/* € */ // ABC #include "netlist/devices/net_lib.h" #include "netlist/devices/nld_system.h" #include "netlist/analog/nld_bjt.h" #include "netlist/analog/nld_twoterm.h" /* ---------------------------------------------------------------------------- * Library section header START * ---------------------------------------------------------------------------*/ #ifndef __PLIB_PREPROCESSOR__ #define LM358_DIP(_name) \ NET_REGISTER_DEV_X(LM358_DIP, _name) #define G501534_DIP(_name) \ NET_REGISTER_DEV_X(G501534_DIP, _name) NETLIST_EXTERNAL(congob_lib) #endif /* ---------------------------------------------------------------------------- * Library section header END * ---------------------------------------------------------------------------*/ NETLIST_START(dummy) // EESCHEMA NETLIST VERSION 1.1 (SPICE FORMAT) CREATION DATE: WED 01 JUL 2015 11:09:25 PM CEST // TO EXCLUDE A COMPONENT FROM THE SPICE NETLIST ADD [SPICE_NETLIST_ENABLED] USER FIELD SET TO: N // TO REORDER THE COMPONENT SPICE NODE SEQUENCE ADD [SPICE_NODE_SEQUENCE] USER FIELD AND DEFINE SEQUENCE: 2,1,0 // SHEET NAME:/ // IGNORED O_AUDIO0: O_AUDIO0 64 0 // .END /* €€ */ SOLVER(Solver, 24000) PARAM(Solver.ACCURACY, 1e-8) PARAM(Solver.NR_LOOPS, 9000) PARAM(Solver.SOR_FACTOR, 0.001) PARAM(Solver.GS_LOOPS, 1) //PARAM(Solver.GS_THRESHOLD, 99) PARAM(Solver.ITERATIVE, "SOR") PARAM(Solver.PARALLEL, 0) PARAM(Solver.PIVOT, 0) LOCAL_SOURCE(congob_lib) INCLUDE(congob_lib) TTL_INPUT(I_BASS_DRUM0, 0) //CLOCK(I_BASS_DRUM0, 2) TTL_INPUT(I_CONGA_H0, 0) //CLOCK(I_CONGA_H0, 2) TTL_INPUT(I_CONGA_L0, 0) //CLOCK(I_CONGA_L0, 2) TTL_INPUT(I_GORILLA0, 0) //CLOCK(I_GORILLA0, 2) TTL_INPUT(I_RIM0, 0) //CLOCK(I_RIM0, 2) ALIAS(I_V0.Q, GND.Q) ANALOG_INPUT(I_V12, 12) ANALOG_INPUT(I_V5, 5) ANALOG_INPUT(I_V6, 6) /* temporary output stage */ RES(RO, RES_K(50)) CAP(CO, CAP_U(10)) NET_C(R94.1, CO.1) NET_C(CO.2, RO.1) NET_C(RO.2, GND) // FIXME: Same as 1N4148 NET_MODEL("1S2075 D(Is=2.52n Rs=.568 N=1.752 Cjo=4p M=.4 tt=20n Iave=200m Vpk=75)") NET_MODEL("2SC1941 NPN(IS=46.416f BF=210 NF=1.0022 VAF=600 IKF=500m ISE=60f NE=1.5 BR=2.0122 NR=1.0022 VAR=10G IKR=10G ISC=300p NC=2 RB=13.22 IRB=10G RBM=13.22 RE=100m RC=790m CJE=26.52p VJE=900m MJE=518m TF=1.25n XTF=10 VTF=10 ITF=500m PTF=0 CJC=4.89p VJC=750m MJC=237m XCJC=500m TR=100n