// license:BSD-3-Clause // copyright-holders:Fabio Priuli /*********************************************************************************************************** Mattel Intellivision cart emulation (through slot devices) This is a strange beast, because INTV carts had potentially access to a *LOT* of memory ranges! Quoting Joe Zbiciak's documentation for his emu (jzIntv): The Intellivision leaves many addresses available to cartridges. However, several address ranges come with caveats, such as interactions with other devices in the system, or incompatibilities with various peripherals. Below is a summary. ADDRESSES NOTES -------------- -------------------------------------------------------------- $0400 - $04FF RAM/ROM ok on all but Intellivision 2. $0500 - $06FF RAM/ROM ok. $0700 - $0CFF RAM/ROM ok if no Intellivoice. $0D00 - $0FFF RAM/ROM ok. $2000 - $2FFF RAM/ROM ok if no ECS. $4000 - $47FF RAM/ROM ok if no ECS. $4800 ROM ok. RAM ok only if boot ROM at $7000. $4801 - $4FFF RAM/ROM ok. $5000 - $5014 ROM ok. RAM ok only if boot ROM at $7000 or $4800. $5015 - $6FFF RAM/ROM ok. $7000 ROM ok if no ECS. RAM at $7000 confuses EXEC boot sequence. $7001 - $77FF RAM/ROM ok if no ECS. $7800 - $7FFF ROM ok if no ECS. Do not map RAM here due to GRAM alias. $8000 - $8FFF RAM/ROM ok. Avoid STIC alias at $8000 - $803F. $9000 - $B7FF RAM/ROM ok. $B800 - $BFFF ROM ok. Do not map RAM here due to GRAM alias. $C000 - $CFFF RAM/ROM ok. Avoid STIC alias at $C000 - $C03F. $D000 - $DFFF RAM/ROM ok. $E000 - $EFFF RAM/ROM ok if no ECS. $F000 - $F7FF RAM/ROM ok. $F800 - $FFFF ROM ok. Do not map RAM here due to GRAM alias. We handle this, by always creating a 0x10000 wide ROM region to load the cart image and exposing the following (long list of) read handlers: read_rom04 read_rom20 read_rom40 read_rom48 read_rom50 read_rom60 read_rom70 read_rom80 read_rom90 read_roma0 read_romb0 read_romc0 read_romd0 read_rome0 read_romf0 Each pcb types will then use the correct ones for its wiring setup. The BIN+CFG format introduced by INTVPC emulator includes metadata about where to load ROM into memory in the CFG file, but we don't support it (because we don't parse the CFG at all) and we rely instead on the intv.hsi metadata for fullpath loading of these. Alternatively, we support the .ROM format used by jzIntv. TODO: - Convert also the keyboard component to be a passthru slot device - Merge some of the ROM accessor above, once it is clear which ones can be merged ***********************************************************************************************************/ #include "emu.h" #include "slot.h" #include "hashfile.h" #define INTELLIVOICE_MASK 0x02 #define ECS_MASK 0x01 //************************************************************************** // GLOBAL VARIABLES //************************************************************************** DEFINE_DEVICE_TYPE(INTV_CART_SLOT, intv_cart_slot_device, "intv_cart_slot", "Intellivision Cartridge Slot") //************************************************************************** // Intellivision Cartridges Interface //************************************************************************** //------------------------------------------------- // device_intv_cart_interface - constructor //------------------------------------------------- device_intv_cart_interface::device_intv_cart_interface(const machine_config &mconfig, device_t &device) : device_interface(device, "intvcart"), m_rom(nullptr), m_rom_size(0) { } //------------------------------------------------- // ~device_intv_cart_interface - destructor //------------------------------------------------- device_intv_cart_interface::~device_intv_cart_interface() { } //------------------------------------------------- // rom_alloc - alloc the space for the cart //------------------------------------------------- void device_intv_cart_interface::rom_alloc(uint32_t size, const char *tag) { if (m_rom == nullptr) { m_rom = device().machine().memory().region_alloc(std::string(tag).append(INTVSLOT_ROM_REGION_TAG).c_str(), size, 1, ENDIANNESS_LITTLE)->base(); memset(m_rom, 0xff, size); m_rom_size = size; } } //------------------------------------------------- // ram_alloc - alloc the space for the ram //------------------------------------------------- void device_intv_cart_interface::ram_alloc(uint32_t size) { m_ram.resize(size); } //************************************************************************** // LIVE DEVICE //************************************************************************** //------------------------------------------------- // intv_cart_slot_device - constructor //------------------------------------------------- intv_cart_slot_device::intv_cart_slot_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock) : device_t(mconfig, INTV_CART_SLOT, tag, owner, clock), device_image_interface(mconfig, *this), device_single_card_slot_interface(mconfig, *this), m_type(INTV_STD), m_cart(nullptr) { } //------------------------------------------------- // intv_cart_slot_device - destructor //------------------------------------------------- intv_cart_slot_device::~intv_cart_slot_device() { } //------------------------------------------------- // device_start - device-specific startup //------------------------------------------------- void intv_cart_slot_device::device_start() { m_cart = get_card_device(); } //------------------------------------------------- // INTV PCB //------------------------------------------------- struct intv_slot { int pcb_id; const char *slot_option; }; // Here, we take the feature attribute from .xml (i.e. the PCB name) and we assign a unique ID to it static const intv_slot slot_list[] = { { INTV_STD, "intv_rom" }, { INTV_RAM, "intv_ram" }, { INTV_GFACT, "intv_gfact" }, { INTV_WSMLB, "intv_wsmlb" }, { INTV_VOICE, "intv_voice" }, { INTV_ECS, "intv_ecs" }, { INTV_KEYCOMP, "intv_keycomp" } }; static int intv_get_pcb_id(const char *slot) { for (auto & elem : slot_list) { if (!strcmp(elem.slot_option, slot)) return elem.pcb_id; } return 0; } #if 1 static const char *intv_get_slot(int type) { for (auto & elem : slot_list) { if (elem.pcb_id == type) return elem.slot_option; } return "intv_rom"; } #endif /*------------------------------------------------- call load -------------------------------------------------*/ image_init_result intv_cart_slot_device::load_fullpath() { uint8_t temp; uint8_t num_segments; uint8_t start_seg; uint8_t end_seg; uint32_t current_address; uint32_t end_address; uint8_t high_byte; uint8_t low_byte; uint8_t *ROM; /* if it is in .rom format, we enter here */ if (is_filetype("rom")) { // header fread(&temp, 1); if (temp != 0xa8) return image_init_result::FAIL; fread(&num_segments, 1); fread(&temp, 1); if (temp != (num_segments ^ 0xff)) return image_init_result::FAIL; m_cart->rom_alloc(0x20000, tag()); ROM = (uint8_t *)m_cart->get_rom_base(); for (int i = 0; i < num_segments; i++) { fread(&start_seg, 1); current_address = start_seg * 0x100; fread(&end_seg, 1); end_address = end_seg * 0x100 + 0xff; while (current_address <= end_address) { fread(&low_byte, 1); ROM[(current_address << 1) + 1] = low_byte; fread(&high_byte, 1); ROM[current_address << 1] = high_byte; current_address++; } // Here we should calculate and compare the CRC16... fread(&temp, 1); fread(&temp, 1); } // Access tables and fine address restriction tables are not supported ATM for (int i = 0; i < (16 + 32 + 2); i++) { fread(&temp, 1); } return image_init_result::PASS; } /* otherwise, we load it as a .bin file, using extrainfo from intv.hsi in place of .cfg */ else { // This code is a blatant hack, due to impossibility to load a separate .cfg file in MESS. // It shall be eventually replaced by the .xml loading // extrainfo format // 1. mapper number (to deal with bankswitch). no bankswitch is mapper 0 (most games). // 2.->5. current images have at most 4 chunks of data. we store here block size and location to load // (value & 0xf0) >> 4 is the location / 0x1000 // (value & 0x0f) is the size / 0x800 // 6. some images have a ram chunk. as above we store location and size in 8 bits // 7. extra = 1 ECS, 2 Intellivoice int start, size; int mapper, rom[5], ram, extra; std::string extrainfo; m_cart->rom_alloc(0x20000, tag()); ROM = (uint8_t *)m_cart->get_rom_base(); if (!hashfile_extrainfo(*this, extrainfo)) { // If no extrainfo, we assume a single 0x2000 chunk at 0x5000 for (int i = 0; i < 0x2000; i++ ) { fread(&low_byte, 1); ROM[((0x5000 + i) << 1) + 1] = low_byte; fread(&high_byte, 1); ROM[(0x5000 + i) << 1] = high_byte; } } else { sscanf(extrainfo.c_str() ,"%d %d %d %d %d %d %d", &mapper, &rom[0], &rom[1], &rom[2], &rom[3], &ram, &extra); //printf("extrainfo: %d %d %d %d %d %d %d \n", mapper, rom[0], rom[1], rom[2], rom[3], ram, extra); if (mapper) logerror("Bankswitch not yet implemented!\n"); if (ram) { start = ((ram & 0xf0) >> 4) * 0x1000; size = (ram & 0x0f) * 0x800; if (start == 0xd000 && size == 0x800) { m_type = INTV_RAM; m_cart->ram_alloc(0x800); } else if (start == 0x8800 && size == 0x800) { m_type = INTV_GFACT; m_cart->ram_alloc(0x800); } else printf("Unrecognized RAM setup [Start 0x%X - End 0x%X]. Please contact MESSdevs.\n", start, start + size); } if (extra & INTELLIVOICE_MASK) { printf("WARNING: This game requires emulation of the IntelliVoice module.\n"); } if (extra & ECS_MASK) { printf("WARNING: This game requires emulation of the ECS module.