// license:GPL-2.0+ // copyright-holders:Jarek Burczynski /***************************************************************************** * * Yamaha YM2151 driver (version 2.150 final beta) * ******************************************************************************/ #include "emu.h" #include "ym2151.h" /* undef this to not use MAME timer system */ #define USE_MAME_TIMERS /*#define FM_EMU*/ #ifdef FM_EMU #ifdef USE_MAME_TIMERS #undef USE_MAME_TIMERS #endif #endif #define LOG_CYM_FILE 0 static FILE * cymfile = nullptr; /* struct describing a single operator */ struct YM2151Operator { UINT32 phase; /* accumulated operator phase */ UINT32 freq; /* operator frequency count */ INT32 dt1; /* current DT1 (detune 1 phase inc/decrement) value */ UINT32 mul; /* frequency count multiply */ UINT32 dt1_i; /* DT1 index * 32 */ UINT32 dt2; /* current DT2 (detune 2) value */ signed int *connect; /* operator output 'direction' */ /* only M1 (operator 0) is filled with this data: */ signed int *mem_connect; /* where to put the delayed sample (MEM) */ INT32 mem_value; /* delayed sample (MEM) value */ /* channel specific data; note: each operator number 0 contains channel specific data */ UINT32 fb_shift; /* feedback shift value for operators 0 in each channel */ INT32 fb_out_curr; /* operator feedback value (used only by operators 0) */ INT32 fb_out_prev; /* previous feedback value (used only by operators 0) */ UINT32 kc; /* channel KC (copied to all operators) */ UINT32 kc_i; /* just for speedup */ UINT32 pms; /* channel PMS */ UINT32 ams; /* channel AMS */ /* end of channel specific data */ UINT32 AMmask; /* LFO Amplitude Modulation enable mask */ UINT32 state; /* Envelope state: 4-attack(AR) 3-decay(D1R) 2-sustain(D2R) 1-release(RR) 0-off */ UINT8 eg_sh_ar; /* (attack state) */ UINT8 eg_sel_ar; /* (attack state) */ UINT32 tl; /* Total attenuation Level */ INT32 volume; /* current envelope attenuation level */ UINT8 eg_sh_d1r; /* (decay state) */ UINT8 eg_sel_d1r; /* (decay state) */ UINT32 d1l; /* envelope switches to sustain state after reaching this level */ UINT8 eg_sh_d2r; /* (sustain state) */ UINT8 eg_sel_d2r; /* (sustain state) */ UINT8 eg_sh_rr; /* (release state) */ UINT8 eg_sel_rr; /* (release state) */ UINT32 key; /* 0=last key was KEY OFF, 1=last key was KEY ON */ UINT32 ks; /* key scale */ UINT32 ar; /* attack rate */ UINT32 d1r; /* decay rate */ UINT32 d2r; /* sustain rate */ UINT32 rr; /* release rate */ UINT32 reserved0; /**/ UINT32 reserved1; /**/ }; struct YM2151 { signed int chanout[8]; signed int m2,c1,c2; /* Phase Modulation input for operators 2,3,4 */ signed int mem; /* one sample delay memory */ YM2151Operator oper[32]; /* the 32 operators */ UINT32 pan[16]; /* channels output masks (0xffffffff = enable) */ UINT32 eg_cnt; /* global envelope generator counter */ UINT32 eg_timer; /* global envelope generator counter works at frequency = chipclock/64/3 */ UINT32 eg_timer_add; /* step of eg_timer */ UINT32 eg_timer_overflow; /* envelope generator timer overlfows every 3 samples (on real chip) */ UINT32 lfo_phase; /* accumulated LFO phase (0 to 255) */ UINT32 lfo_timer; /* LFO timer */ UINT32 lfo_timer_add; /* step of lfo_timer */ UINT32 lfo_overflow; /* LFO generates new output when lfo_timer reaches this value */ UINT32 lfo_counter; /* LFO phase increment counter */ UINT32 lfo_counter_add; /* step of lfo_counter */ UINT8 lfo_wsel; /* LFO waveform (0-saw, 1-square, 2-triangle, 3-random noise) */ UINT8 amd; /* LFO Amplitude Modulation Depth */ INT8 pmd; /* LFO Phase Modulation Depth */ UINT32 lfa; /* LFO current AM output */ INT32 lfp; /* LFO current PM output */ UINT8 test; /* TEST register */ UINT8 ct; /* output control pins (bit1-CT2, bit0-CT1) */ UINT32 noise; /* noise enable/period register (bit 7 - noise enable, bits 4-0 - noise period */ UINT32 noise_rng; /* 17 bit noise shift register */ UINT32 noise_p; /* current noise 'phase'*/ UINT32 noise_f; /* current noise period */ UINT32 csm_req; /* CSM KEY ON / KEY OFF sequence request */ UINT32 irq_enable; /* IRQ enable for timer B (bit 3) and timer A (bit 2); bit 7 - CSM mode (keyon to all slots, everytime timer A overflows) */ UINT32 status; /* chip status (BUSY, IRQ Flags) */ UINT8 connect[8]; /* channels connections */ #ifdef USE_MAME_TIMERS /* ASG 980324 -- added for tracking timers */ emu_timer *timer_A; emu_timer *timer_B; attotime timer_A_time[1024]; /* timer A times for MAME */ attotime timer_B_time[256]; /* timer B times for MAME */ int irqlinestate; #else UINT8 tim_A; /* timer A enable (0-disabled) */ UINT8 tim_B; /* timer B enable (0-disabled) */ INT32 tim_A_val; /* current value of timer A */ INT32 tim_B_val; /* current value of timer B */ UINT32 tim_A_tab[1024]; /* timer A deltas */ UINT32 tim_B_tab[256]; /* timer B deltas */ #endif UINT32 timer_A_index; /* timer A index */ UINT32 timer_B_index; /* timer B index */ UINT32 timer_A_index_old; /* timer A previous index */ UINT32 timer_B_index_old; /* timer B previous index */ /* Frequency-deltas to get the closest frequency possible. * There are 11 octaves because of DT2 (max 950 cents over base frequency) * and LFO phase modulation (max 800 cents below AND over base frequency) * Summary: octave explanation * 0 note code - LFO PM * 1 note code * 2 note code * 3 note code * 4 note code * 5 note code * 6 note code * 7 note code * 8 note code * 9 note code + DT2 + LFO PM * 10 note code + DT2 + LFO PM */ UINT32 freq[11*768]; /* 11 octaves, 768 'cents' per octave */ /* Frequency deltas for DT1. These deltas alter operator frequency * after it has been taken from frequency-deltas table. */ INT32 dt1_freq[8*32]; /* 8 DT1 levels, 32 KC values */ UINT32 noise_tab[32]; /* 17bit Noise Generator periods */ void (*irqhandler)(device_t *device, int irq); /* IRQ function handler */ void (*porthandler)(device_t *, offs_t, UINT8); /* port write function handler */ device_t *device; unsigned int clock; /* chip clock in Hz (passed from 2151intf.c) */ unsigned int sampfreq; /* sampling frequency in Hz (passed from 2151intf.c) */ }; #define FREQ_SH 16 /* 16.16 fixed point (frequency calculations) */ #define EG_SH 16 /* 16.16 fixed point (envelope generator timing) */ #define LFO_SH 10 /* 22.10 fixed point (LFO calculations) */ #define TIMER_SH 16 /* 16.16 fixed point (timers calculations) */ #define FREQ_MASK ((1<>3) /* sin waveform table in 'decibel' scale */ static unsigned int sin_tab[SIN_LEN]; /* translate from D1L to volume index (16 D1L levels) */ static UINT32 d1l_tab[16]; #define RATE_STEPS (8) static const UINT8 eg_inc[19*RATE_STEPS]={ /*cycle:0 1 2 3 4 5 6 7*/ /* 0 */ 0,1, 0,1, 0,1, 0,1, /* rates 00..11 0 (increment by 0 or 1) */ /* 1 */ 0,1, 0,1, 1,1, 0,1, /* rates 00..11 1 */ /* 2 */ 0,1, 1,1, 0,1, 1,1, /* rates 00..11 2 */ /* 3 */ 0,1, 1,1, 1,1, 1,1, /* rates 00..11 3 */ /* 4 */ 1,1, 1,1, 1,1, 1,1, /* rate 12 0 (increment by 1) */ /* 5 */ 1,1, 1,2, 1,1, 1,2, /* rate 12 1 */ /* 6 */ 1,2, 1,2, 1,2, 1,2, /* rate 12 2 */ /* 7 */ 1,2, 2,2, 1,2, 2,2, /* rate 12 3 */ /* 8 */ 2,2, 2,2, 2,2, 2,2, /* rate 13 0 (increment by 2) */ /* 9 */ 2,2, 2,4, 2,2, 2,4, /* rate 13 1 */ /*10 */ 2,4, 2,4, 2,4, 2,4, /* rate 13 2 */ /*11 */ 2,4, 4,4, 2,4, 4,4, /* rate 13 3 */ /*12 */ 4,4, 4,4, 4,4, 4,4, /* rate 14 0 (increment by 4) */ /*13 */ 4,4, 4,8, 4,4, 4,8, /* rate 14 1 */ /*14 */ 4,8, 4,8, 4,8, 4,8, /* rate 14 2 */ /*15 */ 4,8, 8,8, 4,8, 8,8, /* rate 14 3 */ /*16 */ 8,8, 8,8, 8,8, 8,8, /* rates 15 0, 15 1, 15 2, 15 3 (increment by 8) */ /*17 */ 