/* * Copyright 2011-2019 Branimir Karadzic. All rights reserved. * License: https://github.com/bkaradzic/bimg#license-bsd-2-clause */ #include "bimg_p.h" #include #include #include namespace bimg { static const ImageBlockInfo s_imageBlockInfo[] = { // +--------------------------------------------- bits per pixel // | +----------------------------------------- block width // | | +-------------------------------------- block height // | | | +---------------------------------- block size // | | | | +------------------------------- min blocks x // | | | | | +---------------------------- min blocks y // | | | | | | +------------------------ depth bits // | | | | | | | +--------------------- stencil bits // | | | | | | | | +---+---+---+----- r, g, b, a bits // | | | | | | | | r g b a +-- encoding type // | | | | | | | | | | | | | { 4, 4, 4, 8, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // BC1 { 8, 4, 4, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // BC2 { 8, 4, 4, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // BC3 { 4, 4, 4, 8, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // BC4 { 8, 4, 4, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // BC5 { 8, 4, 4, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Float) }, // BC6H { 8, 4, 4, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // BC7 { 4, 4, 4, 8, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // ETC1 { 4, 4, 4, 8, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // ETC2 { 8, 4, 4, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // ETC2A { 4, 4, 4, 8, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // ETC2A1 { 2, 8, 4, 8, 2, 2, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // PTC12 { 4, 4, 4, 8, 2, 2, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // PTC14 { 2, 8, 4, 8, 2, 2, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // PTC12A { 4, 4, 4, 8, 2, 2, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // PTC14A { 2, 8, 4, 8, 2, 2, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // PTC22 { 4, 4, 4, 8, 2, 2, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // PTC24 { 4, 4, 4, 8, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // ATC { 8, 4, 4, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // ATCE { 8, 4, 4, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // ATCI { 8, 4, 4, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // ASTC4x4 { 6, 5, 5, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // ASTC5x5 { 4, 6, 6, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // ASTC6x6 { 4, 8, 5, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // ASTC8x5 { 3, 8, 6, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // ASTC8x6 { 3, 10, 5, 16, 1, 1, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // ASTC10x5 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Count) }, // Unknown { 1, 8, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // R1 { 8, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 8, uint8_t(bx::EncodingType::Unorm) }, // A8 { 8, 1, 1, 1, 1, 1, 0, 0, 8, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // R8 { 8, 1, 1, 1, 1, 1, 0, 0, 8, 0, 0, 0, uint8_t(bx::EncodingType::Int ) }, // R8I { 8, 1, 1, 1, 1, 1, 0, 0, 8, 0, 0, 0, uint8_t(bx::EncodingType::Uint ) }, // R8U { 8, 1, 1, 1, 1, 1, 0, 0, 8, 0, 0, 0, uint8_t(bx::EncodingType::Snorm) }, // R8S { 16, 1, 1, 2, 1, 1, 0, 0, 16, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // R16 { 16, 1, 1, 2, 1, 1, 0, 0, 16, 0, 0, 0, uint8_t(bx::EncodingType::Int ) }, // R16I { 16, 1, 1, 2, 1, 1, 0, 0, 16, 0, 0, 0, uint8_t(bx::EncodingType::Uint ) }, // R16U { 16, 1, 1, 2, 1, 1, 0, 0, 16, 0, 0, 0, uint8_t(bx::EncodingType::Float) }, // R16F { 16, 1, 1, 2, 1, 1, 0, 0, 16, 0, 0, 0, uint8_t(bx::EncodingType::Snorm) }, // R16S { 32, 1, 1, 4, 1, 1, 0, 0, 32, 0, 0, 0, uint8_t(bx::EncodingType::Int ) }, // R32I { 32, 1, 1, 4, 1, 1, 0, 0, 32, 0, 0, 0, uint8_t(bx::EncodingType::Uint ) }, // R32U { 32, 1, 1, 4, 1, 1, 0, 0, 32, 0, 0, 0, uint8_t(bx::EncodingType::Float) }, // R32F { 16, 1, 1, 2, 1, 1, 0, 0, 8, 8, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // RG8 { 16, 1, 1, 2, 1, 1, 0, 0, 8, 8, 0, 0, uint8_t(bx::EncodingType::Int ) }, // RG8I { 16, 1, 1, 2, 1, 1, 0, 0, 8, 8, 0, 0, uint8_t(bx::EncodingType::Uint ) }, // RG8U { 16, 1, 1, 2, 1, 1, 0, 0, 8, 8, 0, 0, uint8_t(bx::EncodingType::Snorm) }, // RG8S { 32, 1, 1, 4, 1, 1, 0, 0, 16, 16, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // RG16 { 32, 1, 1, 4, 1, 1, 0, 0, 16, 16, 0, 0, uint8_t(bx::EncodingType::Int ) }, // RG16I { 32, 1, 1, 4, 1, 1, 0, 0, 16, 16, 0, 0, uint8_t(bx::EncodingType::Uint ) }, // RG16U { 32, 1, 1, 4, 1, 1, 0, 0, 16, 16, 0, 