// license:BSD-3-Clause // copyright-holders:Juergen Buchmueller, Mike Balfour, Howie Cohen, Olivier Galibert, Aaron Giles /************************************************************ NEC uPD7759/55/56/P56/57/58 ADPCM Speech Processor by: Juergen Buchmueller, Mike Balfour, Howie Cohen, Olivier Galibert, and Aaron Giles TODO: - is there a doable method to dump the internal maskrom? :( As far as we know, decapping is the only option - low-level emulation - watchdog? - according to uPD775x datasheet, the chip goes into standy mode if CS/ST/RESET have not been accessed for more than 3 seconds ************************************************************* uPD7759 Description: The uPD7759 is a speech processing LSI that utilizes ADPCM to produce speech or other sampled sounds. It can directly address up to 1Mbit (128k) of external data ROM, or the host CPU can control the speech data transfer. The uPD7759 is usually hooked up to a 640 kHz clock and has one 8-bit input port, a start pin, a busy pin, and a clock output. The chip is composed of 3 parts: - a clock divider - a rom-reading engine - an adpcm engine - a 4-to-9 bit adpcm converter The clock divider takes the base 640KHz clock and divides it first by a fixed divisor of 4 and then by a value between 9 and 32. The result gives a clock between 5KHz and 17.78KHz. It's probably possible, but not recommended and certainly out-of-spec, to push the chip harder by reducing the divider. The rom-reading engine reads one byte every two divided clock cycles. The factor two comes from the fact that a byte has two nibbles, i.e. two samples. The apdcm engine takes bytes and interprets them as commands: 00000000 sample end 00dddddd silence 01ffffff send the 256 following nibbles to the converter 10ffffff nnnnnnnn send the n+1 following nibbles to the converter 11---rrr --ffffff nnnnnnnn send the n+1 following nibbles to the converter, and repeat r+1 times "ffffff" is sent to the clock divider to be the base clock for the adpcm converter, i.e., it's the sampling rate. If the number of nibbles to send is odd the last nibble is ignored. The commands are always 8-bit aligned. "dddddd" is the duration of the silence. The base speed is unknown, 1ms sounds reasonably. It does not seem linked to the adpcm clock speed because there often is a silence before any 01 or 10 command. The adpcm converter converts nibbles into 9-bit DAC values. It has an internal state of 4 bits that's used in conjunction with the nibble to lookup which of the 256 possible steps is used. Then the state is changed according to the nibble value. Essentially, the higher the state, the bigger the steps are, and using big steps increase the state. Conversely, using small steps reduces the state. This allows the engine to be a little more adaptative than a classical ADPCM algorithm. The uPD7759 can run in two modes, master (also known as standalone) and slave. The mode is selected through the "md" pin. No known game changes modes on the fly, and it's unsure if that's even possible to do. Master mode: The output of the rom reader is directly connected to the adpcm converter. The controlling cpu only sends a sample number and the 7759 plays it. The sample rom has a header at the beginning of the form nn 5a a5 69 55 where nn is the number of the last sample. This is then followed by a vector of 2-bytes msb-first values, one per sample. Multiplying them by two gives the sample start offset in the rom. A 0x00 marks the end of each sample. It seems that the uPD7759 reads at least part of the rom header at startup. Games doing rom banking are careful to reset the chip after each change. Slave mode: The rom reader is completely disconnected. The input port is connected directly to the adpcm engine. The first write to the input port activates the engine (the value itself is ignored). The engine activates the clock output and waits for commands. The clock speed is unknown, but its probably a divider of 640KHz. We use 40KHz here because 80KHz crashes altbeast. The chip probably has an internal fifo to the converter and suspends the clock when the fifo is full. The first command is always 0xFF. A second 0xFF marks the end of the sample and the engine stops. OTOH, there is a 0x00 at the end too. Go figure. ************************************************************* The other chip models don't support slave mode, and have an internal ROM. Other than that, they are thought to be nearly identical to uPD7759. 