16,16,16,16,16,16,16,16, /* rates 15 2, 15 3 for attack */ /*18 */ 0,0, 0,0, 0,0, 0,0, /* infinity rates for attack and decay(s) */ }; #define O(a) (a*RATE_STEPS) /*note that there is no O(17) in this table - it's directly in the code */ static const UINT8 eg_rate_select[32+64+32]={ /* Envelope Generator rates (32 + 64 rates + 32 RKS) */ /* 32 dummy (infinite time) rates */ O(18),O(18),O(18),O(18),O(18),O(18),O(18),O(18), O(18),O(18),O(18),O(18),O(18),O(18),O(18),O(18), O(18),O(18),O(18),O(18),O(18),O(18),O(18),O(18), O(18),O(18),O(18),O(18),O(18),O(18),O(18),O(18), /* rates 00-11 */ O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), /* rate 12 */ O( 4),O( 5),O( 6),O( 7), /* rate 13 */ O( 8),O( 9),O(10),O(11), /* rate 14 */ O(12),O(13),O(14),O(15), /* rate 15 */ O(16),O(16),O(16),O(16), /* 32 dummy rates (same as 15 3) */ O(16),O(16),O(16),O(16),O(16),O(16),O(16),O(16), O(16),O(16),O(16),O(16),O(16),O(16),O(16),O(16), O(16),O(16),O(16),O(16),O(16),O(16),O(16),O(16), O(16),O(16),O(16),O(16),O(16),O(16),O(16),O(16) }; #undef O /*rate 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15*/ /*shift 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0, 0 */ /*mask 2047, 1023, 511, 255, 127, 63, 31, 15, 7, 3, 1, 0, 0, 0, 0, 0 */ #define O(a) (a*1) static const UINT8 eg_rate_shift[32+64+32]={ /* Envelope Generator counter shifts (32 + 64 rates + 32 RKS) */ /* 32 infinite time rates */ O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0), O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0), O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0), O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0), /* rates 00-11 */ O(11),O(11),O(11),O(11), O(10),O(10),O(10),O(10), O( 9),O( 9),O( 9),O( 9), O( 8),O( 8),O( 8),O( 8), O( 7),O( 7),O( 7),O( 7), O( 6),O( 6),O( 6),O( 6), O( 5),O( 5),O( 5),O( 5), O( 4),O( 4),O( 4),O( 4), O( 3),O( 3),O( 3),O( 3), O( 2),O( 2),O( 2),O( 2), O( 1),O( 1),O( 1),O( 1), O( 0),O( 0),O( 0),O( 0), /* rate 12 */ O( 0),O( 0),O( 0),O( 0), /* rate 13 */ O( 0),O( 0),O( 0),O( 0), /* rate 14 */ O( 0),O( 0),O( 0),O( 0), /* rate 15 */ O( 0),O( 0),O( 0),O( 0), /* 32 dummy rates (same as 15 3) */ O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0), O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0), O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0), O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0) }; #undef O /* DT2 defines offset in cents from base note * * This table defines offset in frequency-deltas table. * User's Manual page 22 * * Values below were calculated using formula: value = orig.val / 1.5625 * * DT2=0 DT2=1 DT2=2 DT2=3 * 0 600 781 950 */ static const UINT32 dt2_tab[4] = { 0, 384, 500, 608 }; /* DT1 defines offset in Hertz from base note * This table is converted while initialization... * Detune table shown in YM2151 User's Manual is wrong (verified on the real chip) */ static const UINT8 dt1_tab[4*32] = { /* 4*32 DT1 values */ /* DT1=0 */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* DT1=1 */ 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 8, 8, 8, 8, /* DT1=2 */ 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 8, 8, 9,10,11,12,13,14,16,16,16,16, /* DT1=3 */ 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 8, 8, 9,10,11,12,13,14,16,17,19,20,22,22,22,22 }; static const UINT16 phaseinc_rom[768]={ 1299,1300,1301,1302,1303,1304,1305,1306,1308,1309,1310,1311,1313,1314,1315,1316, 1318,1319,1320,1321,1322,1323,1324,1325,1327,1328,1329,1330,1332,1333,1334,1335, 1337,1338,1339,1340,1341,1342,1343,1344,1346,1347,1348,1349,1351,1352,1353,1354, 1356,1357,1358,1359,1361,1362,1363,1364,1366,1367,1368,1369,1371,1372,1373,1374, 1376,1377,1378,1379,1381,1382,1383,1384,1386,1387,1388,1389,1391,1392,1393,1394, 1396,1397,1398,1399,1401,1402,1403,1404,1406,1407,1408,1409,1411,1412,1413,1414, 1416,1417,1418,1419,1421,1422,1423,1424,1426,1427,1429,1430,1431,1432,1434,1435, 1437,1438,1439,1440,1442,1443,1444,1445,1447,1448,1449,1450,1452,1453,1454,1455, 1458,1459,1460,1461,1463,1464,1465,1466,1468,1469,1471,1472,1473,1474,1476,1477, 1479,1480,1481,1482,1484,1485,1486,1487,1489,1490,1492,1493,1494,1495,1497,1498, 1501,1502,1503,1504,1506,1507,1509,1510,1512,1513,1514,1515,1517,1518,1520,1521, 1523,1524,1525,1526,1528,1529,1531,1532,1534,1535,1536,1537,1539,1540,1542,1543, 1545,1546,1547,1548,1550,1551,1553,1554,1556,1557,1558,1559,1561,1562,1564,1565, 1567,1568,1569,1570,1572,1573,1575,1576,1578,1579,1580,1581,1583,1584,1586,1587, 1590,1591,1592,1593,1595,1596,1598,1599,1601,1602,1604,1605,1607,1608,1609,1610, 1613,1614,1615,1616,1618,1619,1621,1622,1624,1625,1627,1628,1630,1631,1632,1633, 1637,1638,1639,1640,1642,1643,1645,1646,1648,1649,1651,1652,1654,1655,1656,1657, 1660,1661,1663,1664,1666,1667,1669,1670,1672,1673,1675,1676,1678,1679,1681,1682, 1685,1686,1688,1689,1691,1692,1694,1695,1697,1698,1700,1701,1703,1704,1706,1707, 1709,1710,1712,1713,1715,1716,1718,1719,1721,1722,1724,1725,1727,1728,1730,1731, 1734,1735,1737,1738,1740,1741,1743,1744,1746,1748,1749,1751,1752,1754,1755,1757, 1759,1760,1762,1763,1765,1766,1768,1769,1771,1773,1774,1776,1777,1779,1780,1782, 1785,1786,1788,1789,1791,1793,1794,1796,1798,1799,1801,1802,1804,1806,1807,1809, 1811,1812,1814,1815,1817,1819,1820,1822,1824,1825,1827,1828,1830,1832,1833,1835, 1837,1838,1840,1841,1843,1845,1846,1848,1850,1851,1853,1854,1856,1858,1859,1861, 1864,1865,1867,1868,1870,1872,1873,1875,1877,1879,1880,1882,1884,1885,1887,1888, 1891,1892,1894,1895,1897,1899,1900,1902,1904,1906,1907,1909,1911,1912,1914,1915, 1918,1919,1921,1923,1925,1926,1928,1930,1932,1933,1935,1937,1939,1940,1942,1944, 1946,1947,1949,1951,1953,1954,1956,1958,1960,1961,1963,1965,1967,1968,1970,1972, 1975,1976,1978,1980,1982,1983,1985,1987,1989,1990,1992,1994,1996,1997,1999,2001, 2003,2004,2006,2008,2010,2011,2013,2015,2017,2019,2021,2022,2024,2026,2028,2029, 2032,2033,2035,2037,2039,2041,2043,2044,2047,2048,2050,2052,2054,2056,2058,2059, 2062,2063,2065,2067,2069,2071,2073,2074,2077,2078,2080,2082,2084,2086,2088,2089, 2092,2093,2095,2097,2099,2101,2103,2104,2107,2108,2110,2112,2114,2116,2118,2119, 2122,2123,2125,2127,2129,2131,2133,2134,2137,2139,2141,2142,2145,2146,2148,2150, 2153,2154,2156,2158,2160,2162,2164,2165,2168,2170,2172,2173,2176,2177,2179,2181, 2185,2186,2188,2190,2192,2194,2196,2197,2200,2202,2204,2205,2208,2209,2211,2213, 2216,2218,2220,2222,2223,2226,2227,2230,2232,2234,2236,2238,2239,2242,2243,2246, 2249,2251,2253,2255,2256,2259,2260,2263,2265,2267,2269,2271,2272,2275,2276,2279, 2281,2283,2285,2287,2288,2291,2292,2295,2297,2299,2301,2303,2304,2307,2308,2311, 2315,2317,2319,2321,2322,2325,2326,2329,2331,2333,2335,2337,2338,2341,2342,2345, 2348,2350,2352,2354,2355,2358,2359,2362,2364,2366,2368,2370,2371,2374,2375,2378, 2382,2384,2386,2388,2389,2392,2393,2396,2398,2400,2402,2404,2407,2410,2411,2414, 2417,2419,2421,2423,2424,2427,2428,2431,2433,2435,2437,2439,2442,2445,2446,2449, 2452,2454,2456,2458,2459,2462,2463,2466,2468,2470,2472,2474,2477,2480,2481,2484, 2488,2490,2492,2494,2495,2498,2499,2502,2504,2506,2508,2510,2513,2516,2517,2520, 2524,2526,2528,2530,2531,2534,2535,2538,2540,2542,2544,2546,2549,2552,2553,2556, 2561,2563,2565,2567,2568,2571,2572,2575,2577,2579,2581,2583,2586,2589,2590,2593 }; /* Noise LFO waveform. Here are just 256 samples out of much longer data. It does NOT repeat every 256 samples on real chip and I wasnt able to find the point where it repeats (even in strings as long as 131072 samples). I only put it here because its better than nothing