0, uint8_t(bx::EncodingType::Float) }, // RG16F { 32, 1, 1, 4, 1, 1, 0, 0, 16, 16, 0, 0, uint8_t(bx::EncodingType::Snorm) }, // RG16S { 64, 1, 1, 8, 1, 1, 0, 0, 32, 32, 0, 0, uint8_t(bx::EncodingType::Int ) }, // RG32I { 64, 1, 1, 8, 1, 1, 0, 0, 32, 32, 0, 0, uint8_t(bx::EncodingType::Uint ) }, // RG32U { 64, 1, 1, 8, 1, 1, 0, 0, 32, 32, 0, 0, uint8_t(bx::EncodingType::Float) }, // RG32F { 24, 1, 1, 3, 1, 1, 0, 0, 8, 8, 8, 0, uint8_t(bx::EncodingType::Unorm) }, // RGB8 { 24, 1, 1, 3, 1, 1, 0, 0, 8, 8, 8, 0, uint8_t(bx::EncodingType::Int ) }, // RGB8I { 24, 1, 1, 3, 1, 1, 0, 0, 8, 8, 8, 0, uint8_t(bx::EncodingType::Uint ) }, // RGB8U { 24, 1, 1, 3, 1, 1, 0, 0, 8, 8, 8, 0, uint8_t(bx::EncodingType::Snorm) }, // RGB8S { 32, 1, 1, 4, 1, 1, 0, 0, 9, 9, 9, 5, uint8_t(bx::EncodingType::Float) }, // RGB9E5F { 32, 1, 1, 4, 1, 1, 0, 0, 8, 8, 8, 8, uint8_t(bx::EncodingType::Unorm) }, // BGRA8 { 32, 1, 1, 4, 1, 1, 0, 0, 8, 8, 8, 8, uint8_t(bx::EncodingType::Unorm) }, // RGBA8 { 32, 1, 1, 4, 1, 1, 0, 0, 8, 8, 8, 8, uint8_t(bx::EncodingType::Int ) }, // RGBA8I { 32, 1, 1, 4, 1, 1, 0, 0, 8, 8, 8, 8, uint8_t(bx::EncodingType::Uint ) }, // RGBA8U { 32, 1, 1, 4, 1, 1, 0, 0, 8, 8, 8, 8, uint8_t(bx::EncodingType::Snorm) }, // RGBA8S { 64, 1, 1, 8, 1, 1, 0, 0, 16, 16, 16, 16, uint8_t(bx::EncodingType::Unorm) }, // RGBA16 { 64, 1, 1, 8, 1, 1, 0, 0, 16, 16, 16, 16, uint8_t(bx::EncodingType::Int ) }, // RGBA16I { 64, 1, 1, 8, 1, 1, 0, 0, 16, 16, 16, 16, uint8_t(bx::EncodingType::Uint ) }, // RGBA16U { 64, 1, 1, 8, 1, 1, 0, 0, 16, 16, 16, 16, uint8_t(bx::EncodingType::Float) }, // RGBA16F { 64, 1, 1, 8, 1, 1, 0, 0, 16, 16, 16, 16, uint8_t(bx::EncodingType::Snorm) }, // RGBA16S { 128, 1, 1, 16, 1, 1, 0, 0, 32, 32, 32, 32, uint8_t(bx::EncodingType::Int ) }, // RGBA32I { 128, 1, 1, 16, 1, 1, 0, 0, 32, 32, 32, 32, uint8_t(bx::EncodingType::Uint ) }, // RGBA32U { 128, 1, 1, 16, 1, 1, 0, 0, 32, 32, 32, 32, uint8_t(bx::EncodingType::Float) }, // RGBA32F { 16, 1, 1, 2, 1, 1, 0, 0, 5, 6, 5, 0, uint8_t(bx::EncodingType::Unorm) }, // R5G6B5 { 16, 1, 1, 2, 1, 1, 0, 0, 4, 4, 4, 4, uint8_t(bx::EncodingType::Unorm) }, // RGBA4 { 16, 1, 1, 2, 1, 1, 0, 0, 5, 5, 5, 1, uint8_t(bx::EncodingType::Unorm) }, // RGB5A1 { 32, 1, 1, 4, 1, 1, 0, 0, 10, 10, 10, 2, uint8_t(bx::EncodingType::Unorm) }, // RGB10A2 { 32, 1, 1, 4, 1, 1, 0, 0, 11, 11, 10, 0, uint8_t(bx::EncodingType::Unorm) }, // RG11B10F { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Count) }, // UnknownDepth { 16, 1, 1, 2, 1, 1, 16, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // D16 { 24, 1, 1, 3, 1, 1, 24, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // D24 { 32, 1, 1, 4, 1, 1, 24, 8, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // D24S8 { 32, 1, 1, 4, 1, 1, 32, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // D32 { 16, 1, 1, 2, 1, 1, 16, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Float) }, // D16F { 24, 1, 1, 3, 1, 1, 24, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Float) }, // D24F { 32, 1, 1, 4, 1, 1, 32, 0, 0, 0, 0, 0, uint8_t(bx::EncodingType::Float) }, // D32F { 8, 1, 1, 1, 1, 1, 0, 8, 0, 0, 0, 0, uint8_t(bx::EncodingType::Unorm) }, // D0S8 }; BX_STATIC_ASSERT(TextureFormat::Count == BX_COUNTOF(s_imageBlockInfo) ); static const char* s_textureFormatName[] = { "BC1", // BC1 "BC2", // BC2 "BC3", // BC3 "BC4", // BC4 "BC5", // BC5 "BC6H", // BC6H "BC7", // BC7 "ETC1", // ETC1 "ETC2", // ETC2 "ETC2A", // ETC2A "ETC2A1", // ETC2A1 "PTC12", // PTC12 "PTC14", // PTC14 "PTC12A", // PTC12A "PTC14A", // PTC14A "PTC22", // PTC22 "PTC24", // PTC24 "ATC", // ATC "ATCE", // ATCE "ATCI", // ATCI "ASTC4x4", // ASTC4x4 "ASTC5x5", // ASTC5x5 "ASTC6x6", // ASTC6x6 "ASTC8x5", // ASTC8x5 "ASTC8x6", // ASTC8x6 "ASTC10x5", // ASTC10x5 "", // Unknown "R1", // R1 "A8", // A8 "R8", // R8 "R8I", // R8I "R8U", // R8U "R8S", // R8S "R16", // R16 "R16I", // R16I "R16U", // R16U "R16F", // R16F "R16S", // R16S "R32I", // R32I "R32U", // R32U "R32F", // R32F "RG8", // RG8 "RG8I", // RG8I "RG8U", // RG8U "RG8S", // RG8S "RG16", // RG16 "RG16I", // RG16I "RG16U", // RG16U "RG16F", // RG16F "RG16S", // RG16S "RG32I", // RG32I "RG32U", // RG32U "RG32F", // RG32F "RGB8", // RGB8 "RGB8I", // RGB8I "RGB8U", // RGB8U "RGB8S", // RGB8S "RGB9E5", // RGB9E5F "BGRA8", // BGRA8 "RGBA8", // RGBA8 "RGBA8I", // RGBA8I "RGBA8U", // RGBA8U "RGBA8S", // RGBA8S "RGBA16", // RGBA16 "RGBA16I", // RGBA16I "RGBA16U", // RGBA16U "RGBA16F", // RGBA16F "RGBA16S", // RGBA16S "RGBA32I", // RGBA32I "RGBA32U", // RGBA32U "RGBA32F", // RGBA32F "R5G6B5", // R5G6B5 "RGBA4", // RGBA4 "RGB5A1", // RGB5A1 "RGB10A2", // RGB10A2 "RG11B10F", // RG11B10F "", // UnknownDepth "D16", // D16 "D24", // D24 "D24S8", // D24S8 "D32", // D32 "D16F", // D16F "D24F", // D24F "D32F", // D32F "D0S8", // D0S8 }; BX_STATIC_ASSERT(TextureFormat::Count == BX_COUNTOF(s_textureFormatName) ); bool isCompressed(TextureFormat::Enum _format) { return _format < TextureFormat::Unknown; } bool isColor(TextureFormat::Enum _format) { return _format > TextureFormat::Unknown && _format < TextureFormat::UnknownDepth ; } bool isDepth(TextureFormat::Enum _format) { return _format > TextureFormat::UnknownDepth && _format < TextureFormat::Count ; } bool isValid(TextureFormat::Enum _format) { return _format != TextureFormat::Unknown && _format != TextureFormat::UnknownDepth && _format != TextureFormat::Count ; } bool isFloat(TextureFormat::Enum _format) { return uint8_t(bx::EncodingType::Float) == s_imageBlockInfo[_format].encoding; } uint8_t getBitsPerPixel(TextureFormat::Enum _format) { return s_imageBlockInfo[_format].bitsPerPixel; } const ImageBlockInfo& getBlockInfo(TextureFormat::Enum _format) { return s_imageBlockInfo[_format]; } uint8_t getBlockSize(TextureFormat::Enum _format) { return s_imageBlockInfo[_format].blockSize; } const char* getName(TextureFormat::Enum _format) { if (_format >= TextureFormat::Count) { return "Unknown?!"; } return s_textureFormatName[_format]; } TextureFormat::Enum getFormat(const char* _name) { for (uint32_t ii = 0; ii < TextureFormat::Count; ++ii) { const TextureFormat::Enum fmt = TextureFormat::Enum(ii); if (isValid(fmt) ) { if (0 == bx::strCmpI(s_textureFormatName[ii], _name) ) { return fmt; } } } return TextureFormat::Unknown; } uint8_t imageGetNumMips(TextureFormat::Enum _format, uint16_t _width, uint16_t _height, uint16_t _depth) { const ImageBlockInfo& blockInfo = getBlockInfo(_format); const uint16_t blockWidth = blockInfo.blockWidth; const uint16_t blockHeight = blockInfo.blockHeight; const uint16_t minBlockX = blockInfo.minBlockX; const uint16_t minBlockY = blockInfo.minBlockY; _width = bx::max(blockWidth * minBlockX, ( (_width + blockWidth - 1) / blockWidth )*blockWidth); _height = bx::max(blockHeight * minBlockY, ( (_height + blockHeight - 1) / blockHeight)*blockHeight); _depth = bx::max(1, _depth); uint8_t numMips = calcNumMips(true, _width, _height, _depth); return numMips; } uint32_t imageGetSize(TextureInfo* _info, uint16_t _width, uint16_t _height, uint16_t _depth, bool _cubeMap, bool _hasMips, uint16_t _numLayers, TextureFormat::Enum _format) { const ImageBlockInfo& blockInfo = getBlockInfo(_format); const uint8_t bpp = blockInfo.bitsPerPixel; const uint16_t blockWidth = blockInfo.blockWidth; const uint16_t blockHeight = blockInfo.blockHeight; const uint16_t minBlockX = blockInfo.minBlockX; const uint16_t minBlockY = blockInfo.minBlockY; const uint8_t blockSize = blockInfo.blockSize; _width = bx::max(blockWidth * minBlockX, ( (_width + blockWidth - 1) / blockWidth)*blockWidth); _height = bx::max(blockHeight * minBlockY, ( (_height + blockHeight - 1) / blockHeight)*blockHeight); _depth = bx::max(1, _depth); const uint8_t numMips = calcNumMips(_hasMips, _width, _height, _depth); const uint32_t sides = _cubeMap ? 6 : 1; uint32_t width = _width; uint32_t height = _height; uint32_t depth = _depth; uint32_t size = 0; for (uint32_t lod = 0; lod < numMips; ++lod) { width = bx::max(blockWidth * minBlockX, ( (width + blockWidth - 1) / blockWidth )*blockWidth); height = bx::max(blockHeight * minBlockY, ( (height + blockHeight - 1) / blockHeight)*blockHeight); depth = bx::max(1, depth); size += uint32_t(uint64_t(width/blockWidth * height/blockHeight * depth)*blockSize * sides); width >>= 1; height >>= 1; depth >>= 1; } size *= _numLayers; if (NULL != _info) { _info->format = _format; _info->width = _width; _info->height = _height; _info->depth = _depth; _info->numMips = numMips; _info->numLayers = _numLayers; _info->cubeMap = _cubeMap; _info->storageSize = size; _info->bitsPerPixel = bpp; } return size; } void imageSolid(void* _dst, uint32_t _width, uint32_t _height, uint32_t _solid) { uint32_t* dst = (uint32_t*)_dst; for (uint32_t ii = 0, num = _width*_height; ii < num; ++ii) { *dst++ = _solid; } } void imageCheckerboard(void* _dst, uint32_t _width, uint32_t _height, uint32_t _step, uint32_t _0, uint32_t _1) { uint32_t* dst = (uint32_t*)_dst; for (uint32_t yy = 0; yy < _height; ++yy) { for (uint32_t xx = 0; xx < _width; ++xx) { uint32_t abgr = ( (xx/_step)&1) ^ ( (yy/_step)&1) ? _1 : _0; *dst++ = abgr; } } } void imageRgba8Downsample2x2Ref(void* _dst, uint32_t _width, uint32_t _height, uint32_t _depth, uint32_t _srcPitch, uint32_t _dstPitch, const void* _src) { const uint32_t dstWidth = _width/2; const uint32_t dstHeight = _height/2; if (0 == dstWidth || 0 == dstHeight) { return; } const uint8_t* src = (const uint8_t*)_src; for (uint32_t zz = 0; zz < _depth; ++zz) { for (uint32_t yy = 0, ystep = _srcPitch*2; yy < dstHeight; ++yy, src += ystep) { uint8_t* dst = (uint8_t*)_dst + _dstPitch*yy; const uint8_t* rgba = src; for (uint32_t xx = 0; xx < dstWidth; ++xx, rgba += 8, dst += 4) { float rr = bx::toLinear(rgba[ 0]); float gg = bx::toLinear(rgba[ 1]); float bb = bx::toLinear(rgba[ 2]); float aa = rgba[ 3]; rr += bx::toLinear(rgba[ 4]); gg += bx::toLinear(rgba[ 5]); bb += bx::toLinear(rgba[ 6]); aa += rgba[ 7]; rr += bx::toLinear(rgba[_srcPitch+0]); gg += bx::toLinear(rgba[_srcPitch+1]); bb += bx::toLinear(rgba[_srcPitch+2]); aa += rgba[_srcPitch+3]; rr += bx::toLinear(rgba[_srcPitch+4]); gg += bx::toLinear(rgba[_srcPitch+5]); bb += bx::toLinear(rgba[_srcPitch+6]); aa += rgba[_srcPitch+7]; rr *= 0.25f; gg *= 0.25f; bb *= 0.25f; aa *= 0.25f; rr = bx::toGamma(rr); gg = bx::toGamma(gg); bb = bx::toGamma(bb); dst[0] = (uint8_t)rr; dst[1] = (uint8_t)gg; dst[2] = (uint8_t)bb; dst[3] = (uint8_t)aa; } } } } BX_SIMD_INLINE bx::simd128_t simd_to_linear(bx::simd128_t _a) { using namespace bx; const simd128_t f12_92 = simd_ld(12.92f, 12.92f, 12.92f, 1.0f); const simd128_t f0_055 = simd_ld(0.055f, 0.055f, 0.055f, 0.0f); const simd128_t f1_055 = simd_ld(1.055f, 1.055f, 1.055f, 1.0f); const simd128_t f2_4 = simd_ld(2.4f, 2.4f, 2.4f, 1.0f); const simd128_t f0_04045 = simd_ld(0.04045f, 0.04045f, 0.04045f, 0.0f); const simd128_t lo = simd_div(_a, f12_92); const simd128_t tmp0 = simd_add(_a, f0_055); const simd128_t tmp1 = simd_div(tmp0, f1_055); const simd128_t hi = simd_pow(tmp1, f2_4); const simd128_t mask = simd_cmple(_a, f0_04045); const simd128_t result = simd_selb(mask, hi, lo); return result; } BX_SIMD_INLINE bx::simd128_t simd_to_gamma(bx::simd128_t _a) { using namespace bx; const simd128_t f12_92 = simd_ld(12.92f, 12.92f, 12.92f, 1.0f); const simd128_t f0_055 = simd_ld(0.055f, 0.055f, 0.055f, 0.0f); const simd128_t f1_055 = simd_ld(1.055f, 1.055f, 1.055f, 1.0f); const simd128_t f1o2_4 = simd_ld(1.0f/2.4f, 1.0f/2.4f, 1.0f/2.4f, 1.0f); const simd128_t f0_0031308 = simd_ld(0.0031308f, 0.0031308f, 0.0031308f, 0.0f); const simd128_t lo = simd_mul(_a, f12_92); const simd128_t absa = simd_abs(_a); const simd128_t tmp0 = simd_pow(absa, f1o2_4); const simd128_t tmp1 = simd_mul(tmp0, f1_055); const simd128_t hi = simd_sub(tmp1, f0_055); const simd128_t mask = simd_cmple(_a, f0_0031308); const simd128_t result = simd_selb(mask, hi, lo); return result; } void imageRgba8Downsample2x2(void* _dst, uint32_t _width, uint32_t _height, uint32_t _depth, uint32_t _srcPitch, uint32_t _dstPitch, const void* _src) { const uint32_t dstWidth = _width/2; const uint32_t dstHeight = _height/2; if (0 == dstWidth || 0 == dstHeight) { return; } const uint8_t* src = (const uint8_t*)_src; using namespace bx; const simd128_t unpack = simd_ld(1.0f, 1.0f/256.0f, 1.0f/65536.0f, 1.0f/16777216.0f); const simd128_t pack = simd_ld(1.0f, 256.0f*0.5f, 65536.0f, 16777216.0f*0.5f); const simd128_t umask = simd_ild(0xff, 0xff00, 0xff0000, 0xff000000); const simd128_t pmask = simd_ild(0xff, 0x7f80, 0xff0000, 0x7f800000); const simd128_t wflip = simd_ild(0, 0, 0, 0x80000000); const simd128_t wadd = simd_ld(0.0f, 0.0f, 0.0f, 32768.0f*65536.0f); const simd128_t quater = simd_splat(0.25f); for (uint32_t zz = 0; zz < _depth; ++zz) { for (uint32_t yy = 0, ystep = _srcPitch*2; yy < dstHeight; ++yy, src += ystep) { uint8_t* dst = (uint8_t*)_dst + _dstPitch*yy; const uint8_t* rgba = src; for (uint32_t xx = 0; xx < dstWidth; ++xx, rgba += 8, dst += 4) { const simd128_t abgr0 = simd_splat(rgba); const simd128_t abgr1 = simd_splat(rgba+4); const simd128_t abgr2 = simd_splat(rgba+_srcPitch); const simd128_t abgr3 = simd_splat(rgba+_srcPitch+4); const simd128_t abgr0m = simd_and(abgr0, umask); const simd128_t abgr1m = simd_and(abgr1, umask); const simd128_t abgr2m = simd_and(abgr2, umask); const simd128_t abgr3m = simd_and(abgr3, umask); const simd128_t abgr0x = simd_xor(abgr0m, wflip); const simd128_t abgr1x = simd_xor(abgr1m, wflip); const simd128_t abgr2x = simd_xor(abgr2m, wflip); const simd128_t abgr3x = simd_xor(abgr3m, wflip); const simd128_t abgr0f = simd_itof(abgr0x); const simd128_t abgr1f = simd_itof(abgr1x); const simd128_t abgr2f = simd_itof(abgr2x); const simd128_t abgr3f = simd_itof(abgr3x); const simd128_t abgr0c = simd_add(abgr0f, wadd); const simd128_t abgr1c = simd_add(abgr1f, wadd); const simd128_t abgr2c = simd_add(abgr2f, wadd); const simd128_t abgr3c = simd_add(abgr3f, wadd); const simd128_t abgr0n = simd_mul(abgr0c, unpack); const simd128_t abgr1n = simd_mul(abgr1c, unpack); const simd128_t abgr2n = simd_mul(abgr2c, unpack); const simd128_t