// license:BSD-3-Clause // copyright-holders:Aaron Giles /*************************************************************************** drcbex64.h 64-bit x64 back-end for the universal machine language. ***************************************************************************/ #ifndef MAME_CPU_DRCBEX64_H #define MAME_CPU_DRCBEX64_H #pragma once #include "drcuml.h" #include "drcbeut.h" #include "x86log.h" #include "asmjit/src/asmjit/asmjit.h" #include namespace drc { //************************************************************************** // TYPE DEFINITIONS //************************************************************************** class drcbe_x64 : public drcbe_interface { typedef uint32_t (*x86_entry_point_func)(uint8_t *rbpvalue, x86code *entry); public: // construction/destruction drcbe_x64(drcuml_state &drcuml, device_t &device, drc_cache &cache, uint32_t flags, int modes, int addrbits, int ignorebits); virtual ~drcbe_x64(); // required overrides virtual void reset() override; virtual int execute(uml::code_handle &entry) override; virtual void generate(drcuml_block &block, const uml::instruction *instlist, uint32_t numinst) override; virtual bool hash_exists(uint32_t mode, uint32_t pc) override; virtual void get_info(drcbe_info &info) override; virtual bool logging() const override { return m_log != nullptr; } private: // a be_parameter is similar to a uml::parameter but maps to native registers/memory class be_parameter { public: // HACK: leftover from x86emit static int const REG_MAX = 16; // parameter types enum be_parameter_type { PTYPE_NONE = 0, // invalid PTYPE_IMMEDIATE, // immediate; value = sign-extended to 64 bits PTYPE_INT_REGISTER, // integer register; value = 0-REG_MAX PTYPE_FLOAT_REGISTER, // floating point register; value = 0-REG_MAX PTYPE_VECTOR_REGISTER, // vector register; value = 0-REG_MAX PTYPE_MEMORY, // memory; value = pointer to memory PTYPE_MAX }; // represents the value of a parameter typedef uint64_t be_parameter_value; // construction be_parameter() : m_type(PTYPE_NONE), m_value(0) { } be_parameter(be_parameter const ¶m) : m_type(param.m_type), m_value(param.m_value) { } be_parameter(uint64_t val) : m_type(PTYPE_IMMEDIATE), m_value(val) { } be_parameter(drcbe_x64 &drcbe, const uml::parameter ¶m, uint32_t allowed); // creators for types that don't safely default static inline be_parameter make_ireg(int regnum) { assert(regnum >= 0 && regnum < REG_MAX); return be_parameter(PTYPE_INT_REGISTER, regnum); } static inline be_parameter make_freg(int regnum) { assert(regnum >= 0 && regnum < REG_MAX); return be_parameter(PTYPE_FLOAT_REGISTER, regnum); } static inline be_parameter make_memory(void *base) { return be_parameter(PTYPE_MEMORY, reinterpret_cast(base)); } static inline be_parameter make_memory(const void *base) { return be_parameter(PTYPE_MEMORY, reinterpret_cast(const_cast(base))); } // operators bool operator==(be_parameter const &rhs) const { return (m_type == rhs.m_type && m_value == rhs.m_value); } bool operator!=(be_parameter const &rhs) const { return (m_type != rhs.m_type || m_value != rhs.m_value); } // getters be_parameter_type type() const { return m_type; } uint64_t immediate() const { assert(m_type == PTYPE_IMMEDIATE); return m_value; } uint32_t ireg() const { assert(m_type == PTYPE_INT_REGISTER); assert(m_value < REG_MAX); return m_value; } uint32_t freg() const { assert(m_type == PTYPE_FLOAT_REGISTER); assert(m_value < REG_MAX); return m_value; } void *memory() const { assert(m_type == PTYPE_MEMORY); return reinterpret_cast(m_value); } // type queries bool is_immediate() const { return (m_type == PTYPE_IMMEDIATE); } bool is_int_register() const { return (m_type == PTYPE_INT_REGISTER); } bool is_float_register() const { return (m_type == PTYPE_FLOAT_REGISTER); } bool is_memory() const { return (m_type == PTYPE_MEMORY); } // other queries bool is_immediate_value(uint64_t value) const { return (m_type == PTYPE_IMMEDIATE && m_value == value); } // helpers asmjit::x86::Gp select_register(asmjit::x86::Gp defreg) const; asmjit::x86::Xmm select_register(asmjit::x86::Xmm defreg) const; asmjit::x86::Gp select_register(asmjit::x86::Gp defreg, be_parameter const &checkparam) const; asmjit::x86::Gp select_register(asmjit::x86::Gp defreg, be_parameter const &checkparam, be_parameter const &checkparam2) const; asmjit::x86::Xmm select_register(asmjit::x86::Xmm defreg, be_parameter const &checkparam) const; private: // private constructor be_parameter(be_parameter_type type, be_parameter_value value) : m_type(type), m_value(value) { } // internals be_parameter_type m_type; // parameter type be_parameter_value m_value; // parameter value }; // helpers asmjit::x86::Mem MABS(const void *ptr, const uint32_t size = 0) const { return asmjit::x86::Mem(asmjit::x86::rbp, offset_from_rbp(ptr), size); } bool short_immediate(int64_t immediate) const { return (int32_t)immediate == immediate; } void normalize_commutative(be_parameter &inner, be_parameter &outer); int32_t offset_from_rbp(const void *ptr) const; asmjit::x86::Gp get_base_register_and_offset(asmjit::x86::Assembler &a, void *target, asmjit::x86::Gp const ®, int32_t &offset); void smart_call_r64(asmjit::x86::Assembler &a, x86code *target, asmjit::x86::Gp const ®); void smart_call_m64(asmjit::x86::Assembler &a, x86code **target); static void debug_log_hashjmp(offs_t pc, int mode); static void debug_log_hashjmp_fail(); // code generators void op_handle(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_hash(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_label(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_comment(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_mapvar(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_nop(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_debug(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_exit(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_hashjmp(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_jmp(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_exh(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_callh(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_ret(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_callc(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_recover(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_setfmod(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_getfmod(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_getexp(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_getflgs(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_save(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_restore(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_load(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_loads(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