and perhaps someone might be able to figure out the real algorithm. Note that (due to the way the LFO output is calculated) it is quite possible that two values: 0x80 and 0x00 might be wrong in this table. To be exact: some 0x80 could be 0x81 as well as some 0x00 could be 0x01. */ static const UINT8 lfo_noise_waveform[256] = { 0xFF,0xEE,0xD3,0x80,0x58,0xDA,0x7F,0x94,0x9E,0xE3,0xFA,0x00,0x4D,0xFA,0xFF,0x6A, 0x7A,0xDE,0x49,0xF6,0x00,0x33,0xBB,0x63,0x91,0x60,0x51,0xFF,0x00,0xD8,0x7F,0xDE, 0xDC,0x73,0x21,0x85,0xB2,0x9C,0x5D,0x24,0xCD,0x91,0x9E,0x76,0x7F,0x20,0xFB,0xF3, 0x00,0xA6,0x3E,0x42,0x27,0x69,0xAE,0x33,0x45,0x44,0x11,0x41,0x72,0x73,0xDF,0xA2, 0x32,0xBD,0x7E,0xA8,0x13,0xEB,0xD3,0x15,0xDD,0xFB,0xC9,0x9D,0x61,0x2F,0xBE,0x9D, 0x23,0x65,0x51,0x6A,0x84,0xF9,0xC9,0xD7,0x23,0xBF,0x65,0x19,0xDC,0x03,0xF3,0x24, 0x33,0xB6,0x1E,0x57,0x5C,0xAC,0x25,0x89,0x4D,0xC5,0x9C,0x99,0x15,0x07,0xCF,0xBA, 0xC5,0x9B,0x15,0x4D,0x8D,0x2A,0x1E,0x1F,0xEA,0x2B,0x2F,0x64,0xA9,0x50,0x3D,0xAB, 0x50,0x77,0xE9,0xC0,0xAC,0x6D,0x3F,0xCA,0xCF,0x71,0x7D,0x80,0xA6,0xFD,0xFF,0xB5, 0xBD,0x6F,0x24,0x7B,0x00,0x99,0x5D,0xB1,0x48,0xB0,0x28,0x7F,0x80,0xEC,0xBF,0x6F, 0x6E,0x39,0x90,0x42,0xD9,0x4E,0x2E,0x12,0x66,0xC8,0xCF,0x3B,0x3F,0x10,0x7D,0x79, 0x00,0xD3,0x1F,0x21,0x93,0x34,0xD7,0x19,0x22,0xA2,0x08,0x20,0xB9,0xB9,0xEF,0x51, 0x99,0xDE,0xBF,0xD4,0x09,0x75,0xE9,0x8A,0xEE,0xFD,0xE4,0x4E,0x30,0x17,0xDF,0xCE, 0x11,0xB2,0x28,0x35,0xC2,0x7C,0x64,0xEB,0x91,0x5F,0x32,0x0C,0x6E,0x00,0xF9,0x92, 0x19,0xDB,0x8F,0xAB,0xAE,0xD6,0x12,0xC4,0x26,0x62,0xCE,0xCC,0x0A,0x03,0xE7,0xDD, 0xE2,0x4D,0x8A,0xA6,0x46,0x95,0x0F,0x8F,0xF5,0x15,0x97,0x32,0xD4,0x28,0x1E,0x55 }; /* save output as raw 16-bit sample */ /* #define SAVE_SAMPLE */ /* #define SAVE_SEPARATE_CHANNELS */ #if defined SAVE_SAMPLE || defined SAVE_SEPARATE_CHANNELS static FILE *sample[9]; #endif static void init_tables(void) { signed int i,x,n; double o,m; for (x=0; x>= 4; /* 12 bits here */ if (n&1) /* round to closest */ n = (n>>1)+1; else n = n>>1; /* 11 bits here (rounded) */ n <<= 2; /* 13 bits here (as in real chip) */ tl_tab[ x*2 + 0 ] = n; tl_tab[ x*2 + 1 ] = -tl_tab[ x*2 + 0 ]; for (i=1; i<13; i++) { tl_tab[ x*2+0 + i*2*TL_RES_LEN ] = tl_tab[ x*2+0 ]>>i; tl_tab[ x*2+1 + i*2*TL_RES_LEN ] = -tl_tab[ x*2+0 + i*2*TL_RES_LEN ]; } #if 0 logerror("tl %04i", x*2); for (i=0; i<13; i++) logerror(", [%02i] %4i", i*2, tl_tab[ x*2 /*+1*/ + i*2*TL_RES_LEN ]); logerror("\n"); #endif } /*logerror("TL_TAB_LEN = %i (%i bytes)\n",TL_TAB_LEN, (int)sizeof(tl_tab));*/ /*logerror("ENV_QUIET= %i\n",ENV_QUIET );*/ for (i=0; i0.0) o = 8*log(1.0/m)/log(2.0); /* convert to 'decibels' */ else o = 8*log(-1.0/m)/log(2.0); /* convert to 'decibels' */ o = o / (ENV_STEP/4); n = (int)(2.0*o); if (n&1) /* round to closest */ n = (n>>1)+1; else n = n>>1; sin_tab[ i ] = n*2 + (m>=0.0? 0: 1 ); /*logerror("sin [0x%4x]= %4i (tl_tab value=%8x)\n", i, sin_tab[i],tl_tab[sin_tab[i]]);*/ } /* calculate d1l_tab table */ for (i=0; i<16; i++) { m = (i!=15 ? i : i+16) * (4.0/ENV_STEP); /* every 3 'dB' except for all bits = 1 = 45+48 'dB' */ d1l_tab[i] = m; /*logerror("d1l_tab[%02x]=%08x\n",i,d1l_tab[i] );*/ } #ifdef SAVE_SAMPLE sample[8]=fopen("sampsum.pcm","wb"); #endif #ifdef SAVE_SEPARATE_CHANNELS sample[0]=fopen("samp0.pcm","wb"); sample[1]=fopen("samp1.pcm","wb"); sample[2]=fopen("samp2.pcm","wb"); sample[3]=fopen("samp3.pcm","wb"); sample[4]=fopen("samp4.pcm","wb"); sample[5]=fopen("samp5.pcm","wb"); sample[6]=fopen("samp6.pcm","wb"); sample[7]=fopen("samp7.pcm","wb"); #endif } static void init_chip_tables(YM2151 *chip) { int i,j; double mult,phaseinc,Hz; double scaler; attotime pom; scaler = ( (double)chip->clock / 64.0 ) / ( (double)chip->sampfreq ); /*logerror("scaler = %20.15f\n", scaler);*/ /* this loop calculates Hertz values for notes from c-0 to b-7 */ /* including 64 'cents' (100/64 that is 1.5625 of real cent) per note */ /* i*100/64/1200 is equal to i/768 */ /* real chip works with 10 bits fixed point values (10.10) */ mult = (1<<(FREQ_SH-10)); /* -10 because phaseinc_rom table values are already in 10.10 format */ for (i=0; i<768; i++) { #if 0 /* 3.4375 Hz is note A; C# is 4 semitones higher */ Hz = 1000; /* Hz is close, but not perfect */ //Hz = scaler * 3.4375 * pow (2, (i + 4 * 64 ) / 768.0 ); /* calculate phase increment */ phaseinc = (Hz*SIN_LEN) / (double)chip->sampfreq; #endif phaseinc = phaseinc_rom[i]; /* real chip phase increment */ phaseinc *= scaler; /* adjust */ /* octave 2 - reference octave */ chip->freq[ 768+2*768+i ] = ((int)(phaseinc*mult)) & 0xffffffc0; /* adjust to X.10 fixed point */ /* octave 0 and octave 1 */ for (j=0; j<2; j++) { chip->freq[768 + j*768 + i] = (chip->freq[ 768+2*768+i ] >> (2-j) ) & 0xffffffc0; /* adjust to X.10 fixed point */ } /* octave 3 to 7 */ for (j=3; j<8; j++) { chip->freq[768 + j*768 + i] = chip->freq[ 768+2*768+i ] << (j-2); } #if 0 pom = (double)chip->freq[ 768+2*768+i ] / ((double)(1<sampfreq / (double)SIN_LEN; logerror("1freq[%4i][%08x]= real %20.15f Hz emul %20.15f Hz\n", i, chip->freq[ 768+2*768+i ], Hz, pom); #endif } /* octave -1 (all equal to: oct 0, _KC_00_, _KF_00_) */ for (i=0; i<768; i++) { chip->freq[ 0*768 + i ] = chip->freq[1*768+0]; } /* octave 8 and 9 (all equal to: oct 7, _KC_14_, _KF_63_) */ for (j=8; j<10; j++) { for (i=0; i<768; i++) { chip->freq[768+ j*768 + i ] = chip->freq[768 + 8*768 -1]; } } #if 0 for (i=0; i<11*768; i++) { pom = (double)chip->freq[i] / ((double)(1<sampfreq / (double)SIN_LEN; logerror("freq[%4i][%08x]= emul %20.15f Hz\n", i, chip->freq[i], pom); } #endif mult = (1<clock/64.0) ) / (double)(1<<20); /*calculate phase increment*/ phaseinc = (Hz*SIN_LEN) / (double)chip->sampfreq; /*positive and negative values*/ chip->dt1_freq[ (j+0)*32 + i ] = phaseinc * mult; chip->dt1_freq[ (j+4)*32 + i ] = -chip->dt1_freq[ (j+0)*32 + i ]; #if 0 { int x = j*32 + i; pom = (double)chip->dt1_freq[x] / mult; pom = pom * (double)chip->sampfreq / (double)SIN_LEN; logerror("DT1(%03i)[%02i %02i][%08x]= real %19.15f Hz emul %19.15f Hz\n", x, j, i, chip->dt1_freq[x], Hz, pom); } #endif } } /* calculate timers' deltas */ /* User's Manual pages 15,16 */ #ifndef USE_MAME_TIMERS mult = (1<clock) * (64 * (1024 - i)); #ifdef USE_MAME_TIMERS chip->timer_A_time[i] = pom; #else chip->tim_A_tab[i] = pom.as_double() * (double)chip->sampfreq * mult; /* number of samples that timer period takes (fixed point) */ #endif } for (i=0; i<256; i++) { /* ASG 980324: changed to compute both tim_B_tab and timer_B_time */ pom= attotime::from_hz(chip->clock) * (1024 * (256 - i)); #ifdef USE_MAME_TIMERS chip->timer_B_time[i] = pom; #else chip->tim_B_tab[i] = pom.as_double() * (double)chip->sampfreq * mult; /* number of samples that timer period takes (fixed point) */ #endif } /* calculate noise periods table */ scaler = ( (double)chip->clock / 64.0 ) / ( (double)chip->sampfreq ); for (i=0; i<32; i++) { j = (i!=31 ? i : 30); /* rate 30 and 31 are the same */ j = 32-j; j = (65536.0 / (double)(j*32.0)); /* number of samples per one shift of the shift register */ /*chip->noise_tab[i] = j * 64;*/ /* number of chip clock cycles per one shift */ chip->noise_tab[i] = j * 64 * scaler; /*logerror("noise_tab[%02x]=%08x\n", i, chip->noise_tab[i]);*/ } } #define KEY_ON(op, key_set){ \ if (!(op)->key) \ { \ (op)->phase = 0; /* clear phase */ \ (op)->state = EG_ATT; /* KEY ON = attack */ \ (op)->volume += (~(op)->volume * \ (eg_inc[(op)->eg_sel_ar + ((PSG->eg_cnt>>(op)->eg_sh_ar)&7)]) \ ) >>4; \ if ((op)->volume <= MIN_ATT_INDEX) \ { \ (op)->volume = MIN_ATT_INDEX; \ (op)->state = EG_DEC; \ } \ } \ (op)->key |= key_set; \ } #define KEY_OFF(op, key_clr){ \ if ((op)->key) \ { \ (op)->key &= key_clr; \ if (!