abgr3n = simd_mul(abgr3c, unpack); const simd128_t abgr0l = simd_to_linear(abgr0n); const simd128_t abgr1l = simd_to_linear(abgr1n); const simd128_t abgr2l = simd_to_linear(abgr2n); const simd128_t abgr3l = simd_to_linear(abgr3n); const simd128_t sum0 = simd_add(abgr0l, abgr1l); const simd128_t sum1 = simd_add(abgr2l, abgr3l); const simd128_t sum2 = simd_add(sum0, sum1); const simd128_t avg0 = simd_mul(sum2, quater); const simd128_t avg1 = simd_to_gamma(avg0); const simd128_t avg2 = simd_mul(avg1, pack); const simd128_t ftoi0 = simd_ftoi(avg2); const simd128_t ftoi1 = simd_and(ftoi0, pmask); const simd128_t zwxy = simd_swiz_zwxy(ftoi1); const simd128_t tmp0 = simd_or(ftoi1, zwxy); const simd128_t yyyy = simd_swiz_yyyy(tmp0); const simd128_t tmp1 = simd_iadd(yyyy, yyyy); const simd128_t result = simd_or(tmp0, tmp1); simd_stx(dst, result); } } } } void imageRgba32fToLinear(void* _dst, uint32_t _width, uint32_t _height, uint32_t _depth, uint32_t _srcPitch, const void* _src) { uint8_t* dst = ( uint8_t*)_dst; const uint8_t* src = (const uint8_t*)_src; for (uint32_t zz = 0; zz < _depth; ++zz) { for (uint32_t yy = 0; yy < _height; ++yy, src += _srcPitch, dst += _width*16) { for (uint32_t xx = 0; xx < _width; ++xx) { const uint32_t offset = xx * 16; float* fd = ( float*)(dst + offset); const float* fs = (const float*)(src + offset); fd[0] = bx::toLinear(fs[0]); fd[1] = bx::toLinear(fs[1]); fd[2] = bx::toLinear(fs[2]); fd[3] = fs[3]; } } } } void imageRgba32fToLinear(ImageContainer* _imageContainer) { const uint16_t numSides = _imageContainer->m_numLayers * (_imageContainer->m_cubeMap ? 6 : 1); for (uint16_t side = 0; side < numSides; ++side) { bimg::ImageMip mip; bimg::imageGetRawData(*_imageContainer, side, 0, _imageContainer->m_data, _imageContainer->m_size, mip); const uint32_t pitch = _imageContainer->m_width*16; const uint32_t slice = _imageContainer->m_height*pitch; for (uint32_t zz = 0, depth = _imageContainer->m_depth; zz < depth; ++zz) { const uint32_t srcDataStep = uint32_t(bx::floor(zz * _imageContainer->m_depth / float(depth) ) ); const uint8_t* srcData = &mip.m_data[srcDataStep*slice]; imageRgba32fToLinear(const_cast(srcData), mip.m_width, mip.m_height, 1, pitch, srcData); } } } void imageRgba32fToGamma(void* _dst, uint32_t _width, uint32_t _height, uint32_t _depth, uint32_t _srcPitch, const void* _src) { uint8_t* dst = ( uint8_t*)_dst; const uint8_t* src = (const uint8_t*)_src; for (uint32_t zz = 0; zz < _depth; ++zz) { for (uint32_t yy = 0; yy < _height; ++yy, src += _srcPitch, dst += _width*16) { for (uint32_t xx = 0; xx < _width; ++xx) { const uint32_t offset = xx * 16; float* fd = ( float*)(dst + offset); const float* fs = (const float*)(src + offset); fd[0] = bx::toGamma(fs[0]); fd[1] = bx::toGamma(fs[1]); fd[2] = bx::toGamma(fs[2]); fd[3] = fs[3]; } } } } void imageRgba32fToGamma(ImageContainer* _imageContainer) { const uint16_t numSides = _imageContainer->m_numLayers * (_imageContainer->m_cubeMap ? 6 : 1); for (uint16_t side = 0; side < numSides; ++side) { bimg::ImageMip mip; bimg::imageGetRawData(*_imageContainer, side, 0, _imageContainer->m_data, _imageContainer->m_size, mip); const uint32_t pitch = _imageContainer->m_width*16; const uint32_t slice = _imageContainer->m_height*pitch; for (uint32_t zz = 0, depth = _imageContainer->m_depth; zz < depth; ++zz) { const uint32_t srcDataStep = uint32_t(bx::floor(zz * _imageContainer->m_depth / float(depth) ) ); const uint8_t* srcData = &mip.m_data[srcDataStep*slice]; imageRgba32fToGamma(const_cast(srcData), mip.m_width, mip.m_height, 1, pitch, srcData); } } } void imageRgba32fLinearDownsample2x2Ref(void* _dst, uint32_t _width, uint32_t _height, uint32_t _depth, uint32_t _srcPitch, const void* _src) { const uint32_t dstWidth = _width/2; const uint32_t dstHeight = _height/2; const uint32_t dstDepth = _depth/2; if (0 == dstWidth || 0 == dstHeight) { return; } const uint8_t* src = (const uint8_t*)_src; uint8_t* dst = (uint8_t*)_dst; if (0 == dstDepth) { for (uint32_t yy = 0, ystep = _srcPitch*2; yy < dstHeight; ++yy, src += ystep) { const float* rgba0 = (const float*)&src[0]; const float* rgba1 = (const float*)&src[_srcPitch]; for (uint32_t xx = 0; xx < dstWidth; ++xx, rgba0 += 8, rgba1 += 8, dst += 16) { float xyz[4]; xyz[0] = rgba0[0]; xyz[1] = rgba0[1]; xyz[2] = rgba0[2]; xyz[3] = rgba0[3]; xyz[0] += rgba0[4]; xyz[1] += rgba0[5]; xyz[2] += rgba0[6]; xyz[3] += rgba0[7]; xyz[0] += rgba1[0]; xyz[1] += rgba1[1]; xyz[2] += rgba1[2]; xyz[3] += rgba1[3]; xyz[0] += rgba1[4]; xyz[1] += rgba1[5]; xyz[2] += rgba1[6]; xyz[3] += rgba1[7]; xyz[0] *= 1.0f/4.0f; xyz[1] *= 1.0f/4.0f; xyz[2] *= 1.0f/4.0f; xyz[3] *= 1.0f/4.0f; bx::packRgba32F(dst, xyz); } } } else { const uint32_t slicePitch = _srcPitch*_height; for (uint32_t zz = 0; zz < dstDepth; ++zz, src += slicePitch) { for (uint32_t yy = 0, ystep = _srcPitch*2; yy < dstHeight; ++yy, src += ystep) { const float* rgba0 = (const float*)&src[0]; const float* rgba1 = (const float*)&src[_srcPitch]; const float* rgba2 = (const float*)&src[slicePitch]; const float* rgba3 = (const float*)&src[slicePitch+_srcPitch]; for (uint32_t xx = 0 ; xx < dstWidth ; ++xx, rgba0 += 8, rgba1 += 8, rgba2 += 8, rgba3 += 8, dst += 16 ) { float xyz[4]; xyz[0] = rgba0[0]; xyz[1] = rgba0[1]; xyz[2] = rgba0[2]; xyz[3] = rgba0[3]; xyz[0] += rgba0[4]; xyz[1] += rgba0[5]; xyz[2] += rgba0[6]; xyz[3] += rgba0[7]; xyz[0] += rgba1[0]; xyz[1] += rgba1[1]; xyz[2] += rgba1[2]; xyz[3] += rgba1[3]; xyz[0] += rgba1[4]; xyz[1] += rgba1[5]; xyz[2] += rgba1[6]; xyz[3] += rgba1[7]; xyz[0] += rgba2[0]; xyz[1] += rgba2[1]; xyz[2] += rgba2[2]; xyz[3] += rgba2[3]; xyz[0] += rgba2[4]; xyz[1] += rgba2[5]; xyz[2] += rgba2[6]; xyz[3] += rgba2[7]; xyz[0] += rgba3[0]; xyz[1] += rgba3[1]; xyz[2] += rgba3[2]; xyz[3] += rgba3[3]; xyz[0] += rgba3[4]; xyz[1] += rgba3[5]; xyz[2] += rgba3[6]; xyz[3] += rgba3[7]; xyz[0] *= 1.0f/8.0f; xyz[1] *= 1.0f/8.0f; xyz[2] *= 1.0f/8.0f; xyz[3] *= 1.0f/8.0f; bx::packRgba32F(dst, xyz); } } } } } void imageRgba32fLinearDownsample2x2(void* _dst, uint32_t _width, uint32_t _height, uint32_t _depth, uint32_t _srcPitch, const void* _src) { imageRgba32fLinearDownsample2x2Ref(_dst, _width, _height, _depth, _srcPitch, _src); } void imageRgba32fDownsample2x2Ref(void* _dst, uint32_t _width, uint32_t _height, uint32_t _depth, uint32_t _srcPitch, const void* _src) { const uint32_t dstWidth = _width/2; const uint32_t dstHeight = _height/2; const uint32_t dstDepth = _depth/2; if (0 == dstWidth || 0 == dstHeight) { return; } const uint8_t* src = (const uint8_t*)_src; uint8_t* dst = (uint8_t*)_dst; if (0 == dstDepth) { for (uint32_t yy = 0, ystep = _srcPitch*2; yy < dstHeight; ++yy, src += ystep) { const float* rgba0 = (const float*)&src[0]; const float* rgba1 = (const float*)&src[_srcPitch]; for (uint32_t xx = 0; xx < dstWidth; ++xx, rgba0 += 8, rgba1 += 8, dst += 16) { float xyz[4]; xyz[0] = bx::toLinear(rgba0[0]); xyz[1] = bx::toLinear(rgba0[1]); xyz[2] = bx::toLinear(rgba0[2]); xyz[3] = rgba0[3]; xyz[0] += bx::toLinear(rgba0[4]); xyz[1] += bx::toLinear(rgba0[5]); xyz[2] += bx::toLinear(rgba0[6]); xyz[3] += rgba0[7]; xyz[0] += bx::toLinear(rgba1[0]); xyz[1] += bx::toLinear(rgba1[1]); xyz[2] += bx::toLinear(rgba1[2]); xyz[3] += rgba1[3]; xyz[0] += bx::toLinear(rgba1[4]); xyz[1] += bx::toLinear(rgba1[5]); xyz[2] += bx::toLinear(rgba1[6]); xyz[3] += rgba1[7]; xyz[0] = bx::toGamma(xyz[0]/4.0f); xyz[1] = bx::toGamma(xyz[1]/4.0f); xyz[2] = bx::toGamma(xyz[2]/4.0f); xyz[3] = xyz[3]/4.0f; bx::packRgba32F(dst, xyz); } } } else { const uint32_t slicePitch = _srcPitch*_height; for (uint32_t zz = 0; zz < dstDepth; ++zz, src += slicePitch) { for (uint32_t yy = 0, ystep = _srcPitch*2; yy < dstHeight; ++yy, src += ystep) { const float* rgba0 = (const float*)&src[0]; const float* rgba1 = (const float*)&src[_srcPitch]; const float* rgba2 = (const float*)&src[slicePitch]; const float* rgba3 = (const float*)&src[slicePitch+_srcPitch]; for (uint32_t xx = 0 ; xx < dstWidth ; ++xx, rgba0 += 8, rgba1 += 8, rgba2 += 8, rgba3 += 8, dst += 16 ) { float xyz[4]; xyz[0] = bx::toLinear(rgba0[0]); xyz[1] = bx::toLinear(rgba0[1]); xyz[2] = bx::toLinear(rgba0[2]); xyz[3] = rgba0[3]; xyz[0] += bx::toLinear(rgba0[4]); xyz[1] += bx::toLinear(rgba0[5]); xyz[2] += bx::toLinear(rgba0[6]); xyz[3] += rgba0[7]; xyz[0] += bx::toLinear(rgba1[0]); xyz[1] += bx::toLinear(rgba1[1]); xyz[2] += bx::toLinear(rgba1[2]); xyz[3] += rgba1[3]; xyz[0] += bx::toLinear(rgba1[4]); xyz[1] += bx::toLinear(rgba1[5]); xyz[2] += bx::toLinear(rgba1[6]); xyz[3] += rgba1[7]; xyz[0] += bx::toLinear(rgba2[0]); xyz[1] += bx::toLinear(rgba2[1]); xyz[2] += bx::toLinear(rgba2[2]); xyz[3] += rgba2[3]; xyz[0] += bx::toLinear(rgba2[4]); xyz[1] += bx::toLinear(rgba2[5]); xyz[2] += bx::toLinear(rgba2[6]); xyz[3] += rgba2[7]; xyz[0] += bx::toLinear(rgba3[0]); xyz[1] += bx::toLinear(rgba3[1]); xyz[2] += bx::toLinear(rgba3[2]); xyz[3] += rgba3[3]; xyz[0] += bx::toLinear(rgba3[4]); xyz[1] += bx::toLinear(rgba3[5]); xyz[2] += bx::toLinear(rgba3[6]); xyz[3] += rgba3[7]; xyz[0] = bx::toGamma(xyz[0]/8.0f); xyz[1] = bx::toGamma(xyz[1]/8.0f); xyz[2] = bx::toGamma(xyz[2]/8.0f); xyz[3] = xyz[3]/8.0f; bx::packRgba32F(dst, xyz); } } } } } void imageRgba32fDownsample2x2(void* _dst, uint32_t _width, uint32_t _height, uint32_t _depth, uint32_t _srcPitch, const void* _src) { imageRgba32fDownsample2x2Ref(_dst, _width, _height, _depth, _srcPitch, _src); } void