CJS=0 VJS=750m MJS=500m XTB=1.5 EG=1.11 XTI=3 KF=0 AF=1 FC=500m)") INCLUDE(CongoBongo_schematics) /* The opamp actually has an FPF of about 500k. This doesn't work here and causes oscillations. * FPF here therefore about half the Solver clock. */ PARAM(XU16.B.MODEL, "MB3614(UGF=11k)") PARAM(XU17.C.MODEL, "MB3614(UGF=11k)") PARAM(XU17.A.MODEL, "MB3614(TYPE=1)") PARAM(XU17.B.MODEL, "MB3614(TYPE=1)") PARAM(XU17.D.MODEL, "MB3614(TYPE=1)") //PARAM(XU16.A.MODEL, "MB3614(TYPE=1)") PARAM(XU16.C.MODEL, "MB3614(TYPE=1)") PARAM(XU16.D.MODEL, "MB3614(TYPE=1)") #if 0 PARAM(XU13.A.MODEL, "MB3614(TYPE=1)") PARAM(XU13.B.MODEL, "MB3614(TYPE=1)") PARAM(XU13.C.MODEL, "MB3614(TYPE=1)") PARAM(XU13.D.MODEL, "MB3614(TYPE=1)") #endif #if 1 OPTIMIZE_FRONTIER(C51.1, RES_K(20), 50) OPTIMIZE_FRONTIER(R77.2, RES_K(20), 50) OPTIMIZE_FRONTIER(C25.2, RES_K(240), 50) OPTIMIZE_FRONTIER(C29.2, RES_K(390), 50) OPTIMIZE_FRONTIER(C37.2, RES_K(390), 50) OPTIMIZE_FRONTIER(C44.2, RES_K(200), 50) OPTIMIZE_FRONTIER(R90.2, RES_K(100), 50) OPTIMIZE_FRONTIER(R92.2, RES_K(15), 50) #endif NETLIST_END() NETLIST_START(CongoBongo_schematics) CAP(C20, CAP_N(68)) CAP(C21, CAP_U(1)) CAP(C22, CAP_U(47)) CAP(C23, CAP_N(100)) CAP(C24, CAP_N(100)) CAP(C25, CAP_U(1)) CAP(C26, CAP_N(68)) CAP(C27, CAP_N(33)) CAP(C28, CAP_U(47)) CAP(C29, CAP_U(1)) CAP(C30, CAP_N(33)) CAP(C31, CAP_N(33)) CAP(C32, CAP_N(68)) CAP(C33, CAP_N(33)) CAP(C34, CAP_U(47)) CAP(C35, CAP_N(33)) CAP(C36, CAP_N(33)) CAP(C37, CAP_U(1)) CAP(C38, CAP_N(10)) CAP(C39, CAP_N(3.3)) CAP(C40, CAP_U(2.2)) CAP(C41, CAP_N(6.8)) CAP(C42, CAP_N(6.8)) CAP(C43, CAP_N(47)) CAP(C44, CAP_U(1)) CAP(C45, CAP_U(33)) CAP(C46, CAP_N(100)) CAP(C47, CAP_P(470)) CAP(C48, CAP_N(1.5)) CAP(C49, CAP_P(220)) CAP(C50, CAP_N(3.9)) CAP(C51, CAP_U(1)) CAP(C52, CAP_U(1)) CAP(C53, CAP_U(1)) CAP(C54, CAP_U(1)) CAP(C55, CAP_U(1)) CAP(C56, CAP_U(10)) CAP(C57, CAP_N(47)) CAP(C58, CAP_N(22)) CAP(C59, CAP_U(10)) CAP(C60, CAP_N(22)) CAP(C62, CAP_N(22)) CAP(C61, CAP_U(1)) DIODE(D1, "1S2075") DIODE(D2, "1S2075") DIODE(D3, "1S2075") DIODE(D4, "1S2075") DIODE(D5, "1S2075") DIODE(D6, "1S2075") DIODE(D7, "1S2075") DIODE(D8, "1S2075") QBJT_EB(Q2, "2SC1941") RES(R21, RES_K(10)) RES(R22, RES_K(47)) RES(R23, RES_K(47)) RES(R24, RES_K(10)) RES(R25, RES_K(47)) RES(R26, RES_K(22)) RES(R27, RES_K(10)) RES(R28, RES_K(470)) RES(R29, RES_K(1)) RES(R30, RES_K(240)) RES(R31, RES_K(10)) RES(R32, RES_K(47)) RES(R33, RES_K(47)) RES(R34, RES_K(47)) RES(R35, RES_K(47)) RES(R36, RES_K(22)) RES(R37, RES_K(10)) RES(R38, RES_M(1)) RES(R39, 