(op)->key) \ { \ if ((op)->state>EG_REL) \ (op)->state = EG_REL;/* KEY OFF = release */\ } \ } \ } static inline void envelope_KONKOFF(YM2151 *PSG, YM2151Operator * op, int v) { if (v&0x08) /* M1 */ KEY_ON (op+0, 1) else KEY_OFF(op+0,~1) if (v&0x20) /* M2 */ KEY_ON (op+1, 1) else KEY_OFF(op+1,~1) if (v&0x10) /* C1 */ KEY_ON (op+2, 1) else KEY_OFF(op+2,~1) if (v&0x40) /* C2 */ KEY_ON (op+3, 1) else KEY_OFF(op+3,~1) } #ifdef USE_MAME_TIMERS static TIMER_CALLBACK( irqAon_callback ) { YM2151 *chip = (YM2151 *)ptr; int oldstate = chip->irqlinestate; chip->irqlinestate |= 1; if (oldstate == 0 && chip->irqhandler) (*chip->irqhandler)(chip->device, 1); } static TIMER_CALLBACK( irqBon_callback ) { YM2151 *chip = (YM2151 *)ptr; int oldstate = chip->irqlinestate; chip->irqlinestate |= 2; if (oldstate == 0 && chip->irqhandler) (*chip->irqhandler)(chip->device, 1); } static TIMER_CALLBACK( irqAoff_callback ) { YM2151 *chip = (YM2151 *)ptr; int oldstate = chip->irqlinestate; chip->irqlinestate &= ~1; if (oldstate == 1 && chip->irqhandler) (*chip->irqhandler)(chip->device, 0); } static TIMER_CALLBACK( irqBoff_callback ) { YM2151 *chip = (YM2151 *)ptr; int oldstate = chip->irqlinestate; chip->irqlinestate &= ~2; if (oldstate == 2 && chip->irqhandler) (*chip->irqhandler)(chip->device, 0); } static TIMER_CALLBACK( timer_callback_a ) { YM2151 *chip = (YM2151 *)ptr; chip->timer_A->adjust(chip->timer_A_time[ chip->timer_A_index ]); chip->timer_A_index_old = chip->timer_A_index; if (chip->irq_enable & 0x04) { chip->status |= 1; machine.scheduler().timer_set(attotime::zero, FUNC(irqAon_callback), 0, chip); } if (chip->irq_enable & 0x80) chip->csm_req = 2; /* request KEY ON / KEY OFF sequence */ } static TIMER_CALLBACK( timer_callback_b ) { YM2151 *chip = (YM2151 *)ptr; chip->timer_B->adjust(chip->timer_B_time[ chip->timer_B_index ]); chip->timer_B_index_old = chip->timer_B_index; if (chip->irq_enable & 0x08) { chip->status |= 2; machine.scheduler().timer_set(attotime::zero, FUNC(irqBon_callback), 0, chip); } } #if 0 static TIMER_CALLBACK( timer_callback_chip_busy ) { YM2151 *chip = (YM2151 *)ptr; chip->status &= 0x7f; /* reset busy flag */ } #endif #endif static inline void set_connect(YM2151 *PSG, YM2151Operator *om1, int cha, int v) { YM2151Operator *om2 = om1+1; YM2151Operator *oc1 = om1+2; /* set connect algorithm */ /* MEM is simply one sample delay */ switch( v&7 ) { case 0: /* M1---C1---MEM---M2---C2---OUT */ om1->connect = &PSG->c1; oc1->connect = &PSG->mem; om2->connect = &PSG->c2; om1->mem_connect = &PSG->m2; break; case 1: /* M1------+-MEM---M2---C2---OUT */ /* C1-+ */ om1->connect = &PSG->mem; oc1->connect = &PSG->mem; om2->connect = &PSG->c2; om1->mem_connect = &PSG->m2; break; case 2: /* M1-----------------+-C2---OUT */ /* C1---MEM---M2-+ */ om1->connect = &PSG->c2; oc1->connect = &PSG->mem; om2->connect = &PSG->c2; om1->mem_connect = &PSG->m2; break; case 3: /* M1---C1---MEM------+-C2---OUT */ /* M2-+ */ om1->connect = &PSG->c1; oc1->connect = &PSG->mem; om2->connect = &PSG->c2; om1->mem_connect = &PSG->c2; break; case 4: /* M1---C1-+-OUT */ /* M2---C2-+ */ /* MEM: not used */ om1->connect = &PSG->c1; oc1->connect = &PSG->chanout[cha]; om2->connect = &PSG->c2; om1->mem_connect = &PSG->mem; /* store it anywhere where it will not be used */ break; case 5: /* +----C1----+ */ /* M1-+-MEM---M2-+-OUT */ /* +----C2----+ */ om1->connect = nullptr; /* special mark */ oc1->connect = &PSG->chanout[cha]; om2->connect = &PSG->chanout[cha]; om1->mem_connect = &PSG->m2; break; case 6: /* M1---C1-+ */ /* M2-+-OUT */ /* C2-+ */ /* MEM: not used */ om1->connect = &PSG->c1; oc1->connect = &PSG->chanout[cha]; om2->connect = &PSG->chanout[cha]; om1->mem_connect = &PSG->mem; /* store it anywhere where it will not be used */ break; case 7: /* M1-+ */ /* C1-+-OUT */ /* M2-+ */ /* C2-+ */ /* MEM: not used*/ om1->connect = &PSG->chanout[cha]; oc1->connect = &PSG->chanout[cha]; om2->connect = &PSG->chanout[cha]; om1->mem_connect = &PSG->mem; /* store it anywhere where it will not be used */ break; } } static inline void refresh_EG(YM2151Operator * op) { UINT32 kc; UINT32 v; kc = op->kc; /* v = 32 + 2*RATE + RKS = max 126 */ v = kc >> op->ks; if ((op->ar+v) < 32+62) { op->eg_sh_ar = eg_rate_shift [op->ar + v ]; op->eg_sel_ar = eg_rate_select[op->ar + v ]; } else { op->eg_sh_ar = 0; op->eg_sel_ar = 17*RATE_STEPS; } op->eg_sh_d1r = eg_rate_shift [op->d1r + v]; op->eg_sel_d1r= eg_rate_select[op->d1r + v]; op->eg_sh_d2r = eg_rate_shift [op->d2r + v]; op->eg_sel_d2r= eg_rate_select[op->d2r + v]; op->eg_sh_rr = eg_rate_shift [op->rr + v]; op->eg_sel_rr = eg_rate_select[op->rr + v]; op+=1; v = kc >> op->ks; if ((op->ar+v) < 32+62) { op->eg_sh_ar = eg_rate_shift [op->ar + v ]; op->eg_sel_ar = eg_rate_select[op->ar + v ]; } else { op->eg_sh_ar = 0; op->eg_sel_ar = 17*RATE_STEPS; } op->eg_sh_d1r = eg_rate_shift [op->d1r + v]; op->eg_sel_d1r= eg_rate_select[op->d1r + v]; op->eg_sh_d2r = eg_rate_shift [op->d2r + v]; op->eg_sel_d2r= eg_rate_select[op->d2r + v]; op->eg_sh_rr = eg_rate_shift [op->rr + v]; op->eg_sel_rr = eg_rate_select[op->rr + v]; op+=1; v = kc >> op->ks; if ((op->ar+v) < 32+62) { op->eg_sh_ar = eg_rate_shift [op->ar + v ]; op->eg_sel_ar = eg_rate_select[op->ar + v ]; } else { op->eg_sh_ar = 0; op->eg_sel_ar = 17*RATE_STEPS; } op->eg_sh_d1r = eg_rate_shift [op->d1r + v]; op->eg_sel_d1r= eg_rate_select[op->d1r + v]; op->eg_sh_d2r = eg_rate_shift [op->d2r + v]; op->eg_sel_d2r= eg_rate_select[op->d2r + v]; op->eg_sh_rr = eg_rate_shift [op->rr + v]; op->eg_sel_rr = eg_rate_select[op->rr + v]; op+=1; v = kc >> op->ks; if ((op->ar+v) < 32+62) { op->eg_sh_ar = eg_rate_shift [op->ar + v ]; op->eg_sel_ar = eg_rate_select[op->ar + v ]; } else { op->eg_sh_ar = 0; op->eg_sel_ar = 17*RATE_STEPS; } op->eg_sh_d1r = eg_rate_shift [op->d1r + v]; op->eg_sel_d1r= eg_rate_select[op->d1r + v]; op->eg_sh_d2r = eg_rate_shift [op->d2r + v]; op->eg_sel_d2r= eg_rate_select[op->d2r + v]; op->eg_sh_rr = eg_rate_shift [op->rr + v]; op->eg_sel_rr = eg_rate_select[op->rr + v]; } /* write a register on YM2151 chip number 'n' */ void ym2151_write_reg(void *_chip, int r, int v) { YM2151 *chip = (YM2151 *)_chip; YM2151Operator *op = &chip->oper[ (r&0x07)*4+((r&0x18)>>3) ]; /* adjust bus to 8 bits */ r &= 0xff; v &= 0xff; #if 0 /* There is no info on what YM2151 really does when busy flag is set */ if ( chip->status & 0x80 ) return; timer_set ( attotime::from_hz(chip->clock) * 64, chip, 0, timer_callback_chip_busy); chip->status |= 0x80; /* set busy flag for 64 chip clock cycles */ #endif if (LOG_CYM_FILE && (cymfile) && (r!