// license:BSD-3-Clause // copyright-holders:Juergen Buchmueller /***************************************************************************** * * sh2.h * Portable Hitachi SH-2 (SH7600 family) emulator interface * * This work is based on C/C++ implementation of * the SH-2 CPU core and was heavily changed to the MAME CPU requirements. * Thanks also go to Chuck Mason and Olivier Galibert * for letting me peek into their SEMU code :-) * *****************************************************************************/ #ifndef MAME_CPU_SH2_SH2_H #define MAME_CPU_SH2_SH2_H #pragma once #include "sh.h" #define SH2_INT_NONE -1 #define SH2_INT_VBLIN 0 #define SH2_INT_VBLOUT 1 #define SH2_INT_HBLIN 2 #define SH2_INT_TIMER0 3 #define SH2_INT_TIMER1 4 #define SH2_INT_DSP 5 #define SH2_INT_SOUND 6 #define SH2_INT_SMPC 7 #define SH2_INT_PAD 8 #define SH2_INT_DMA2 9 #define SH2_INT_DMA1 10 #define SH2_INT_DMA0 11 #define SH2_INT_DMAILL 12 #define SH2_INT_SPRITE 13 #define SH2_INT_14 14 #define SH2_INT_15 15 #define SH2_INT_ABUS 16 #define SH2_DMA_KLUDGE_CB(name) int name(uint32_t src, uint32_t dst, uint32_t data, int size) #define SH2_DMA_FIFO_DATA_AVAILABLE_CB(name) int name(uint32_t src, uint32_t dst, uint32_t data, int size) #define SH2_FTCSR_READ_CB(name) void name(uint32_t data) class sh2_frontend; class sh2_device : public sh_common_execution { friend class sh2_frontend; public: typedef device_delegate dma_kludge_delegate; typedef device_delegate dma_fifo_data_available_delegate; typedef device_delegate ftcsr_read_delegate; // construction/destruction sh2_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock); virtual ~sh2_device() override; void set_is_slave(int slave) { m_is_slave = slave; } template void set_dma_kludge_callback(Object &&cb) { m_dma_kludge_cb = std::forward(cb); } template void set_dma_kludge_callback( int (FunctionClass::*callback)(uint32_t, uint32_t, uint32_t, int), const char *name) { set_dma_kludge_callback(dma_kludge_delegate(callback, name, nullptr, static_cast(nullptr))); } template void set_dma_fifo_data_available_callback(Object &&cb) { m_dma_fifo_data_available_cb = std::forward(cb); } template void set_dma_fifo_data_available_callback( int (FunctionClass::*callback)(uint32_t, uint32_t, uint32_t, int), const char *name) { set_dma_fifo_data_available_callback(dma_fifo_data_available_delegate(callback, name, nullptr, static_cast(nullptr))); } template void set_ftcsr_read_callback(Object &&cb) { m_ftcsr_read_cb = std::forward(cb); } template void set_ftcsr_read_callback(void (FunctionClass::*callback)(uint32_t), const char *name) { set_ftcsr_read_callback(ftcsr_read_delegate(callback, name, nullptr, static_cast(nullptr))); } DECLARE_WRITE32_MEMBER( sh7604_w ); DECLARE_READ32_MEMBER( sh7604_r ); DECLARE_READ32_MEMBER(sh2_internal_a5); virtual void set_frt_input(int state) override; void sh2_notify_dma_data_available(); void func_fastirq(); void sh7604_map(address_map &map); protected: sh2_device(const machine_config &mconfig, device_type type, const char *tag, device_t *owner, uint32_t clock, int cpu_type,address_map_constructor internal_map, int addrlines); // device-level overrides virtual void device_start() override; virtual void device_reset() override; virtual void device_stop() override; // device_execute_interface overrides virtual uint32_t execute_min_cycles() const override { return 1; } virtual uint32_t execute_max_cycles() const override { return 4; } virtual uint32_t execute_input_lines() const override { return 16; } virtual uint32_t execute_default_irq_vector(int inputnum) const override { return 0; } virtual bool execute_input_edge_triggered(int inputnum) const override { return inputnum == INPUT_LINE_NMI; } virtual void execute_run() override; virtual void execute_set_input(int inputnum, int state) override; // device_memory_interface overrides virtual space_config_vector memory_space_config() const override; // device_state_interface overrides virtual void state_import(const device_state_entry &entry) override; virtual void state_string_export(const