330) RES(R40, RES_K(390)) RES(R41, RES_K(10)) RES(R42, RES_K(47)) RES(R43, RES_K(47)) RES(R44, RES_K(47)) RES(R45, RES_K(47)) RES(R46, RES_K(22)) RES(R47, RES_K(10)) RES(R48, RES_M(1)) RES(R49, 220) RES(R50, RES_K(390)) RES(R51, RES_K(10)) RES(R52, RES_K(22)) RES(R53, RES_K(22)) RES(R54, RES_K(22)) RES(R55, RES_K(22)) RES(R56, RES_K(10)) RES(R57, RES_K(4.7)) RES(R58, RES_M(1)) RES(R59, 470) RES(R60, RES_M(2.2)) RES(R61, RES_M(2.2)) RES(R62, RES_K(200)) RES(R63, RES_K(22)) RES(R64, RES_K(22)) RES(R65, RES_K(20)) RES(R66, RES_K(20)) RES(R67, RES_K(20)) RES(R68, RES_K(20)) RES(R69, RES_K(20)) RES(R70, RES_K(100)) RES(R71, RES_K(150)) RES(R72, RES_K(330)) RES(R73, RES_K(1)) RES(R74, RES_K(1)) RES(R75, RES_K(470)) RES(R76, RES_K(10)) RES(R77, RES_K(20)) RES(R78, RES_K(47)) RES(R79, RES_K(22)) RES(R80, RES_K(20)) RES(R81, RES_K(10)) RES(R82, RES_K(100)) RES(R83, RES_K(51)) RES(R84, RES_K(51)) RES(R85, RES_K(51)) RES(R86, RES_K(51)) RES(R87, RES_K(100)) RES(R88, RES_K(2.2)) RES(R89, RES_K(10)) RES(R90, RES_K(100)) RES(R91, RES_K(10)) RES(R92, RES_K(15)) RES(R93, RES_K(15)) RES(R94, RES_K(51)) MB3614_DIP(XU13) G501534_DIP(XU15) MB3614_DIP(XU16) MB3614_DIP(XU17) CD4001_DIP(XU18) CD4538_DIP(XU19) MM5837_DIP(XU20) TTL_7416_DIP(XU6) NET_C(D1.A, C21.2, R23.1) NET_C(D1.K, C20.1, R22.1) NET_C(XU13.1, C37.2, C36.1, R48.1) NET_C(XU13.2, C35.2, R48.2) NET_C(XU13.3, R44.1, R46.2, R45.1) NET_C(XU13.4, R27.1, R21.1, R37.1, R31.1, R47.1, R41.1, R57.1, R51.1, C46.2, C45.2, XU17.4, R80.2, XU16.4, XU20.4, XU15.12, I_V12.Q) NET_C(XU13.5, R54.1, R56.2, R55.1) NET_C(XU13.6, C41.2, R58.2, R60.2) NET_C(XU13.7, C44.2, C42.1, R58.1, R61.1) NET_C(XU13.8, C29.2, C31.1, R38.1) NET_C(XU13.9, C30.2, R38.2) NET_C(XU13.10, R34.1, R36.2, R35.1) NET_C(XU13.11, C22.2, R29.2, R25.2, R23.2, R22.2, XU6.1, XU6.3, XU6.7, C28.2, R39.2, R35.2, R33.2, R32.2, C34.2, R49.2, R45.2, R43.2, R42.2, C40.2, R59.2, R55.2, R53.2, R52.2, C43.2, R69.1, R64.1, C49.2, C48.2, C47.2, C46.1, C45.1, XU17.11, XU19.1, XU19.4, XU19.8, XU19.12, XU19.15, R81.1, C56.2, C55