=0) ) { fputc( (unsigned char)r, cymfile ); fputc( (unsigned char)v, cymfile ); } switch(r & 0xe0) { case 0x00: switch(r){ case 0x01: /* LFO reset(bit 1), Test Register (other bits) */ chip->test = v; if (v&2) chip->lfo_phase = 0; break; case 0x08: envelope_KONKOFF(chip, &chip->oper[ (v&7)*4 ], v ); break; case 0x0f: /* noise mode enable, noise period */ chip->noise = v; chip->noise_f = chip->noise_tab[ v & 0x1f ]; break; case 0x10: /* timer A hi */ chip->timer_A_index = (chip->timer_A_index & 0x003) | (v<<2); break; case 0x11: /* timer A low */ chip->timer_A_index = (chip->timer_A_index & 0x3fc) | (v & 3); break; case 0x12: /* timer B */ chip->timer_B_index = v; break; case 0x14: /* CSM, irq flag reset, irq enable, timer start/stop */ chip->irq_enable = v; /* bit 3-timer B, bit 2-timer A, bit 7 - CSM */ if (v&0x10) /* reset timer A irq flag */ { #ifdef USE_MAME_TIMERS chip->status &= ~1; chip->device->machine().scheduler().timer_set(attotime::zero, FUNC(irqAoff_callback), 0, chip); #else int oldstate = chip->status & 3; chip->status &= ~1; if ((oldstate==1) && (chip->irqhandler)) (*chip->irqhandler)(chip->device, 0); #endif } if (v&0x20) /* reset timer B irq flag */ { #ifdef USE_MAME_TIMERS chip->status &= ~2; chip->device->machine().scheduler().timer_set(attotime::zero, FUNC(irqBoff_callback), 0, chip); #else int oldstate = chip->status & 3; chip->status &= ~2; if ((oldstate==2) && (chip->irqhandler)) (*chip->irqhandler)(chip->device, 0); #endif } if (v&0x02) { /* load and start timer B */ #ifdef USE_MAME_TIMERS /* ASG 980324: added a real timer */ /* start timer _only_ if it wasn't already started (it will reload time value next round) */ if (!chip->timer_B->enable(true)) { chip->timer_B->adjust(chip->timer_B_time[ chip->timer_B_index ]); chip->timer_B_index_old = chip->timer_B_index; } #else if (!chip->tim_B) { chip->tim_B = 1; chip->tim_B_val = chip->tim_B_tab[ chip->timer_B_index ]; } #endif } else { /* stop timer B */ #ifdef USE_MAME_TIMERS /* ASG 980324: added a real timer */ chip->timer_B->enable(false); #else chip->tim_B = 0; #endif } if (v&0x01) { /* load and start timer A */ #ifdef USE_MAME_TIMERS /* ASG 980324: added a real timer */ /* start timer _only_ if it wasn't already started (it will reload time value next round) */ if (!chip->timer_A->enable(true)) { chip->timer_A->adjust(chip->timer_A_time[ chip->timer_A_index ]); chip->timer_A_index_old = chip->timer_A_index; } #else if (!chip->tim_A) { chip->tim_A = 1; chip->tim_A_val = chip->tim_A_tab[ chip->timer_A_index ]; } #endif } else { /* stop timer A */ #ifdef USE_MAME_TIMERS /* ASG 980324: added a real timer */ chip->timer_A->enable(false); #else chip->tim_A = 0; #endif } break; case 0x18: /* LFO frequency */ { chip->lfo_overflow = ( 1 << ((15-(v>>4))+3) ) * (1<lfo_counter_add = 0x10 + (v & 0x0f); } break; case 0x19: /* PMD (bit 7==1) or AMD (bit 7==0) */ if (v&0x80) chip->pmd = v & 0x7f; else chip->amd = v & 0x7f; break; case 0x1b: /* CT2, CT1, LFO waveform */ chip->ct = v >> 6; chip->lfo_wsel = v & 3; if (chip->porthandler) (*chip->porthandler)(chip->device, 0 , chip->ct ); break; default: chip->device->logerror("YM2151 Write %02x to undocumented register #%02x\n",v,r); break; } break; case 0x20: op = &chip->oper[ (r&7) * 4 ]; switch(r & 0x18) { case 0x00: /* RL enable, Feedback, Connection */ op->fb_shift = ((v>>3)&7) ? ((v>>3)&7)+6:0; chip->pan[ (r&7)*2 ] = (v & 0x40) ? ~0 : 0; chip->pan[ (r&7)*2 +1 ] = (v & 0x80) ? ~0 : 0; chip->connect[r&7] = v&7; set_connect(chip, op, r&7, v&7); break; case 0x08: /* Key Code */ v &= 0x7f; if (v != op->kc) { UINT32 kc, kc_channel; kc_channel = (v - (v>>2))*64; kc_channel += 768; kc_channel |= (op->kc_i & 63); (op+0)->kc = v; (op+0)->kc_i = kc_channel; (op+1)->kc = v; (op+1)->kc_i = kc_channel; (op+2)->kc = v; (op+2)->kc_i = kc_channel; (op+3)->kc = v; (op+3)->kc_i = kc_channel; kc = v>>2; (op+0)->dt1 = chip->dt1_freq[ (op+0)->dt1_i + kc ]; (op+0)->freq = ( (chip->freq[ kc_channel + (op+0)->dt2 ] + (op+0)->dt1) * (op+0)->mul ) >> 1; (op+1)->dt1 = chip->dt1_freq[ (op+1)->dt1_i + kc ]; (op+1)->freq = ( (chip->freq[ kc_channel + (op+1)->dt2 ] + (op+1)->dt1) * (op+1)->mul ) >> 1; (op+2)->dt1 = chip->dt1_freq[ (op+2)->dt1_i + kc ]; (op+2)->freq = ( (chip->freq[ kc_channel + (op+2)->dt2 ] + (op+2)->dt1) * (op+2)->mul ) >> 1; (op+3)->dt1 = chip->dt1_freq[ (op+3)->dt1_i + kc ]; (op+3)->freq = ( (chip->freq[ kc_channel + (op+3)->dt2 ] + (op+3)->dt1) * (op+3)->mul ) >> 1; refresh_EG( op ); } break; case 0x10: /* Key Fraction */ v >>= 2; if (v != (op->kc_i & 63)) { UINT32 kc_channel; kc_channel = v; kc_channel |= (op->kc_i & ~63); (op+0)->kc_i = kc_channel; (op+1)->kc_i = kc_channel; (op+2)->kc_i = kc_channel; (op+3)->kc_i = kc_channel; (op+0)->freq = ( (chip->freq[ kc_channel + (op+0)->dt2 ] + (op+0)->dt1) * (op+0)->mul ) >> 1; (op+1)->freq = ( (chip->freq[ kc_channel + (op+1)->dt2 ] + (op+1)->dt1) * (op+1)->mul ) >> 1; (op+2)->freq = ( (chip->freq[ kc_channel + (op+2)->dt2 ] + (op+2)->dt1) * (op+2)->mul ) >> 1; (op+3)->freq = ( (chip->freq[ kc_channel + (op+3)->dt2 ] + (op+3)->dt1) * (op+3)->mul ) >> 1; } break; case 0x18: /* PMS, AMS */ op->pms = (v>>4) & 7; op->ams = (v & 3); break; } break; case 0x40: /* DT1, MUL */ { UINT32 olddt1_i = op->dt1_i; UINT32 oldmul = op->mul; op->dt1_i = (v&0x70)<<1; op->mul = (v&0x0f) ? (v&0x0f)<<1: 1; if (olddt1_i != op->dt1_i) op->dt1 = chip->dt1_freq[ op->dt1_i + (op->kc>>2) ]; if ( (olddt1_i != op->dt1_i) || (oldmul != op->mul) ) op->freq = ( (chip->freq[ op->kc_i + op->dt2 ] + op->dt1) * op->mul ) >> 1; } break; case 0x60: /* TL */ op->tl = (v&0x7f)<<(ENV_BITS-7); /* 7bit TL */ break; case 0x80: /* KS, AR */ { UINT32 oldks = op->ks; UINT32 oldar = op->ar; op->ks = 5-(v>>6); op->ar = (v&0x1f) ? 32 + ((v&0x1f)<<1) : 0; if ( (op->ar != oldar) || (op->ks != oldks) ) { if ((op->ar + (op->kc>>op->ks)) < 32+62) { op->eg_sh_ar = eg_rate_shift [op->ar + (op->kc>>op->ks) ]; op->eg_sel_ar = eg_rate_select[op->ar + (op->kc>>op->ks) ]; } else { op->eg_sh_ar = 0; op->eg_sel_ar = 17*RATE_STEPS; } } if (op->ks != oldks) { op->eg_sh_d1r = eg_rate_shift [op->d1r + (op->kc>>op->ks) ]; op->eg_sel_d1r= eg_rate_select[op->d1r + (op->kc>>op->ks) ]; op->eg_sh_d2r = eg_rate_shift [op->d2r + (op->kc>>op->ks) ]; op->eg_sel_d2r= eg_rate_select[op->d2r + (op->kc>>op->ks) ]; op->eg_sh_rr = eg_rate_shift [op->rr + (op->kc>>op->ks) ]; op->eg_sel_rr = eg_rate_select[op->rr + (op->kc>>op->ks) ]; } } break; case 0xa0: /* LFO AM enable, D1R */ op->AMmask = (v&0x80) ? ~0 : 0; op->d1r = (v&0x1f) ? 32 + ((v&0x1f)<<1) : 0; op->eg_sh_d1r = eg_rate_shift [op->d1r + (op->kc>>op->ks) ]; op->eg_sel_d1r= eg_rate_select[op->d1r + (op->kc>>op->ks) ]; break; case 0xc0: /* DT2, D2R */ { UINT32 olddt2 = op->dt2; op->dt2 = dt2_tab[ v>>6 ]; if (op->dt2 != olddt2) op->freq = ( (chip->freq[ op->kc_i + op->dt2 ] + op->dt1) * op->mul ) >> 1; } op->d2r = (v&0x1f) ? 32 + ((v&0x1f)<<1) : 0; op->eg_sh_d2r = eg_rate_shift [op->d2r + (op->kc>>op->ks) ]; op->eg_sel_d2r= eg_rate_select[op->d2r + (op->kc>>op->ks) ]; break; case 0xe0: /* D1L, RR */ op->d1l = d1l_tab[ v>>4 ]; op->rr = 34 + ((v&0x0f)<<2); op->eg_sh_rr = eg_rate_shift [op->rr + (op->kc>>op->ks) ]; op->eg_sel_rr = eg_rate_select[op->rr + (op->kc>>op->ks) ]; break; } } static TIMER_CALLBACK( cymfile_callback ) { if (cymfile) fputc( (unsigned char)0, cymfile ); } int ym2151_read_status( void *_chip ) { YM2151 *chip = (YM2151 *)_chip; return chip->status; } //#ifdef USE_MAME_TIMERS #if 1 // disabled for now due to crashing with winalloc.c (ERROR_NOT_ENOUGH_MEMORY) /* * state save support for MAME */ void ym2151_postload(YM2151 *YM2151_chip) { int j; for (j=0; j<8; j++) set_connect(YM2151_chip, &YM2151_chip->oper[j*4], j, YM2151_chip->connect[j]); } static void ym2151_state_save_register( YM2151 *chip, device_t *device ) { int j; /* save all 32 operators of chip #i */ for (j=0; j<32; j++) { YM2151Operator *op; op = &chip->oper[(j&7)*4+(j>>3)]; device->save_item(NAME(op->phase), j); device->save_item(NAME(op->freq), j); device->save_item(NAME(op->dt1), j); device->save_item(NAME(op->mul), j); device->save_item(NAME(op->dt1_i), j); device->save_item(NAME(op->dt2), j); /* operators connection is saved in chip data block */ device->save_item(NAME(op->mem_value), j); device->save_item(NAME(op->fb_shift), j); device->save_item(NAME(op->fb_out_curr), j); device->save_item(NAME(op->fb_out_prev), j); device->save_item(NAME(op->kc), j); device->save_item(NAME(op->kc_i), j); device->save_item(NAME(op->pms), j); device->save_item(NAME(op->ams), j); device->save_item(NAME(op->AMmask), j); device->save_item(NAME(op->state), j); device->save_item(NAME(op->eg_sh_ar), j); device->save_item(NAME(op->eg_sel_ar), j); device->save_item(NAME(op->tl), j); device->save_item(NAME(op->volume), j); device->save_item(NAME(op->eg_sh_d1r), j); device->save_item(NAME(op->eg_sel_d1r), j); device->save_item(NAME(op->d1l), j); device->save_item(NAME(op->eg_sh_d2r), j); device->save_item(NAME(op->eg_sel_d2r), j); device->save_item(NAME(op->eg_sh_rr), j); device->save_item(NAME(op->eg_sel_rr), j); device->save_item(NAME(op->key), j); device->save_item(NAME(op->ks), j); device->save_item(NAME(op->ar), j); device->save_item(NAME(op->d1r), j); device->save_item(NAME(op->d2r), j); device->save_item(NAME(op->rr), j); device->save_item(NAME(op->reserved0), j); device->save_item(NAME(op->reserved1), j); } device->save_item(NAME(chip->pan)); device->save_item(NAME(chip->eg_cnt)); device->save_item(NAME(chip->eg_timer)); device->save_item(NAME(chip->eg_timer_add)); device->save_item(NAME(chip->eg_timer_overflow)); device->save_item(NAME(chip->lfo_phase)); device->save_item(NAME(chip->lfo_timer)); device->save_item(NAME(chip->lfo_timer_add)); device->save_item(NAME(chip->lfo_overflow)); device->save_item(NAME(chip->lfo_counter)); device->save_item(NAME(chip->lfo_counter_add)); device->save_item(NAME(chip->lfo_wsel)); device->save_item(NAME(chip->amd)); device->save_item(NAME(chip->pmd)); device->save_item(NAME(chip->lfa)); device->save_item(NAME(chip->lfp)); device->save_item(NAME(chip->test)); device->save_item(NAME(chip->ct)); device->save_item(NAME(chip->noise)); device->save_item(NAME(chip->noise_rng)); device->save_item(NAME(chip->noise_p)); device->save_item(NAME(chip->noise_f)); device->save_item(NAME(chip->csm_req)); device->save_item(NAME(chip->irq_enable)); device->save_item(NAME(chip->status)); device->save_item(NAME(chip->timer_A_index)); device->save_item(NAME(chip->timer_B_index)); device->save_item(NAME(chip->timer_A_index_old)); device->save_item(NAME(chip->timer_B_index_old)); #ifdef USE_MAME_TIMERS device->save_item(NAME(chip->irqlinestate)); #endif device->save_item(NAME(chip->connect)); device->machine().save().register_postload(save_prepost_delegate(FUNC(ym2151_postload), chip)); } #else void ym2151_postload(YM2151 *chip) { } static void ym2151_state_save_register( YM2151 *chip, device_t *device ) { } #endif /* * Initialize YM2151 emulator(s). * * 'num' is the number of virtual YM2151's to allocate * 'clock' is the chip clock in Hz * 'rate' is sampling rate */ void * ym2151_init(device_t *device, int clock, int rate) { YM2151 *PSG; PSG = auto_alloc(device->machine(), YM2151); memset(PSG, 0, sizeof(YM2151)); ym2151_state_save_register( PSG, device ); init_tables(); PSG->device = device; PSG->clock = clock; /*rate = clock/64;*/ PSG->sampfreq = rate ? rate : 44100; /* avoid division by 0 in init_chip_tables() */ PSG->irqhandler = nullptr; /* interrupt handler */ PSG->porthandler = nullptr; /* port write handler */ init_chip_tables( PSG ); PSG->lfo_timer_add = (1<sampfreq; PSG->eg_timer_add = (1<sampfreq; PSG->eg_timer_overflow = ( 3 ) * (1<eg_timer_add, PSG->eg_timer_overflow);*/ #ifdef USE_MAME_TIMERS /* this must be done _before_ a call to ym2151_reset_chip() */ PSG->timer_A = device->machine().scheduler().timer_alloc(FUNC(timer_callback_a), PSG); PSG->timer_B = device->machine().scheduler().timer_alloc(FUNC(timer_callback_b), PSG); #else PSG->tim_A = 0; PSG->tim_B = 0; #endif ym2151_reset_chip(PSG); /*logerror("YM2151[init] clock=%i sampfreq=%i\n", PSG->clock, PSG->sampfreq);*/ if (LOG_CYM_FILE) { cymfile = fopen("2151_.cym","wb"); if (cymfile) device->machine().scheduler().timer_pulse ( attotime::from_hz(110), FUNC(cymfile_callback)); /*110 Hz pulse timer*/ else device->logerror("Could not create file 2151_.cym\n"); } return PSG; } void ym2151_shutdown(void *_chip) { YM2151 *chip = (YM2151 *)_chip; auto_free (chip->device->machine(), chip); if (cymfile) fclose (cymfile); cymfile = nullptr; #ifdef SAVE_SAMPLE fclose(sample[8]); #endif #ifdef SAVE_SEPARATE_CHANNELS fclose(sample[0]); fclose(sample[1]); fclose(sample[2]); fclose(sample[3]); fclose(sample[4]); fclose(sample[5]); fclose(sample[6]); fclose(sample[7]); #endif } /* * Reset chip number 'n'. */ void ym2151_reset_chip(void *_chip) { int i; YM2151 *chip = (YM2151 *)_chip; /* initialize hardware registers */ for (i=0; i<32; i++) { memset(&chip->oper[i],'\0',sizeof(YM2151Operator)); chip->oper[i].volume = MAX_ATT_INDEX; chip->oper[i].kc_i = 768; /* min kc_i value */ } chip->eg_timer = 0; chip->eg_cnt = 0; chip->lfo_timer = 0; chip->lfo_counter= 0; chip->lfo_phase = 0; chip->lfo_wsel = 0; chip->pmd = 0; chip->amd = 0; chip->lfa = 0; chip->lfp = 0; chip->test= 0; chip->irq_enable = 0; #ifdef USE_MAME_TIMERS /* ASG 980324 -- reset the timers before writing to the registers */ chip->timer_A->enable(false); chip->timer_B->enable(false); #else chip->tim_A = 0; chip->tim_B = 0; chip->tim_A_val = 0; chip->tim_B_val = 0; #endif chip->timer_A_index = 0; chip->timer_B_index = 0; chip->timer_A_index_old = 0; chip->timer_B_index_old = 0; chip->noise = 0; chip->noise_rng = 0; chip->noise_p = 0; chip->noise_f = chip->noise_tab[0]; chip->csm_req = 0; chip->status = 0; ym2151_write_reg(chip, 0x1b, 0); /* only because of CT1, CT2 output pins */ ym2151_write_reg(chip, 0x18, 0); /* set LFO frequency */ for (i=0x20; i<0x100; i++) /* set the operators */ { ym2151_write_reg(chip, i, 0); } } static inline signed int op_calc(YM2151Operator * OP, unsigned int env, signed int pm) { UINT32 p; p = (env<<3) + sin_tab[ ( ((signed int)((OP->phase & ~FREQ_MASK) + (pm<<15))) >> FREQ_SH ) & SIN_MASK ]; if (p >= TL_TAB_LEN) return 0; return tl_tab[p]; } static inline signed int op_calc1(YM2151Operator * OP, unsigned int env, signed int pm) { UINT32 p; INT32 i; i = (OP->phase & ~FREQ_MASK) + pm; /*logerror("i=%08x (i>>16)&511=%8i phase=%i [pm=%08x] ",i, (i>>16)&511, OP->phase>>FREQ_SH, pm);*/ p = (env<<3) + sin_tab[ (i>>FREQ_SH) & SIN_MASK]; /*logerror("(p&255=%i p>>8=%i) out= %i\n", p&255,p>>8, tl_tab[p&255]>>(p>>8) );*/ if (p >= TL_TAB_LEN) return 0; return tl_tab[p]; } #define volume_calc(OP) ((OP)->tl + ((UINT32)(OP)->volume) + (AM & (OP)->AMmask)) static inline void chan_calc(YM2151 *PSG, unsigned int chan) { YM2151Operator *op; unsigned int env; UINT32 AM = 0; PSG->m2 = PSG->c1 = PSG->c2 = PSG->mem = 0; op = &PSG->oper[chan*4]; /* M1 */ *op->mem_connect = op->mem_value; /* restore delayed sample (MEM) value to m2 or c2 */ if (op->ams) AM = PSG->lfa << (op->ams-1); env = volume_calc(op); { INT32 out = op->fb_out_prev + op->fb_out_curr; op->fb_out_prev = op->fb_out_curr; if (!op->connect) /* algorithm 5 */ PSG->mem = PSG->c1 = PSG->c2 = op->fb_out_prev; else /* other algorithms */ *op->connect = op->fb_out_prev; op->fb_out_curr = 0; if (env < ENV_QUIET) { if (!op->fb_shift) out=0; op->fb_out_curr = op_calc1(op, env, (out<fb_shift) ); } } env = volume_calc(op+1); /* M2 */ if (env < ENV_QUIET) *(op+1)->connect += op_calc(op+1, env, PSG->m2); env = volume_calc(op+2); /* C1 */ if (env < ENV_QUIET) *(op+2)->connect += op_calc(op+2, env, PSG->c1); env = volume_calc(op+3); /* C2 */ if (env < ENV_QUIET) PSG->chanout[chan] += op_calc(op+3, env, PSG->c2); /* M1 */ op->mem_value = PSG->mem; } static inline void chan7_calc(YM2151 *PSG) { YM2151Operator *op; unsigned int env; UINT32 AM = 0; PSG->m2 = PSG->c1 = PSG->c2 = PSG->mem = 0; op = &PSG->oper[7*4]; /* M1 */ *op->mem_connect = op->mem_value; /* restore delayed sample (MEM) value to m2 or c2 */ if (op->ams) AM = PSG->lfa << (op->ams-1); env = volume_calc(op); { INT32 out = op->fb_out_prev + op->fb_out_curr; op->fb_out_prev = op->fb_out_curr; if (!op->connect) /* algorithm 5 */ PSG->mem = PSG->c1 = PSG->c2 = op->fb_out_prev; else /* other algorithms */ *op->connect = op->fb_out_prev; op->fb_out_curr = 0; if (env < ENV_QUIET) { if (!op->fb_shift) out=0; op->fb_out_curr = op_calc1(op, env, (out<fb_shift) ); } } env = volume_calc(op+1); /* M2 */ if (env < ENV_QUIET) *(op+1)->connect += op_calc(op+1, env, PSG->m2); env = volume_calc(op+2); /* C1 */ if (env < ENV_QUIET) *(op+2)->connect += op_calc(op+2, env, PSG->c1); env = volume_calc(op+3); /* C2 */ if (PSG->noise & 0x80) { UINT32 noiseout; noiseout = 0; if (env < 0x3ff) noiseout = (env ^ 0x3ff) * 2; /* range of the YM2151 noise output is -2044 to 2040 */ PSG->chanout[7] += ((PSG->noise_rng&0x10000) ? noiseout: -noiseout); /* bit 16 -> output */ } else { if (env < ENV_QUIET) PSG->chanout[7] += op_calc(op+3, env, PSG->c2); } /* M1 */ op->mem_value = PSG->mem; } /* The 'rate' is calculated from following formula (example on decay rate): rks = notecode after key scaling (a value from 0 to 31) DR = value written to the chip register rate = 2*DR + rks; (max rate = 2*31+31 = 93) Four MSBs of the 'rate' above are the 'main' rate (from 00 to 15) Two LSBs of the 'rate' above are the value 'x' (the shape type). (eg. '11 2' means that 'rate' is 11*4+2=46) NOTE: A 'sample' in the description below is actually 3 output samples, thats because the Envelope Generator clock is equal to internal_clock/3. Single '-' (minus) character in the diagrams below represents one sample on the output; this is for rates 11 x (11 0, 11 1, 11 2 and 11 3) these 'main' rates: 00 x: single '-' = 2048 samples; (ie. level can change every 2048 samples) 01 x: single '-' = 1024 samples; 02 x: single '-' = 512 samples; 03 x: single '-' = 256 samples; 04 x: single '-' = 128 samples; 05 x: single '-' = 64 samples; 06 x: single '-' = 32 samples; 07 x: single '-' = 16 samples; 08 x: single '-' = 8 samples; 09 x: single '-' = 4 samples; 10 x: single '-' = 2 samples; 11 x: single '-' = 1 sample; (ie. level can change every 1 sample) Shapes for rates 11 x look like this: rate: step: 11 0 01234567 level: 0 -- 1 -- 2 -- 3 -- rate: step: 11 1 01234567 level: 0 -- 1 -- 2 - 3 - 4 -- rate: step: 11 2 01234567 level: 0 -- 1 - 2 - 3 -- 4 - 5 - rate: step: 11 3 01234567 level: 0 -- 1 - 2 - 3 - 4 - 5 - 6 - For rates 12 x, 13 x, 14 x and 15 x output level changes on every sample - this means that the waveform looks like this: (but the level changes by different values on different steps) 12 3 01234567 0 - 2 - 4 - 8 - 10 - 12 - 14 - 18 - 20 - Notes about the timing: ---------------------- 1. Synchronism Output level of each two (or more) voices running at the same 'main' rate (eg 11 0 and 11 1 in the diagram below) will always be changing in sync, even if there're started with some delay. Note that, in the diagram below, the decay phase in channel 0 starts at sample #2, while in channel 1 it starts at sample #6. Anyway, both channels will always change their levels at exactly the same (following) samples. (S - start point of this channel, A-attack phase, D-decay phase): step: 01234567012345670123456 channel 0: -- | -- | - | - | -- | -- | -- | - | - | -- AADDDDDDDDDDDDDDDD S 01234567012345670123456 channel 1: - | - | -- | -- | -- | - | - | -- | -- | -- AADDDDDDDDDDDDDDDD S 01234567012345670123456 2. Shifted (delayed) synchronism Output of each two (or more) voices running at different 'main' rate (9 1, 10 1 and 11 1 in the diagrams below) will always be changing in 'delayed-sync' (even if there're started with some delay as in "1.") Note that the shapes are delayed by exactly one sample per one 'main' rate increment. (Normally one would expect them to start at the same samples.) See diagram below (* - start point of the shape). cycle: 0123456701234567012345670123456701234567012345670123456701234567 rate 09 1 *------- -------- ---- ---- -------- *------- | -------- | ---- | ---- | -------- rate 10 1 | -- | *--- | ---- | -- | -- | ---- | *--- | | ---- | | -- | | <- one step (two samples) delay between 9 1 and 10 1 | -- | | | ----| | *--- | ---- | -- | -- | ---- rate 11 1 | - | -- | *- | -- | - | - | -- | *- | -- | - || <- one step (one sample) delay between 10 1 and 11 1 - || --| *- -- - - -- *- -- - - -- */ static inline void advance_eg(YM2151 *PSG) { YM2151Operator *op; unsigned int i; PSG->eg_timer += PSG->eg_timer_add; while (PSG->eg_timer >= PSG->eg_timer_overflow) { PSG->eg_timer -= PSG->eg_timer_overflow; PSG->eg_cnt++; /* envelope generator */ op = &PSG->oper[0]; /* CH 0 M1 */ i = 32; do { switch(op->state) { case EG_ATT: /* attack phase */ if ( !(PSG->eg_cnt & ((1<eg_sh_ar)-1) ) ) { op->volume += (~op->volume * (eg_inc[op->eg_sel_ar + ((PSG->eg_cnt>>op->eg_sh_ar)&7)]) ) >>4; if (op->volume <= MIN_ATT_INDEX) { op->volume = MIN_ATT_INDEX; op->state = EG_DEC; } } break; case EG_DEC: /* decay phase */ if ( !(PSG->eg_cnt & ((1<eg_sh_d1r)-1) ) ) { op->volume += eg_inc[op->eg_sel_d1r + ((PSG->eg_cnt>>op->eg_sh_d1r)&7)]; if ( op->volume >= op->d1l ) op->state = EG_SUS; } break; case EG_SUS: /* sustain phase */ if ( !(PSG->eg_cnt & ((1<eg_sh_d2r)-1) ) ) { op->volume += eg_inc[op->eg_sel_d2r + ((PSG->eg_cnt>>op->eg_sh_d2r)&7)]; if ( op->volume >= MAX_ATT_INDEX ) { op->volume = MAX_ATT_INDEX; op->state = EG_OFF; } } break; case EG_REL: /* release phase */ if ( !(PSG->eg_cnt & ((1<eg_sh_rr)-1) ) ) { op->volume += eg_inc[op->eg_sel_rr + ((PSG->eg_cnt>>op->eg_sh_rr)&7)]; if ( op->volume >= MAX_ATT_INDEX ) { op->volume = MAX_ATT_INDEX; op->state = EG_OFF; } } break; } op++; i--; }while (i); } } static inline void advance(YM2151 *PSG) { YM2151Operator *op; unsigned int i; int a,p; /* LFO */ if (PSG->test&2) PSG->lfo_phase = 0; else { PSG->lfo_timer += PSG->lfo_timer_add; if (PSG->lfo_timer >= PSG->lfo_overflow) { PSG->lfo_timer -= PSG->lfo_overflow; PSG->lfo_counter += PSG->lfo_counter_add; PSG->lfo_phase += (PSG->lfo_counter>>4); PSG->lfo_phase &= 255; PSG->lfo_counter &= 15; } } i = PSG->lfo_phase; /* calculate LFO AM and PM waveform value (all verified on real chip, except for noise algorithm which is impossible to analyse)*/ switch (PSG->lfo_wsel) { case 0: /* saw */ /* AM: 255 down to 0 */ /* PM: 0 to 127, -127 to 0 (at PMD=127: LFP = 0 to 126, -126 to 0) */ a = 255 - i; if (i<128) p = i; else p = i - 255; break; case 1: /* square */ /* AM: 255, 0 */ /* PM: 128,-128 (LFP = exactly +PMD, -PMD) */ if (i<128) { a = 255; p = 128; } else { a = 0; p = -128; } break; case 2: /* triangle */ /* AM: 255 down to 1 step -2; 0 up to 254 step +2 */ /* PM: 0 to 126 step +2, 127 to 1 step -2, 0 to -126 step -2, -127 to -1 step +2*/ if (i<128) a = 255 - (i*2); else a = (i*2) - 256; if (i<64) /* i = 0..63 */ p = i*2; /* 0 to 126 step +2 */ else if (i<128) /* i = 64..127 */ p = 255 - i*2; /* 127 to 1 step -2 */ else if (i<192) /* i = 128..191 */ p = 256 - i*2; /* 0 to -126 step -2*/ else /* i = 192..255 */ p = i*2 - 511; /*-127 to -1 step +2*/ break; case 3: default: /*keep the compiler happy*/ /* random */ /* the real algorithm is unknown !!! We just use a snapshot of data from real chip */ /* AM: range 0 to 255 */ /* PM: range -128 to 127 */ a = lfo_noise_waveform[i]; p = a-128; break; } PSG->lfa = a * PSG->amd / 128; PSG->lfp = p * PSG->pmd / 128; /* The Noise Generator of the YM2151 is 17-bit shift register. * Input to the bit16 is negated (bit0 XOR bit3) (EXNOR). * Output of the register is negated (bit0 XOR bit3). * Simply use bit16 as the noise output. */ PSG->noise_p += PSG->noise_f; i = (PSG->noise_p>>16); /* number of events (shifts of the shift register) */ PSG->noise_p &= 0xffff; while (i) { UINT32 j; j = ( (PSG->noise_rng ^ (PSG->noise_rng>>3) ) & 1) ^ 1; PSG->noise_rng = (j<<16) | (PSG->noise_rng>>1); i--; } /* phase generator */ op = &PSG->oper[0]; /* CH 0 M1 */ i = 8; do { if (op->pms) /* only when phase modulation from LFO is enabled for this channel */ { INT32 mod_ind = PSG->lfp; /* -128..