device_state_entry &entry, std::string &str) const override; // device_disasm_interface overrides virtual std::unique_ptr create_disassembler() override; address_space *m_decrypted_program; private: address_space_config m_program_config, m_decrypted_program_config; uint32_t m_cpu_off; uint32_t m_test_irq; int8_t m_irq_line_state[17]; address_space *m_internal; uint32_t m_m[0x200/4]; int8_t m_nmi_line_state; uint16_t m_frc; uint16_t m_ocra, m_ocrb, m_icr; uint64_t m_frc_base; int m_frt_input; int m_internal_irq_vector; emu_timer *m_timer; emu_timer *m_dma_current_active_timer[2]; int m_dma_timer_active[2]; uint8_t m_dma_irq[2]; int m_active_dma_incs[2]; int m_active_dma_incd[2]; int m_active_dma_size[2]; int m_active_dma_steal[2]; uint32_t m_active_dma_src[2]; uint32_t m_active_dma_dst[2]; uint32_t m_active_dma_count[2]; uint16_t m_wtcnt; uint8_t m_wtcsr; int m_is_slave; dma_kludge_delegate m_dma_kludge_cb; dma_fifo_data_available_delegate m_dma_fifo_data_available_cb; ftcsr_read_delegate m_ftcsr_read_cb; std::unique_ptr m_drcfe; /* pointer to the DRC front-end state */ uint32_t m_debugger_temp; virtual uint8_t RB(offs_t A) override; virtual uint16_t RW(offs_t A) override; virtual uint32_t RL(offs_t A) override; virtual void WB(offs_t A, uint8_t V) override; virtual void WW(offs_t A, uint16_t V) override; virtual void WL(offs_t A, uint32_t V) override; virtual void LDCMSR(const uint16_t opcode) override; virtual void LDCSR(const uint16_t opcode) override; virtual void TRAPA(uint32_t i) override; virtual void RTE() override; virtual void ILLEGAL() override; virtual void execute_one_f000(uint16_t opcode) override; TIMER_CALLBACK_MEMBER( sh2_timer_callback ); TIMER_CALLBACK_MEMBER( sh2_dma_current_active_callback ); void sh2_timer_resync(); void sh2_timer_activate(); void sh2_do_dma(int dma); virtual void sh2_exception(const char *message, int irqline) override; void sh2_dmac_check(int dma); void sh2_recalc_irq(); virtual void init_drc_frontend() override; virtual const opcode_desc* get_desclist(offs_t pc) override; virtual void generate_update_cycles(drcuml_block &block, compiler_state &compiler, uml::parameter param, bool allow_exception) override; virtual void static_generate_entry_point() override; virtual void static_generate_memory_accessor(int size, int iswrite, const char *name, uml::code_handle *&handleptr) override; }; class sh2a_device : public sh2_device { public: // construction/destruction sh2a_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock); DECLARE_READ32_MEMBER(dma_sar0_r); DECLARE_WRITE32_MEMBER(dma_sar0_w); DECLARE_READ32_MEMBER(dma_dar0_r); DECLARE_WRITE32_MEMBER(dma_dar0_w); DECLARE_READ16_MEMBER(dmaor_r); DECLARE_WRITE16_MEMBER(dmaor_w); DECLARE_READ16_MEMBER(dma_tcr0_r); DECLARE_WRITE16_MEMBER(dma_tcr0_w); DECLARE_READ16_MEMBER(dma_chcr0_r); DECLARE_WRITE16_MEMBER(dma_chcr0_w); DECLARE_READ16_MEMBER(sh7021_r); DECLARE_WRITE16_MEMBER(sh7021_w); void sh7032_dma_exec(int ch); void sh7021_map(address_map &map); private: uint16_t m_sh7021_regs[0x200]; struct { uint32_t sar; /**< Source Address Register */ uint32_t dar; /**< Destination Address Register */ uint16_t tcr; /**< Transfer Count Register */ uint16_t chcr; /**< Channel Control Register */ } m_dma[4]; uint16_t m_dmaor; /**< DMA Operation Register (status flags) */ }; class sh1_device : public sh2_device { public: // construction/destruction sh1_device(const machine_config &mconfig, const char *_tag, device_t *_owner, uint32_t _clock); DECLARE_READ16_MEMBER(sh7032_r); DECLARE_WRITE16_MEMBER(sh7032_w); void sh7032_map(address_map &map); private: uint16_t m_sh7032_regs[0x200]; }; class sh2_frontend : public sh_frontend { public: sh2_frontend(sh_common_execution *device, uint32_t window_start, uint32_t window_end, uint32_t max_sequence); protected: private: virtual bool describe_group_15(opcode_desc &desc, const opcode_desc *prev, uint16_t opcode) override; }; DECLARE_DEVICE_TYPE(SH1, sh1_device) DECLARE_DEVICE_TYPE(SH2, sh2_device) DECLARE_DEVICE_TYPE(SH2A, sh2a_device) #endif // MAME_CPU_SH2_SH2_H