55C 18-pin DIP 96 Kbit ROM 55G 24-pin SOP 96 Kbit ROM 56C 18-pin DIP 256 Kbit ROM 56G 24-pin SOP 256 Kbit ROM P56CR 20-pin DIP 256 Kbit ROM (OTP) - dumping the ROM is trivial P56G 24-pin SOP 256 Kbit ROM (OTP) - " 57C 18-pin DIP 512 Kbit ROM 57G 24-pin SOP 512 Kbit ROM 58C 18-pin DIP 1 Mbit ROM 58G 24-pin SOP 1 Mbit ROM *************************************************************/ #include "emu.h" #include "upd7759.h" #define MASK_LOG_STATE (1U << 1) #define MASK_LOG_DRQ (1U << 2) //#define VERBOSE (MASK_LOG_STATE|MASK_LOG_DRQ) #include "logmacro.h" #define LOG_STATE(...) LOGMASKED(MASK_LOG_STATE, __VA_ARGS__) #define LOG_DRQ(...) LOGMASKED(MASK_LOG_DRQ, __VA_ARGS__) /************************************************************ Constants *************************************************************/ // step value fractional bits #define FRAC_BITS 20 #define FRAC_ONE (1 << FRAC_BITS) #define FRAC_MASK (FRAC_ONE - 1) upd775x_device::upd775x_device(const machine_config &mconfig, device_type type, const char *tag, device_t *owner, uint32_t clock) : device_t(mconfig, type, tag, owner, clock) , device_sound_interface(mconfig, *this) , device_rom_interface(mconfig, *this) , m_channel(nullptr) , m_sample_offset_shift(0) , m_pos(0) , m_step(0) , m_fifo_in(0) , m_reset(1) , m_start(1) , m_drq(0) , m_state(STATE_IDLE) , m_clocks_left(0) , m_nibbles_left(0) , m_repeat_count(0) , m_post_drq_state(0) , m_post_drq_clocks(0) , m_req_sample(0) , m_last_sample(0) , m_block_header(0) , m_sample_rate(0) , m_first_valid_header(0) , m_offset(0) , m_repeat_offset(0) , m_start_delay(0) , m_mode(MODE_STAND_ALONE) , m_adpcm_state(0) , m_adpcm_data(0) , m_sample(0) , m_md(1) { } DEFINE_DEVICE_TYPE(UPD7759, upd7759_device, "upd7759", "NEC uPD7759") upd7759_device::upd7759_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock) : upd7759_device(mconfig, UPD7759, tag, owner, clock) { } upd7759_device::upd7759_device(const machine_config &mconfig, device_type type, const char *tag, device_t *owner, uint32_t clock) : upd775x_device(mconfig, type, tag, owner, clock) , m_drqcallback(*this) , m_timer(nullptr) { } DEFINE_DEVICE_TYPE(UPD7756, upd7756_device, "upd7756", "NEC uPD7756") upd7756_device::upd7756_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock) : upd7756_device(mconfig, UPD7756, tag, owner, clock) { } upd7756_device::upd7756_device(const machine_config &mconfig, device_type type, const char *tag, device_t *owner, uint32_t clock) : upd775x_device(mconfig, type, tag, owner, clock) { } //------------------------------------------------- // device_start - device-specific startup //------------------------------------------------- void upd775x_device::device_start() { m_channel = stream_alloc(0, 1, clock()/4); m_step = 4 * FRAC_ONE; m_clock_period = clock() ? attotime::from_hz(clock()) : attotime::zero; save_item(NAME(m_pos)); save_item(NAME(m_step)); save_item(NAME(m_fifo_in)); save_item(NAME(m_reset)); save_item(NAME(m_start)); save_item(NAME(m_drq)); save_item(NAME(m_state)); save_item(NAME(m_clocks_left)); save_item(NAME(m_nibbles_left)); save_item(NAME(m_repeat_count)); save_item(NAME(m_post_drq_state)); save_item(NAME(m_post_drq_clocks)); save_item(NAME(m_req_sample)); save_item(NAME(m_last_sample)); save_item(NAME(m_block_header)); save_item(NAME(m_sample_rate)); save_item(NAME(m_first_valid_header)); save_item(NAME(m_offset)); save_item(NAME(m_repeat_offset)); save_item(NAME(m_adpcm_state)); save_item(NAME(m_adpcm_data)); save_item(NAME(m_sample)); save_item(NAME(m_mode)); save_item(NAME(m_md)); } void