.2, C53.2, C52.2, XU18.1, XU18.2, XU18.7, XU18.12, XU18.13, C54.2, XU16.11, R84.1, R88.1, Q2.E, C58.2, C60.2, XU20.1, XU20.2, XU15.4, I_V0.Q) NET_C(XU13.12, R24.1, R26.2, R25.1) NET_C(XU13.13, C23.2, R28.2) NET_C(XU13.14, C25.2, C24.1, R28.1) NET_C(C25.1, R30.2) NET_C(C24.2, C23.1, R29.1) NET_C(C21.1, R24.2) NET_C(C20.2, R21.2, XU6.8) NET_C(C22.1, R27.2, R26.1) NET_C(R30.1, R40.1, R50.1, R62.1, R94.1) //NET_C(XU6.2, XU6.4, XU19.7, XU18.3, XU18.11, XU15.5, XU15.6, XU15.7, XU15.8, XU15.9, XU15.10, XU15.11, XU15.14) NET_C(XU6.5, I_CONGA_L0.Q) NET_C(XU6.6, C26.2, R31.2) NET_C(XU6.9, I_BASS_DRUM0.Q) NET_C(XU6.10, C38.2, R51.2) NET_C(XU6.11, I_RIM0.Q) NET_C(XU6.12, C32.2, R41.2) NET_C(XU6.13, I_CONGA_H0.Q) NET_C(XU6.14, D5.K, XU19.16, R70.2, R76.2, R71.2, XU18.14, I_V5.Q) NET_C(D2.A, C27.2, R33.1) NET_C(D2.K, C26.1, R32.1) NET_C(C29.1, R40.2) NET_C(C31.2, C30.1, R39.1) NET_C(C27.1, R34.2) NET_C(C28.1, R37.2, R36.1) NET_C(D3.A, C33.2, R43.1) NET_C(D3.K, C32.1, R42.1) NET_C(C37.1, R50.2) NET_C(C36.2, C35.1, R49.1) NET_C(C33.1, R44.2) NET_C(C34.1, R47.2, R46.1) NET_C(D4.A, C39.2, R53.1) NET_C(D4.K, C38.1, R52.1) NET_C(C44.1, R62.2) NET_C(C42.2, C41.1, R59.1) NET_C(C39.1, R54.2) NET_C(C40.1, R57.2, R56.1) NET_C(R60.1, R61.2, C43.1) NET_C(R63.1, R64.2, C47.1, D5.A, XU18.5, XU18.6) NET_C(R63.2, XU20.3) NET_C(R65.1, R66.2, C48.1) NET_C(R65.2, XU18.4) NET_C(R66.1, R67.2, C50.2) NET_C(R67.1, C49.1, XU17.10) NET_C(R68.1, R69.2, XU17.9) NET_C(R68.2, C50.1, XU17.8, C51.1) NET_C(XU17.1, XU16.6, C62.1) NET_C(XU17.2, R82.1, C62.2, R85.2) NET_C(XU17.3, R83.1, R84.2) NET_C(XU17.5, C55.1, R72.1, R73.1) NET_C(XU17.6, XU17.7, R77.2) NET_C(XU17.12, R80.1, R81.2, C56.1) NET_C(XU17.13, R78.1, R79.2, R77.1) NET_C(XU17.14, R79.1, R82.2, R83.2) NET_C(C51.2, R78.2) NET_C(XU19.2, R70.1, C52.1) NET_C(XU19.3, XU19.13, R76.1) NET_C(XU19.5, XU19.11, I_GORILLA0.Q) NET_C(XU19.6, XU18.9) NET_C(XU19.9, XU18.8) NET_C(XU19.10, D7.A, R75.2) NET_C(XU19.14, R71.1, C53.1) NET_C(R72.2, D6.A, XU18.10) NET_C(R73.2, D6.K) NET_C(D7.K, R74.2) NET_C(R74.1, R75.1, C54.1, XU16.10) NET_C(XU16.1, R91.1, R92.2) NET_C(XU16.2, R90.1, R91.2) NET_C(XU16.3, R86.2, I_V6.Q) NET_C(XU16.5, R86.1, R87.2) NET_C(XU16.7, R87.1, D8.A, R90.2) NET_C(XU16.8, XU16.9, XU15.13) NET_C(XU16.12, R93.1, C58.1) NET_C(XU16.13, XU16.14, C57.1, C59.2) NET_C(R85.1, Q2.C) NET_C(R89.1, D8.K) NET_C(R89.2, R88.2, Q2.B) NET_C(R92.1, C57.2, R93.2) NET_C(C59.1, XU15.1) NET_C(C60.1, XU15.2) NET_C(XU15.3, C61.2) NET_C(C61.1, R94.2) NETLIST_END() NETLIST_START(opamp_mod) /* Opamp