+127 (8bits signed) */ if (op->pms < 6) mod_ind >>= (6 - op->pms); else mod_ind <<= (op->pms - 5); if (mod_ind) { UINT32 kc_channel = op->kc_i + mod_ind; (op+0)->phase += ( (PSG->freq[ kc_channel + (op+0)->dt2 ] + (op+0)->dt1) * (op+0)->mul ) >> 1; (op+1)->phase += ( (PSG->freq[ kc_channel + (op+1)->dt2 ] + (op+1)->dt1) * (op+1)->mul ) >> 1; (op+2)->phase += ( (PSG->freq[ kc_channel + (op+2)->dt2 ] + (op+2)->dt1) * (op+2)->mul ) >> 1; (op+3)->phase += ( (PSG->freq[ kc_channel + (op+3)->dt2 ] + (op+3)->dt1) * (op+3)->mul ) >> 1; } else /* phase modulation from LFO is equal to zero */ { (op+0)->phase += (op+0)->freq; (op+1)->phase += (op+1)->freq; (op+2)->phase += (op+2)->freq; (op+3)->phase += (op+3)->freq; } } else /* phase modulation from LFO is disabled */ { (op+0)->phase += (op+0)->freq; (op+1)->phase += (op+1)->freq; (op+2)->phase += (op+2)->freq; (op+3)->phase += (op+3)->freq; } op+=4; i--; }while (i); /* CSM is calculated *after* the phase generator calculations (verified on real chip) * CSM keyon line seems to be ORed with the KO line inside of the chip. * The result is that it only works when KO (register 0x08) is off, ie. 0 * * Interesting effect is that when timer A is set to 1023, the KEY ON happens * on every sample, so there is no KEY OFF at all - the result is that * the sound played is the same as after normal KEY ON. */ if (PSG->csm_req) /* CSM KEYON/KEYOFF seqeunce request */ { if (PSG->csm_req==2) /* KEY ON */ { op = &PSG->oper[0]; /* CH 0 M1 */ i = 32; do { KEY_ON(op, 2); op++; i--; }while (i); PSG->csm_req = 1; } else /* KEY OFF */ { op = &PSG->oper[0]; /* CH 0 M1 */ i = 32; do { KEY_OFF(op,~2); op++; i--; }while (i); PSG->csm_req = 0; } } } #if 0 static inline signed int acc_calc(signed int value) { if (value>=0) { if (value < 0x0200) return (value & ~0); if (value < 0x0400) return (value & ~1); if (value < 0x0800) return (value & ~3); if (value < 0x1000) return (value & ~7); if (value < 0x2000) return (value & ~15); if (value < 0x4000) return (value & ~31); return (value & ~63); } /*else value < 0*/ if (value > -0x0200) return (~abs(value) & ~0); if (value > -0x0400) return (~abs(value) & ~1); if (value > -0x0800) return (~abs(value) & ~3); if (value > -0x1000) return (~abs(value) & ~7); if (value > -0x2000) return (~abs(value) & ~15); if (value > -0x4000) return (~abs(value) & ~31); return (~abs(value) & ~63); } #endif /* first macro saves left and right channels to mono file */ /* second macro saves left and right channels to stereo file */ #if 0 /*MONO*/ #ifdef SAVE_SEPARATE_CHANNELS #define SAVE_SINGLE_CHANNEL(j) \ { signed int pom= -(chanout[j] & PSG->pan[j*2]); \ if (pom > 32767) pom = 32767; else if (pom < -32768) pom = -32768; \ fputc((unsigned short)pom&0xff,sample[j]); \ fputc(((unsigned short)pom>>8)&0xff,sample[j]); \ } #else #define SAVE_SINGLE_CHANNEL(j) #endif #else /*STEREO*/ #ifdef SAVE_SEPARATE_CHANNELS #define SAVE_SINGLE_CHANNEL(j) \ { signed int pom = -(chanout[j] & PSG->pan[j*2]); \ if (pom > 32767) pom = 32767; else if (pom < -32768) pom = -32768; \ fputc((unsigned short)pom&0xff,sample[j]); \ fputc(((unsigned short)pom>>8)&0xff,sample[j]); \ pom = -(chanout[j] & PSG->pan[j*2+1]); \ if (pom > 32767) pom = 32767; else if (pom < -32768) pom = -32768; \ fputc((unsigned short)pom&0xff,sample[j]); \ fputc(((unsigned short)pom>>8)&0xff,sample[j]); \ } #else #define SAVE_SINGLE_CHANNEL(j) #endif #endif /* first macro saves left and right channels to mono file */ /* second macro saves left and right channels to stereo file */ #if 1 /*MONO*/ #ifdef SAVE_SAMPLE #define SAVE_ALL_CHANNELS \ { signed int pom = outl; \ /*pom = acc_calc(pom);*/ \ /*fprintf(sample[8]," %i\n",pom);*/ \ fputc((unsigned short)pom&0xff,sample[8]); \ fputc(((unsigned short)pom>>8)&0xff,sample[8]); \ } #else #define SAVE_ALL_CHANNELS #endif #else /*STEREO*/ #ifdef SAVE_SAMPLE #define SAVE_ALL_CHANNELS \ { signed int pom = outl; \ fputc((unsigned short)pom&0xff,sample[8]); \ fputc(((unsigned short)pom>>8)&0xff,sample[8]); \ pom = outr; \ fputc((unsigned short)pom&0xff,sample[8]); \ fputc(((unsigned short)pom>>8)&0xff,sample[8]); \ } #else #define SAVE_ALL_CHANNELS #endif #endif /* Generate samples for one of the YM2151's * * 'num' is the number of virtual YM2151 * '**buffers' is table of pointers to the buffers: left and right * 'length' is the number of samples that should be generated */ void ym2151_update_one(void *chip, SAMP **buffers, int length) { YM2151 *PSG = (YM2151 *)chip; signed int *chanout = PSG->chanout; int i; signed int outl,outr; SAMP *bufL, *bufR; bufL = buffers[0]; bufR = buffers[1]; #ifdef USE_MAME_TIMERS /* ASG 980324 - handled by real timers now */ #else if (PSG->tim_B) { PSG->tim_B_val -= ( length << TIMER_SH ); if (PSG->tim_B_val<=0) { PSG->tim_B_val += PSG->tim_B_tab[ PSG->timer_B_index ]; if ( PSG->irq_enable & 0x08 ) { int oldstate = PSG->status & 3; PSG->status |= 2; if ((!oldstate) && (PSG->irqhandler)) (*PSG->irqhandler)(chip->device, 1); } } } #endif for (i=0; ipan[0]; outr = chanout[0] & PSG->pan[1]; outl += (chanout[1] & PSG->pan[2]); outr += (chanout[1] & PSG->pan[3]); outl += (chanout[2] & PSG->pan[4]); outr += (chanout[2] & PSG->pan[5]); outl += (chanout[3] & PSG->pan[6]); outr += (chanout[3] & PSG->pan[7]); outl += (chanout[4] & PSG->pan[8]); outr += (chanout[4] & PSG->pan[9]); outl += (chanout[5] & PSG->pan[10]); outr += (chanout[5] & PSG->pan[11]); outl += (chanout[6] & PSG->pan[12]); outr += (chanout[6] & PSG->pan[13]); outl += (chanout[7] & PSG->pan[14]); outr += (chanout[7] & PSG->pan[15]); outl >>= FINAL_SH; outr >>= FINAL_SH; if (outl > MAXOUT) outl = MAXOUT; else if (outl < MINOUT) outl = MINOUT; if (outr > MAXOUT) outr = MAXOUT; else if (outr < MINOUT) outr = MINOUT; ((SAMP*)bufL)[i] = (SAMP)outl; ((SAMP*)bufR)[i] = (SAMP)outr; SAVE_ALL_CHANNELS #ifdef USE_MAME_TIMERS /* ASG 980324 - handled by real timers now */ #else /* calculate timer A */ if (PSG->tim_A) { PSG->tim_A_val -= ( 1 << TIMER_SH ); if (PSG->tim_A_val <= 0) { PSG->tim_A_val += PSG->tim_A_tab[ PSG->timer_A_index ]; if (PSG->irq_enable & 0x04) { int oldstate = PSG->status & 3; PSG->status |= 1; if ((!oldstate) && (PSG->irqhandler)) (*PSG->irqhandler)(chip->device, 1); } if (PSG->irq_enable & 0x80) PSG->csm_req = 2; /* request KEY ON / KEY OFF sequence */ } } #endif advance(PSG); } } void ym2151_set_irq_handler(void *chip, void(*handler)(device_t *device, int irq)) { YM2151 *PSG = (YM2151 *)chip; PSG->irqhandler = handler; } void ym2151_set_port_write_handler(void *chip, void (*handler)(device_t *, offs_t, UINT8)) { YM2151 *PSG = (YM2151 *)chip; PSG->porthandler = handler; }