upd775x_device::device_clock_changed() { m_clock_period = clock() ? attotime::from_hz(clock()) : attotime::zero; m_channel->set_sample_rate(clock() / 4); } void upd775x_device::rom_bank_pre_change() { m_channel->update(); } void upd7759_device::device_start() { upd775x_device::device_start(); m_sample_offset_shift = 1; m_timer = timer_alloc(FUNC(upd7759_device::drq_update), this); } //------------------------------------------------- // device_reset - device-specific reset //------------------------------------------------- void upd775x_device::device_reset() { m_pos = 0; m_state = STATE_IDLE; m_clocks_left = 0; m_nibbles_left = 0; m_repeat_count = 0; m_post_drq_state = STATE_IDLE; m_post_drq_clocks = 0; m_req_sample = 0; m_last_sample = 0; m_block_header = 0; m_sample_rate = 0; m_first_valid_header = 0; m_offset = 0; m_repeat_offset = 0; m_adpcm_state = 0; m_adpcm_data = 0; m_sample = 0; m_mode = MODE_STAND_ALONE; } void upd7759_device::device_reset() { upd775x_device::device_reset(); m_timer->adjust(attotime::never); if (m_drq) { m_drq = 0; m_drqcallback(m_drq); } } void upd7756_device::device_reset() { upd775x_device::device_reset(); m_drq = 0; } /************************************************************ Local variables *************************************************************/ static const int upd775x_step[16][16] = { { 0, 0, 1, 2, 3, 5, 7, 10, 0, 0, -1, -2, -3, -5, -7, -10 }, { 0, 1, 2, 3, 4, 6, 8, 13, 0, -1, -2, -3, -4, -6, -8, -13 }, { 0, 1, 2, 4, 5, 7, 10, 15, 0, -1, -2, -4, -5, -7, -10, -15 }, { 0, 1, 3, 4, 6, 9, 13, 19, 0, -1, -3, -4, -6, -9, -13, -19 }, { 0, 2, 3, 5, 8, 11, 15, 23, 0, -2, -3, -5, -8, -11, -15, -23 }, { 0, 2, 4, 7, 10, 14, 19, 29, 0, -2, -4, -7, -10, -14, -19, -29 }, { 0, 3, 5, 8, 12, 16, 22, 33, 0, -3, -5, -8, -12, -16, -22, -33 }, { 1, 4, 7, 10, 15, 20, 29, 43, -1, -4, -7, -10, -15, -20, -29, -43 }, { 1, 4, 8, 13, 18, 25, 35, 53, -1, -4, -8, -13, -18, -25, -35, -53 }, { 1, 6, 10, 16, 22, 31, 43, 64, -1, -6, -10, -16, -22, -31, -43, -64 }, { 2, 7, 12, 19, 27, 37, 51, 76, -2, -7, -12, -19, -27, -37, -51, -76 }, { 2, 9, 16, 24, 34, 46, 64, 96, -2, -9, -16, -24, -34, -46, -64, -96 }, { 3, 11, 19, 29, 41, 57, 79, 117, -3, -11, -19, -29, -41, -57, -79, -117 }, { 4, 13, 24, 36, 50, 69, 96, 143, -4, -13, -24, -36, -50, -69, -96, -143 }, { 4, 16, 29, 44, 62, 85, 118, 175, -4, -16, -29, -44, -62, -85, -118, -175 }, { 6, 20, 36, 54, 76, 104, 144, 214, -6, -20, -36, -54, -76, -104, -144, -214 }, }; static const int upd775x_state_table[16] = { -1, -1, 0, 0, 1, 2, 2, 3, -1, -1, 0, 0, 1, 2, 2, 3 }; /************************************************************ ADPCM sample updater *************************************************************/ void upd775x_device::update_adpcm(int data) { m_sample += upd775x_step[m_adpcm_state][data]; m_adpcm_state += upd775x_state_table[data]; if (m_adpcm_state < 0) m_adpcm_state = 0; else if (m_adpcm_state > 15) m_adpcm_state = 15; } /************************************************************ Master chip state machine *************************************************************/ void upd775x_device::advance_state() { switch (m_state) { // Idle state: we stick around here while there's nothing to do case STATE_IDLE: m_clocks_left = 4; break; // drop DRQ state: update to the intended state case STATE_DROP_DRQ: m_drq = 0; m_clocks_left = m_post_drq_clocks; m_state = m_post_drq_state; break; // Start state: we begin here as soon as a sample is triggered case STATE_START: m_req_sample = (m_mode == MODE_STAND_ALONE) ? m_fifo_in : 0x10; LOG_STATE("req_sample = %02X\n", m_req_sample); /* 35+ cycles after we get here, the /DRQ goes low * (first byte (number of samples in ROM) should be sent in response) * * (35 is the minimum number of cycles I found during heavy tests. * Depending on the state the chip was in just before the /MD was set to 0 (reset, standby * or just-finished-playing-previous-sample) this number can range from 35 up to ~24000). * It also varies slightly from test to test, but not much - a few