model from * * http://www.ecircuitcenter.com/Circuits/opmodel1/opmodel1.htm * * MB3614 Unit Gain frequency is about 500 kHz and the first pole frequency * about 5 Hz. We have to keep the Unity Gain Frequency below our sampling * frequency of 24 Khz. * * Simple Opamp Model Calculation * * First Pole Frequency 5 Hz * Unity Gain Frequency 11,000 Hz * RP 100,000 Ohm * DC Gain / Aol 2200 * CP 0.318 uF * KG 0.022 * */ /* Terminal definitions for calling netlists */ ALIAS(PLUS, G1.IP) // Positive input ALIAS(MINUS, G1.IN) // Negative input ALIAS(OUT, EBUF.OP) // Opamp output ... AFUNC(fUH, 1, "A0 1.2 -") AFUNC(fUL, 1, "A0 1.2 +") ALIAS(VCC, fUH.A0) // VCC terminal ALIAS(GND, fUL.A0) // VGND terminal AFUNC(fVREF, 2, "A0 A1 + 0.5 *") NET_C(fUH.A0, fVREF.A0) NET_C(fUL.A0, fVREF.A1) NET_C(EBUF.ON, fVREF) /* The opamp model */ LVCCS(G1) PARAM(G1.RI, RES_K(1000)) #if 0 PARAM(G1.G, 0.0022) RES(RP1, 1e6) CAP(CP1, 0.0318e-6) #else PARAM(G1.G, 0.002) PARAM(G1.CURLIM, 0.002) RES(RP1, 9.5e6) CAP(CP1, 0.0033e-6) #endif VCVS(EBUF) PARAM(EBUF.RO, 50) PARAM(EBUF.G, 1) NET_C(G1.ON, fVREF) NET_C(RP1.2, fVREF) NET_C(CP1.2, fVREF) NET_C(EBUF.IN, fVREF) NET_C(RP1.1, G1.OP) NET_C(CP1.1, RP1.1) DIODE(DP,"D(IS=1e-15 N=1)") DIODE(DN,"D(IS=1e-15 N=1)") #if 1 NET_C(DP.K, fUH.Q) NET_C(fUL.Q, DN.A) NET_C(DP.A, DN.K, RP1.1) #else /* * This doesn't add any performance by decreasing iteration loops. * To the contrary, it significantly decreases iterations */ RES(RH1, 0.1) RES(RL1, 0.1) NET_C(DP.K, RH1.1) NET_C(RH1.2, fUH.Q) NET_C(fUL.Q, RL1.1) NET_C(RL1.2, DN.A) NET_C(DP.A, DN.K, RP1.1) #endif NET_C(EBUF.IP, RP1.1) NETLIST_END() NETLIST_START(G501534_DIP) AFUNC(f, 2, "A0 A1 0.2 * *") /* * 12: VCC * 4: GND * 1: IN * 3: OUT * 13: CV * 2: RDL - connected via Capacitor to ground */ DUMMY_INPUT(DU1) DUMMY_INPUT(DU2) DUMMY_INPUT(DU3) RES(RO, 1000) ALIAS(12, DU1.I) ALIAS(4, DU2.I) ALIAS(2, DU3.I) ALIAS(1, f.A0) ALIAS(13, f.A1) NET_C(f.Q, RO.1) ALIAS(3, RO.2) NETLIST_END() NETLIST_START(congob_lib) LOCAL_LIB_ENTRY(G501534_DIP) NETLIST_END()