// license:BSD-3-Clause // copyright-holders:hap /* Sharp SM500 MCU core implementation TODO: - EXKSA, EXKFA opcodes - unknown which O group is which W output, guessed for now (segments and H should be ok) */ #include "emu.h" #include "sm500.h" #include "sm510d.h" // MCU types DEFINE_DEVICE_TYPE(SM500, sm500_device, "sm500", "Sharp SM500") // 1.2K ROM, 4x10x4 RAM, shift registers for LCD // internal memory maps void sm500_device::program_1_2k(address_map &map) { map(0x000, 0x4bf).rom(); } void sm500_device::data_4x10x4(address_map &map) { map(0x00, 0x09).ram(); map(0x10, 0x19).ram(); map(0x20, 0x29).ram(); map(0x30, 0x39).ram(); } // device definitions sm500_device::sm500_device(const machine_config &mconfig, device_type type, const char *tag, device_t *owner, const XTAL &clock, int stack_levels, int o_pins, int prgwidth, address_map_constructor program, int datawidth, address_map_constructor data) : sm510_base_device(mconfig, type, tag, owner, clock, stack_levels, prgwidth, program, datawidth, data), m_o_pins(o_pins) { } sm500_device::sm500_device(const machine_config &mconfig, const char *tag, device_t *owner, const XTAL &clock) : sm500_device(mconfig, SM500, tag, owner, clock, 1 /* stack levels */, 7 /* o group pins */, 11 /* prg width */, address_map_constructor(FUNC(sm500_device::program_1_2k), this), 6 /* data width */, address_map_constructor(FUNC(sm500_device::data_4x10x4), this)) { } // disasm std::unique_ptr sm500_device::create_disassembler() { return std::make_unique(); } //------------------------------------------------- // device_start - device-specific startup //------------------------------------------------- void sm500_device::device_start() { // common init (not everything is used though) sm510_base_device::device_start(); // init/zerofill memset(m_ox, 0, sizeof(m_ox)); memset(m_o, 0, sizeof(m_o)); m_mx = 0; m_cb = 0; m_s = 0; m_rsub = false; // register for savestates save_item(NAME(m_ox)); save_item(NAME(m_o)); save_item(NAME(m_mx)); save_item(NAME(m_cb)); save_item(NAME(m_s)); save_item(NAME(m_rsub)); } //------------------------------------------------- // device_reset - device-specific reset //------------------------------------------------- void sm500_device::device_reset() { // common reset sm510_base_device::device_reset(); // SM500 specific push_stack(); op_idiv(); m_gamma = 1; m_cb = 0; m_rsub = false; m_r = 0xf; } //------------------------------------------------- // lcd driver //------------------------------------------------- void sm500_device::lcd_update() { // 2 rows for (int h = 0; h < 2; h++) { for (int o = 0; o < m_o_pins; o++) { // 4 segments per group u8 seg = h ? m_ox[o] : m_o[o]; m_write_segs(o << 1 | h, (m_bp & 1) ? seg : 0); } } } //------------------------------------------------- // buzzer controller //------------------------------------------------- void sm500_device::clock_melody() { // R1 from divider or direct control, R2-R4 generic outputs u8 mask = (m_r_mask_option == RMASK_DIRECT) ? 1 : (m_div >> m_r_mask_option & 1); u8 out = (mask & ~m_r) | (~m_r & 0xe); // output to R pins if (out != m_r_out) { m_write_r(out); m_r_out = out; } } //------------------------------------------------- // execute //------------------------------------------------- void sm500_device::execute_one() { switch (m_op & 0xf0) { case 0x20: op_lax(); break; case 0x30: if (m_op == 0x30) op_ats(); // ! else op_adx(); break; case 0x40: op_lb(); break; case 0x70: op_ssr(); break; case 0x80: case 0x90: case 0xa0: case 0xb0: op_tr(); break; case 0xc0: case 0xd0: case 0xe0: case 0xf0: op_trs(); break; default: switch (m_op & 0xfc) { case 0x04: op_rm(); break; case 0x0c: op_sm(); break; case 0x10: op_exc(); break; case 0x14: op_exci(); break; case 0x18: op_lda(); break; case 0x1c: op_excd(); break; case 0x54: op_tmi(); break; // TM default: switch (m_op) { case 0x00: op_skip(); break; case 0x01: op_atr(); break; case 0x02: op_exksa(); break; case 0x03: op_atbp(); break; case 0x08: op_add(); break; case 0x09: op_add11(); break; // ADDC case 0x0a: op_coma(); break; case 0x0b: op_exbla(); break; case 0x50: op_tal(); break; // TA case 0x51: op_tb(); break; case 0x52: op_tc(); break; case 0x53: op_tam(); break; case 0x58: op_tis(); break; // TG case 0x59: op_ptw(); break; case 0x5a: op_ta0(); break; case 0x5b: op_tabl(); break; case 0x5c: op_tw(); break; case 0x5d: op_dtw(); break; case 0x5f: op_lbl(); break; case 0x60: op_comcn(); break; case 0x61: op_pdtw(); break; case 0x62: op_wr(); break; case 0x63: op_ws(); break; case 0x64: op_incb(); break; case 0x65: op_idiv(); break; case 0x66: op_rc(); break; case 0x67: op_sc(); break; case 0x68: op_rmf(); break; case 0x69: op_smf(); break; case 0x6a: op_kta(); break; case 0x6b: op_exkfa(); break; case 0x6c: op_decb(); break; case 0x6d: op_comcb(); break; case 0x6e: op_rtn0(); break; // RTN case 0x6f: op_rtn1(); break; // RTNS // extended opcodes case 0x5e: m_op = m_op << 8 | m_param; switch (m_param) { case 0x00: op_cend(); break; case 0x04: op_dta(); break; default: op_illegal(); break; } break; // 0x5e default: op_illegal(); break; } break; // 0xff } break; // 0xfc } // big switch } bool sm500_device::op_argument() { // LBL and prefix opcodes are 2 bytes return m_op == 0x5e || m_op == 0x5f; }