cycles at most.) */ m_clocks_left = 70 + m_start_delay; m_state = STATE_FIRST_REQ; break; /* First request state: issue a request for the first byte */ /* The expected response will be the index of the last sample */ case STATE_FIRST_REQ: LOG_STATE("first data request\n"); m_drq = 1; m_clocks_left = 44; m_state = STATE_LAST_SAMPLE; break; /* Last sample state: latch the last sample value and issue a request for the second byte */ /* The second byte read will be just a dummy */ case STATE_LAST_SAMPLE: m_last_sample = (m_mode == MODE_STAND_ALONE) ? read_byte(0) : m_fifo_in; LOG_STATE("last_sample = %02X, requesting dummy 1\n", m_last_sample); m_drq = 1; m_clocks_left = 28; m_state = (m_req_sample > m_last_sample) ? STATE_IDLE : STATE_DUMMY1; break; /* First dummy state: ignore any data here and issue a request for the third byte */ /* The expected response will be the MSB of the sample address */ case STATE_DUMMY1: LOG_STATE("dummy1, requesting offset_hi\n"); m_drq = 1; m_clocks_left = 32; m_state = STATE_ADDR_MSB; break; /* Address MSB state: latch the MSB of the sample address and issue a request for the fourth byte */ /* The expected response will be the LSB of the sample address */ case STATE_ADDR_MSB: m_offset = ((m_mode == MODE_STAND_ALONE) ? read_byte(m_req_sample * 2 + 5) : m_fifo_in) << (8 + m_sample_offset_shift); LOG_STATE("offset_hi = %02X, requesting offset_lo\n", m_offset >> (8 + m_sample_offset_shift)); m_drq = 1; m_clocks_left = 44; m_state = STATE_ADDR_LSB; break; /* Address LSB state: latch the LSB of the sample address and issue a request for the fifth byte */ /* The expected response will be just a dummy */ case STATE_ADDR_LSB: m_offset |= ((m_mode == MODE_STAND_ALONE) ? read_byte(m_req_sample * 2 + 6) : m_fifo_in) << m_sample_offset_shift; LOG_STATE("offset_lo = %02X, requesting dummy 2\n", (m_offset >> m_sample_offset_shift) & 0xff); m_drq = 1; m_clocks_left = 36; m_state = STATE_DUMMY2; break; /* Second dummy state: ignore any data here and issue a request for the sixth byte */ /* The expected response will be the first block header */ case STATE_DUMMY2: m_offset++; m_first_valid_header = 0; LOG_STATE("dummy2, requesting block header\n"); m_drq = 1; m_clocks_left = 36; m_state = STATE_BLOCK_HEADER; break; // Block header state: latch the header and issue a request for the first byte afterwards case STATE_BLOCK_HEADER: if (m_repeat_count) { m_repeat_count--; m_offset = m_repeat_offset; } m_block_header = (m_mode == MODE_STAND_ALONE) ? read_byte(m_offset++) : m_fifo_in; LOG_STATE("header (@%05X) = %02X, requesting next byte\n", m_offset, m_block_header); m_drq = 1; switch (m_block_header & 0xc0) { case 0x00: // silence m_clocks_left = 1024 * ((m_block_header & 0x3f) + 1); m_state = (m_block_header == 0 && m_first_valid_header) ? STATE_IDLE : STATE_BLOCK_HEADER; m_sample = 0; m_adpcm_state = 0; break; case 0x40: // 256 nibbles m_sample_rate = (m_block_header & 0x3f) + 1; m_nibbles_left = 256; m_clocks_left = 36; // just a guess m_state = STATE_NIBBLE_MSN; break; case 0x80: // n nibbles m_sample_rate = (m_block_header & 0x3f) + 1; m_clocks_left = 36; // just a guess m_state = STATE_NIBBLE_COUNT; break; case 0xc0: // repeat loop m_repeat_count = (m_block_header & 7) + 1; m_repeat_offset = m_offset; m_clocks_left = 36; // just a guess m_state = STATE_BLOCK_HEADER; break; } if (m_block_header != 0) m_first_valid_header = 1; break; /* Nibble count state: latch the number of nibbles to play and request another byte */ /* The expected response will be the first data byte */ case STATE_NIBBLE_COUNT: m_nibbles_left = ((m_mode == MODE_STAND_ALONE) ? read_byte(m_offset++) : m_fifo_in) + 1; LOG_STATE("nibble_count = %u, requesting next byte\n", (unsigned)m_nibbles_left); m_drq = 1; m_clocks_left = 36; // just a guess m_state = STATE_NIBBLE_MSN; break; /* MSN state: latch the data for this pair of samples and request another byte */ /* The expected response will be the next sample data or another header */ case STATE_NIBBLE_MSN: m_adpcm_data = (m_mode == MODE_STAND_ALONE) ? read_byte(m_offset++) : m_fifo_in; update_adpcm(m_adpcm_data >> 4); m_drq = 1; m_clocks_left = m_sample_rate * 4; if (--m_nibbles_left == 0) m_state = STATE_BLOCK_HEADER; else m_state = STATE_NIBBLE_LSN; break; // LSN state: process the lower nibble case STATE_NIBBLE_LSN: update_adpcm(m_adpcm_data & 15); m_clocks_left = m_sample_rate * 4; if (--m_nibbles_left == 0) m_state = STATE_BLOCK_HEADER; else m_state = STATE_NIBBLE_MSN; break; } if (m_drq) { m_post_drq_state = m_state; m_post_drq_clocks = m_clocks_left - 21; m_state = STATE_DROP_DRQ; m_clocks_left = 21; } } TIMER_CALLBACK_MEMBER(upd7759_device::drq_update) { m_channel->update(); uint8_t olddrq = m_drq; int old_state = m_state; advance_state(); LOG_STATE("upd7759_slave_update: DRQ %d->%d\n", olddrq, m_drq); if (olddrq != m_drq) { LOG_DRQ("DRQ changed %d->%d\n", olddrq, m_drq); m_drqcallback(m_drq); } if (m_state != STATE_IDLE || old_state != STATE_IDLE) m_timer->adjust(m_clock_period * m_clocks_left); } /************************************************************ I/O handlers *************************************************************/ void upd775x_device::reset_w(int state) { machine().scheduler().synchronize(timer_expired_delegate(FUNC(upd775x_device::internal_reset_w), this), state); } TIMER_CALLBACK_MEMBER(upd775x_device::internal_reset_w) { m_channel->update(); uint8_t oldreset = m_reset; m_reset = (param != 0); if (oldreset && !m_reset) device_reset(); } void upd775x_device::start_w(int state) { machine().scheduler().synchronize(timer_expired_delegate(FUNC(upd775x_device::internal_start_w), this), state); } void upd775x_device::internal_start_w(int state) { m_channel->update(); uint8_t oldstart = m_start; m_start = (state != 0); LOG_STATE("upd7759_start_w: %d->%d\n", oldstart, m_start); if (m_state == STATE_IDLE && m_mode == MODE_STAND_ALONE && oldstart && !m_start && m_reset) { m_state = STATE_START; } } void upd775x_device::port_w(u8 data) { machine().scheduler().synchronize(timer_expired_delegate(FUNC(upd775x_device::internal_port_w), this), data); } TIMER_CALLBACK_MEMBER(upd775x_device::internal_port_w) { m_channel->update(); m_fifo_in = param; } void upd7759_device::md_w(int state) { machine().scheduler().synchronize(timer_expired_delegate(FUNC(upd7759_device::internal_md_w), this), state); } TIMER_CALLBACK_MEMBER(upd7759_device::internal_md_w) { m_channel->update(); uint8_t old_md = m_md; m_md = (param != 0); LOG_STATE("upd7759_md_w: %d->%d\n", old_md, m_md); if (m_state == STATE_IDLE && m_reset) { if (old_md && !m_md) { m_mode = MODE_SLAVE; m_state = STATE_START; m_timer->adjust(attotime::zero); } else if (!old_md && m_md) { m_mode = MODE_STAND_ALONE; } } } int upd775x_device::busy_r() { m_channel->update(); // return /BUSY return (m_state == STATE_IDLE); } //------------------------------------------------- // sound_stream_update - handle a stream update //------------------------------------------------- void upd775x_device::sound_stream_update(sound_stream &stream, std::vector const &inputs, std::vector &outputs) { constexpr stream_buffer::sample_t sample_scale = 128.0 / 32768.0; stream_buffer::sample_t sample = stream_buffer::sample_t(m_sample) * sample_scale; int32_t clocks_left = m_clocks_left; uint32_t step = m_step; uint32_t pos = m_pos; u32 index = 0; if (m_state != STATE_IDLE) for ( ; index < outputs[0].samples(); index++) { outputs[0].put(index, sample); pos += step; while ((m_mode == MODE_STAND_ALONE) && pos >= FRAC_ONE) { int clocks_this_time = pos >> FRAC_BITS; if (clocks_this_time > clocks_left) clocks_this_time = clocks_left; pos -= clocks_this_time * FRAC_ONE; clocks_left -= clocks_this_time; if (clocks_left == 0) { advance_state(); if (m_state == STATE_IDLE) break; clocks_left = m_clocks_left; sample = stream_buffer::sample_t(m_sample) * sample_scale; } } } // if we got out early, just zap the rest of the buffer for (; index < outputs[0].samples(); index++) outputs[0].put(index, 0); m_clocks_left = clocks_left; m_pos = pos; }