_pen_color(256 + (offset >> 1), data >> 16, data >> 8, data >> 0); } void g332_device::boot_w(offs_t offset, u32 data, u32 mem_mask) { LOG("boot_w %s clock, multiplier %d, %d bit alignment (%s)\n", (data & PLL_SELECT) ? "PLL" : "external", (data & PLL_MULTIPLIER), (data & ALIGN_64) ? 64 : 32, machine().describe_context()); m_microport->set_shift((data & ALIGN_64) ? 0 : 1); mem_mask &= 0x00ffffffU; COMBINE_DATA(&m_boot); } void g332_device::control_a_w(offs_t offset, u32 data, u32 mem_mask) { LOG("control_a_w 0x%08x (%s)\n", data, machine().describe_context()); mem_mask &= 0x00ffffffU; COMBINE_DATA(&m_control_a); if (data & VTG_ENABLE) { LOGMASKED(LOG_CONFIG, "VTG %s, %s, %s mode\n", (data & VTG_ENABLE) ? "enabled" : "disabled", (data & INTL_ENABLE) ? ((data & INTL_FORMAT) ? "interlaced (CCIR)" : "interlaced (EIA)") : "non-interlaced", (data & SLAVE_MODE) ? "slave" : "master"); LOGMASKED(LOG_CONFIG, "%s sync, %s digital sync, analogue %s\n", (data & SYNC_PATTERN) ? "plain" : "tesselated", (data & SYNC_FORMAT) ? "separate" : "composite", (data & VIDEO_FORMAT) ? "video only" : "composite video + sync"); LOGMASKED(LOG_CONFIG, "%s, CBlank is %s, %s, %s\n", (data & BLANK_LEVEL) ? "blanking pedestal" : "no blank pedestal", (data & BLANK_IO) ? "ouput" : "input", (data & BLANK_FUNC) ? "undelayed ClkDisable" : "delayed CBlank", (data & BLANK_FORCE) ? "screen blanked" : (data & BLANK_DISABLE) ? "blanking disabled" : "blanking enabled"); LOGMASKED(LOG_CONFIG, "address increment %d, DMA %s, sync delay %d cycles\n", (data & ADDR_INC) == INC_1 ? 1 : (data & ADDR_INC) == INC_256 ? (data & INTL_ENABLE) ? 2 : 256 : (data & ADDR_INC) == INC_512 ? 512 : 1024, (data & DMA_DISABLE) ? "disabled" : "enabled", (data & SYNC_DELAY) >> 15); LOGMASKED(LOG_CONFIG, "interleave %s, pixel sampling %s, %s bits per pixel, cursor %s\n", (data & INTERLEAVE) ? "enabled" : "disabled", (data & SAMPLE_DELAY) ? "delayed" : "standard", (data & PIXEL_BITS) == BPP_1 ? "1" : (data & PIXEL_BITS) == BPP_2 ? "2" : (data & PIXEL_BITS) == BPP_4 ? "4" : (data & PIXEL_BITS) == BPP_8 ? "8" : (data & PIXEL_BITS) == BPP_15 ? "15" : (data & PIXEL_BITS) == BPP_16 ? "16" : "unknown", (data & CURSOR_DISABLE) ? "disabled" : "enabled"); LOG("display %d vdisplay %d\n", m_display, m_vdisplay); LOG("linetime %d halfsync %d backporch %d broadpulse %d\n", m_linetime, m_halfsync, m_backporch, m_broadpulse); LOG("vsync %d vpreequalise %d vpostequalise %d vblank %d\n", m_vsync, m_vpreequalise, m_vpostequalise, m_vblank); int const hbend = (m_halfsync + m_halfsync + m_backporch) << 2; int const vbend = (m_vpreequalise + m_vpostequalise + m_vsync + m_vblank) >> 1; int const width = m_linetime << 2; int const height = vbend + (m_vdisplay >> 1); rectangle const visarea(hbend, hbend + (m_display << 2) - 1, vbend, height - 1); u32 const dotclock = (m_boot & PLL_SELECT) ? clock() * (m_boot & PLL_MULTIPLIER) : clock(); attotime const refresh = attotime::from_hz(dotclock / (width * height)); m_screen->configure(width, height, visarea, refresh.as_attoseconds()); m_screen->reset_origin(); } }