\n"); } for (int j = 0; j < 4; j++) { start = ((rom[j] & 0xf0) >> 4) * 0x1000; size = (rom[j] & 0x0f) * 0x800; // some cart has to be loaded to 0x4800, but none of the available ones goes to 0x4000. // Hence, we use 0x04 << 4 in extrainfo (to reduce the stored values) and fix the value here. if (start == 0x4000) start += 0x800; // logerror("step %d: %d %d \n", j, start / 0x1000, size / 0x1000); for (int i = 0; i < size; i++) { fread(&low_byte, 1); ROM[((start + i) << 1) + 1] = low_byte; fread(&high_byte, 1); ROM[(start + i) << 1] = high_byte; } } } return image_init_result::PASS; } } image_init_result intv_cart_slot_device::call_load() { if (m_cart) { if (!loaded_through_softlist()) return load_fullpath(); else { uint16_t offset[] = { 0x400, 0x2000, 0x4000, 0x4800, 0x5000, 0x6000, 0x7000, 0x8000, 0x8800, 0x9000, 0xa000, 0xb000, 0xc000, 0xd000, 0xe000, 0xf000}; const char* region_name[] = {"0400", "2000", "4000", "4800", "5000", "6000", "7000", "8000", "8800", "9000", "a000", "b000", "c000", "d000", "e000", "f000"}; const char *pcb_name = get_feature("slot"); bool extra_bank = false; if (pcb_name) m_type = intv_get_pcb_id(pcb_name); // these two carts have paged roms, which does not work well with our 0x10000 rom region // so if we are loading one of these, we allocate additional 0x2000 bytes for the paged bank if (m_type == INTV_WSMLB) extra_bank = true; uint32_t size; uint16_t address; uint8_t *ROM, *region; m_cart->rom_alloc(extra_bank ? 0x22000 : 0x20000, tag()); ROM = m_cart->get_rom_base(); for (int i = 0; i < 16; i++) { address = offset[i]; size = get_software_region_length(region_name[i]); if (size) { region = get_software_region(region_name[i]); for (int j = 0; j < size / 2; j++) { ROM[((address + j) << 1) + 1] = region[2 * j]; ROM[(address + j) << 1] = region[2 * j + 1]; } } } if (m_type == INTV_RAM || m_type == INTV_GFACT || m_type == INTV_ECS) m_cart->ram_alloc(get_software_region_length("ram")); //printf("Type: %s\n", intv_get_slot(m_type)); return image_init_result::PASS; } } return image_init_result::PASS; } /*------------------------------------------------- get default card software -------------------------------------------------*/ std::string intv_cart_slot_device::get_default_card_software(get_default_card_software_hook &hook) const { if (hook.image_file()) { uint64_t len; hook.image_file()->length(len); // FIXME: check error return, guard against excessively large files std::vector rom(len); size_t actual; hook.image_file()->read(&rom[0], len, actual); // FIXME: check error return or read returning short int type = INTV_STD; if (rom[0] == 0xa8 && (rom[1] == (rom[2] ^ 0xff))) { // it's .ROM file, so that we don't have currently any way to distinguish RAM-equipped carts } else { // assume it's .BIN and try to use .hsi file to determine type (just RAM) std::string extrainfo; if (hook.hashfile_extrainfo(extrainfo)) { int mapper, rom[5], ram, extra; sscanf(extrainfo.c_str() ,"%d %d %d %d %d %d %d", &mapper, &rom[0], &rom[1], &rom[2], &rom[3], &ram, &extra); if (ram) { int const start = ((ram & 0xf0) >> 4) * 0x1000; if (start == 0xd000) type = INTV_RAM; if (start == 0x8800) type = INTV_GFACT; } } } char const *const slot_string = intv_get_slot(type); //printf("type: %s\n", slot_string); return std::string(slot_string); } return software_get_default_slot("intv_rom"); } /*------------------------------------------------- read_ay -------------------------------------------------*/ uint16_t intv_cart_slot_device::read_ay(offs_t offset) { if (m_cart) return m_cart->read_ay(offset); else return 0xffff; } /*------------------------------------------------- write_ay -------------------------------------------------*/ void intv_cart_slot_device::write_ay(offs_t offset, uint16_t data) { if (m_cart) m_cart->write_ay(offset, data); } /*------------------------------------------------- read_speech -------------------------------------------------*/ uint16_t intv_cart_slot_device::read_speech(offs_t offset) { if (m_cart) return m_cart->read_speech(offset); else return 0xffff; } /*------------------------------------------------- write_speech -------------------------------------------------*/ void intv_cart_slot_device::write_speech(offs_t offset, uint16_t data) { if (m_cart) m_cart->write_speech(offset, data); } #include "bus/intv/rom.h" #include "bus/intv/ecs.h" //#include "bus/intv/keycomp.h" #include "bus/intv/voice.h" void intv_cart(device_slot_interface &device) { device.option_add_internal("intv_rom", INTV_ROM_STD); device.option_add_internal("intv_ram", INTV_ROM_RAM); device.option_add_internal("intv_gfact", INTV_ROM_GFACT); device.option_add_internal("intv_wsmlb", INTV_ROM_WSMLB); device.option_add_internal("intv_voice", INTV_ROM_VOICE); device.option_add_internal("intv_ecs", INTV_ROM_ECS); // device.option_add_internal("intv_keycomp", INTV_ROM_KEYCOMP); }