_store(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_read(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_readm(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_write(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_writem(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_carry(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_set(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_mov(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_sext(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_roland(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_rolins(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_add(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_addc(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_sub(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_subc(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_cmp(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_mulu(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_muls(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_divu(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_divs(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_and(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_test(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_or(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_xor(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_lzcnt(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_tzcnt(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_bswap(asmjit::x86::Assembler &a, const uml::instruction &inst); template void op_shift(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_fload(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_fstore(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_fread(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_fwrite(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_fmov(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_ftoint(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_ffrint(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_ffrflt(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_frnds(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_fadd(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_fsub(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_fcmp(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_fmul(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_fdiv(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_fneg(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_fabs(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_fsqrt(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_frecip(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_frsqrt(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_fcopyi(asmjit::x86::Assembler &a, const uml::instruction &inst); void op_icopyf(asmjit::x86::Assembler &a, const uml::instruction &inst); // alu and shift operation helpers static bool ones(u64 const value, unsigned const size) noexcept { return (size == 4) ? u32(value) == 0xffffffffU : value == 0xffffffff'ffffffffULL; } void alu_op_param(asmjit::x86::Assembler &a, asmjit::x86::Inst::Id const opcode, asmjit::Operand const &dst, be_parameter const ¶m, std::function optimize = [](asmjit::x86::Assembler &a, asmjit::Operand dst, be_parameter const &src) { return false; }); void shift_op_param(asmjit::x86::Assembler &a, asmjit::x86::Inst::Id const opcode, asmjit::Operand const &dst, be_parameter const ¶m); // parameter helpers void mov_reg_param(asmjit::x86::Assembler &a, asmjit::x86::Gp const ®, be_parameter const ¶m, bool const keepflags = false); void mov_param_reg(asmjit::x86::Assembler &a, be_parameter const ¶m, asmjit::x86::Gp const ®); void mov_mem_param(asmjit::x86::Assembler &a, asmjit::x86::Mem const &memref, be_parameter const ¶m); // special-case move helpers void movsx_r64_p32(asmjit::x86::Assembler &a, asmjit::x86::Gp const ®, be_parameter const ¶m); void mov_r64_imm(asmjit::x86::Assembler &a, asmjit::x86::Gp const ®, uint64_t const imm); // floating-point helpers void movss_r128_p32(asmjit::x86::Assembler &a, asmjit::x86::Xmm const ®, be_parameter const ¶m); void movss_p32_r128(asmjit::x86::Assembler &a, be_parameter const ¶m, asmjit::x86::Xmm const ®); void movsd_r128_p64(asmjit::x86::Assembler &a, asmjit::x86::Xmm const ®, be_parameter const ¶m); void movsd_p64_r128(asmjit::x86::Assembler &a, be_parameter const ¶m, asmjit::x86::Xmm const ®); size_t emit(asmjit::CodeHolder &ch); // internal state drc_hash_table m_hash; // hash table state drc_map_variables m_map; // code map x86log_context * m_log; // logging FILE * m_log_asmjit; uint32_t * m_absmask32; // absolute value mask (32-bit) uint64_t * m_absmask64; // absolute value mask (32-bit) uint8_t * m_rbpvalue; // value of RBP x86_entry_point_func m_entry; // entry point x86code * m_exit; // exit point x86code * m_nocode; // nocode handler // state to live in the near cache struct near_state { x86code * debug_cpu_instruction_hook;// debugger callback x86code * debug_log_hashjmp; // hashjmp debugging x86code * debug_log_hashjmp_fail; // hashjmp debugging x86code * drcmap_get_value; // map lookup helper uint32_t ssemode; // saved SSE mode uint32_t ssemodesave; // temporary location for saving uint32_t ssecontrol[4]; // copy of the sse_control array float single1; // 1.0 is single-precision double double1; // 1.0 in double-precision void * stacksave; // saved stack pointer void * hashstacksave; // saved stack pointer for hashjmp uint8_t flagsmap[0x1000]; // flags map uint64_t flagsunmap[0x20]; // flags unmapper }; near_state & m_near; // resolved memory handler functions struct resolved_handler { uintptr_t obj = 0; x86code *func = nullptr; }; struct resolved_accessors { resolved_handler read_byte; resolved_handler read_word; resolved_handler read_word_masked; resolved_handler read_dword; resolved_handler read_dword_masked; resolved_handler read_qword; resolved_handler read_qword_masked; resolved_handler write_byte; resolved_handler write_word; resolved_handler write_word_masked; resolved_handler write_dword; resolved_handler write_dword_masked; resolved_handler write_qword; resolved_handler write_qword_masked; }; using resolved_accessors_vector = std::vector; resolved_accessors_vector m_resolved_accessors; // globals using opcode_generate_func = void (drcbe_x64::*)(asmjit::x86::Assembler &, const uml::instruction &); struct opcode_table_entry { uml::opcode_t opcode; // opcode in question opcode_generate_func func; // function pointer to the work }; static const opcode_table_entry s_opcode_table_source[]; static opcode_generate_func s_opcode_table[uml::OP_MAX]; }; } // namespace drc using drc::drcbe_x64; #endif // MAME_CPU_DRCBEX64_H