imageRgba32fDownsample2x2NormalMapRef(void* _dst, uint32_t _width, uint32_t _height, uint32_t _srcPitch, uint32_t _dstPitch, const void* _src) { const uint32_t dstWidth = _width/2; const uint32_t dstHeight = _height/2; if (0 == dstWidth || 0 == dstHeight) { return; } const uint8_t* src = (const uint8_t*)_src; for (uint32_t yy = 0, ystep = _srcPitch*2; yy < dstHeight; ++yy, src += ystep) { const float* rgba0 = (const float*)&src[0]; const float* rgba1 = (const float*)&src[_srcPitch]; uint8_t* dst = (uint8_t*)_dst + _dstPitch*yy; for (uint32_t xx = 0; xx < dstWidth; ++xx, rgba0 += 8, rgba1 += 8, dst += 16) { float xyz[3]; xyz[0] = rgba0[0]; xyz[1] = rgba0[1]; xyz[2] = rgba0[2]; xyz[0] += rgba0[4]; xyz[1] += rgba0[5]; xyz[2] += rgba0[6]; xyz[0] += rgba1[0]; xyz[1] += rgba1[1]; xyz[2] += rgba1[2]; xyz[0] += rgba1[4]; xyz[1] += rgba1[5]; xyz[2] += rgba1[6]; bx::store(dst, bx::normalize(bx::load(xyz) ) ); } } } void imageRgba32fDownsample2x2NormalMap(void* _dst, uint32_t _width, uint32_t _height, uint32_t _srcPitch, uint32_t _dstPitch, const void* _src) { imageRgba32fDownsample2x2NormalMapRef(_dst, _width, _height, _srcPitch, _dstPitch, _src); } void imageSwizzleBgra8Ref(void* _dst, uint32_t _dstPitch, uint32_t _width, uint32_t _height, const void* _src, uint32_t _srcPitch) { const uint8_t* srcData = (uint8_t*) _src; uint8_t* dstData = (uint8_t*)_dst; for (uint32_t yy = 0; yy < _height; ++yy, srcData += _srcPitch, dstData += _dstPitch) { const uint8_t* src = srcData; uint8_t* dst = dstData; for (uint32_t xx = 0; xx < _width; ++xx, src += 4, dst += 4) { uint8_t rr = src[0]; uint8_t gg = src[1]; uint8_t bb = src[2]; uint8_t aa = src[3]; dst[0] = bb; dst[1] = gg; dst[2] = rr; dst[3] = aa; } } } void imageSwizzleBgra8(void* _dst, uint32_t _dstPitch, uint32_t _width, uint32_t _height, const void* _src, uint32_t _srcPitch) { // Test can we do four 4-byte pixels at the time. if (0 != (_width&0x3) || _width < 4 || !bx::isAligned(_src, 16) || !bx::isAligned(_dst, 16) ) { BX_WARN(false, "Image swizzle is taking slow path."); BX_WARN(bx::isAligned(_src, 16), "Source %p is not 16-byte aligned.", _src); BX_WARN(bx::isAligned(_dst, 16), "Destination %p is not 16-byte aligned.", _dst); BX_WARN(_width < 4, "Image width must be multiple of 4 (width %d).", _width); imageSwizzleBgra8Ref(_dst, _dstPitch, _width, _height, _src, _srcPitch); return; } using namespace bx; const simd128_t mf0f0 = simd_isplat(0xff00ff00); const simd128_t m0f0f = simd_isplat(0x00ff00ff); const uint32_t width = _width/4; const uint8_t* srcData = (uint8_t*) _src; uint8_t* dstData = (uint8_t*)_dst; for (uint32_t yy = 0; yy < _height; ++yy, srcData += _srcPitch, dstData += _dstPitch) { const uint8_t* src = srcData; uint8_t* dst = dstData; for (uint32_t xx = 0; xx < width; ++xx, src += 16, dst += 16) { const simd128_t tabgr = simd_ld(src); const simd128_t t00ab = simd_srl(tabgr, 16); const simd128_t tgr00 = simd_sll(tabgr, 16); const simd128_t tgrab = simd_or(t00ab, tgr00); const simd128_t ta0g0 = simd_and(tabgr, mf0f0); const simd128_t t0r0b = simd_and(tgrab, m0f0f); const simd128_t targb = simd_or(ta0g0, t0r0b); simd_st(dst, targb); } } } void imageCopy(void* _dst, uint32_t _height, uint32_t _srcPitch, uint32_t _depth, const void* _src, uint32_t _dstPitch) { const uint32_t pitch = bx::uint32_min(_srcPitch, _dstPitch); const uint8_t* src = (uint8_t*)_src; uint8_t* dst = (uint8_t*)_dst; for (uint32_t zz = 0; zz < _depth; ++zz, src += _srcPitch*_height, dst += _dstPitch*_height) { bx::memCopy(dst, _dstPitch, src, _srcPitch, pitch, _height); } } void imageCopy(void* _dst, uint32_t _width, uint32_t _height, uint32_t _depth, uint32_t _bpp, uint32_t _srcPitch, const void* _src) { const uint32_t dstPitch = _width*_bpp/8; imageCopy(_dst, _height, _srcPitch, _depth, _src, dstPitch); } struct PackUnpack { PackFn pack; UnpackFn unpack; }; static const PackUnpack s_packUnpack[] = { { NULL, NULL }, // BC1 { NULL, NULL }, // BC2 { NULL, NULL }, // BC3 { NULL, NULL }, // BC4 { NULL, NULL }, // BC5 { NULL, NULL }, // BC6H { NULL, NULL }, // BC7 { NULL, NULL }, // ETC1 { NULL, NULL }, // ETC2 { NULL, NULL }, // ETC2A { NULL, NULL }, // ETC2A1 { NULL, NULL }, // PTC12 { NULL, NULL }, // PTC14 { NULL, NULL }, // PTC12A { NULL, NULL }, // PTC14A { NULL, NULL }, // PTC22 { NULL, NULL }, // PTC24 { NULL, NULL }, // ATC { NULL, NULL }, // ATCE { NULL, NULL }, // ATCI { NULL, NULL }, // ASTC4x4 { NULL, NULL }, // ASTC5x5 { NULL, NULL }, // ASTC6x6 { NULL, NULL }, // ASTC8x5 { NULL, NULL }, // ASTC8x6 { NULL, NULL }, // ASTC10x5 { NULL, NULL }, // Unknown { NULL, NULL }, // R1 { bx::packA8, bx::unpackA8 }, // A8 { bx::packR8, bx::unpackR8 }, // R8 { bx::packR8I, bx::unpackR8I }, // R8I { bx::packR8U, bx::unpackR8U }, // R8U { bx::packR8S, bx::unpackR8S }, // R8S { bx::packR16, bx::unpackR16 }, // R16 { bx::packR16I, bx::unpackR16I }, // R16I { bx::packR16U, bx::unpackR16U }, // R16U { bx::packR16F, bx::unpackR16F }, // R16F { bx::packR16S, bx::unpackR16S }, // R16S { bx::packR32I, bx::unpackR32I }, // R32I { bx::packR32U, bx::unpackR32U }, // R32U { bx::packR32F, bx::unpackR32F }, // R32F { bx::packRg8, bx::unpackRg8 }, // RG8 { bx::packRg8I, bx::unpackRg8I }, // RG8I { bx::packRg8U, bx::unpackRg8U }, // RG8U { bx::packRg8S, bx::unpackRg8S }, // RG8S { bx::packRg16, bx::unpackRg16 }, // RG16 { bx::packRg16I, bx::unpackRg16I }, // RG16I { bx::packRg16U, bx::unpackRg16U }, // RG16U { bx::packRg16F, bx::unpackRg16F }, // RG16F { bx::packRg16S, bx::unpackRg16S }, // RG16S { bx::packRg32I, bx::unpackRg32I }, // RG32I { bx::packRg32U, bx::unpackRg32U }, // RG32U { bx::packRg32F, bx::unpackRg32F }, // RG32F { bx::packRgb8, bx::unpackRgb8 }, // RGB8 { bx::packRgb8S, bx::unpackRgb8S }, // RGB8S { bx::packRgb8I, bx::unpackRgb8I }, // RGB8I { bx::packRgb8U, bx::unpackRgb8U }, // RGB8U { bx::packRgb9E5F, bx::unpackRgb9E5F }, // RGB9E5F { bx::packBgra8, bx::unpackBgra8 }, // BGRA8 { bx::packRgba8, bx::unpackRgba8 }, // RGBA8 { bx::packRgba8I, bx::unpackRgba8I }, // RGBA8I { bx::packRgba8U, bx::unpackRgba8U }, // RGBA8U { bx::packRgba8S, bx::unpackRgba8S }, // RGBA8S { bx::packRgba16, bx::unpackRgba16 }, // RGBA16 { bx::packRgba16I, bx::unpackRgba16I }, // RGBA16I { bx::packRgba16U, bx::unpackRgba16U }, // RGBA16U { bx::packRgba16F, bx::unpackRgba16F }, // RGBA16F { bx::packRgba16S, bx::unpackRgba16S }, // RGBA16S { bx::packRgba32I, bx::unpackRgba32I }, // RGBA32I { bx::packRgba32U, bx::unpackRgba32U }, // RGBA32U { bx::packRgba32F, bx::unpackRgba32F }, // RGBA32F { bx::packR5G6B5, bx::unpackR5G6B5 }, // R5G6B5 { bx::packRgba4, bx::unpackRgba4 }, // RGBA4 { bx::packRgb5a1, bx::unpackRgb5a1 }, // RGB5A1 { bx::packRgb10A2, bx::unpackRgb10A2 }, // RGB10A2 { bx::packRG11B10F, bx::unpackRG11B10F }, // RG11B10F { NULL, NULL }, // UnknownDepth { bx::packR16, bx::unpackR16 }, // D16 { bx::packR24, bx::unpackR24 }, // D24 { bx::packR24G8, bx::unpackR24G8 }, // D24S8 { NULL, NULL }, // D32 { bx::packR16F, bx::unpackR16F }, // D16F { NULL, NULL }, // D24F { bx::packR32F, bx::unpackR32F }, // D32F { bx::packR8, bx::unpackR8 }, // D0S8 }; BX_STATIC_ASSERT(TextureFormat::Count == BX_COUNTOF(s_packUnpack) ); PackFn getPack(TextureFormat::Enum _format) { return s_packUnpack[_format].pack; } UnpackFn getUnpack(TextureFormat::Enum _format) { return s_packUnpack[_format].unpack; } bool imageConvert(TextureFormat::Enum _dstFormat, TextureFormat::Enum _srcFormat) { UnpackFn unpack = s_packUnpack[_srcFormat].unpack; PackFn pack = s_packUnpack[_dstFormat].pack; return NULL != pack && NULL != unpack ; } void imageConvert(void* _dst, uint32_t _bpp, PackFn _pack, const void* _src, UnpackFn _unpack, uint32_t _size) { const uint8_t* src = (uint8_t*)_src; uint8_t* dst = (uint8_t*)_dst; const uint32_t size = _size * 8 / _bpp; for (uint32_t ii = 0; ii < size; ++ii) { float rgba[4]; _unpack(rgba, &src[ii*_bpp/8]); _pack(&dst[ii*_bpp/8], rgba); } } void imageConvert(void* _dst, uint32_t _dstBpp, PackFn _pack, const void* _src, uint32_t _srcBpp, UnpackFn _unpack, uint32_t _width, uint32_t _height, uint32_t _depth, uint32_t _srcPitch, uint32_t _dstPitch) { const uint8_t* src = (uint8_t*)_src; uint8_t* dst = (uint8_t*)_dst; for (uint32_t zz = 0; zz < _depth; ++zz) { for (uint32_t yy = 0; yy < _height; ++yy, src += _srcPitch, dst += _dstPitch) { for (uint32_t xx = 0; xx < _width; ++xx) { float rgba[4]; _unpack(rgba, &src[xx*_srcBpp/8]); _pack(&dst[xx*_dstBpp/8], rgba); } } } } bool imageConvert(bx::AllocatorI* _allocator, void* _dst, TextureFormat::Enum _dstFormat, const void* _src, TextureFormat::Enum _srcFormat, uint32_t _width, uint32_t _height, uint32_t _depth, uint32_t _srcPitch, uint32_t _dstPitch) { UnpackFn unpack = s_packUnpack[_srcFormat].unpack; PackFn pack = s_packUnpack[_dstFormat].pack; if (NULL == pack || NULL == unpack) { switch (_dstFormat) { case TextureFormat::RGBA8: imageDecodeToRgba8(_allocator, _dst, _src, _width, _height, _width*4, _srcFormat); return true; case TextureFormat::BGRA8: imageDecodeToBgra8(_allocator, _dst, _src, _width, _height, _width*4, _srcFormat); return true; case TextureFormat::RGBA32F: imageDecodeToRgba32f(_allocator, _dst, _src, _width, _height, 1, _width*16, _srcFormat); return true; default: break; } return false; } const uint32_t srcBpp = s_imageBlockInfo[_srcFormat].bitsPerPixel; const uint32_t dstBpp = s_imageBlockInfo[_dstFormat].bitsPerPixel; imageConvert(_dst, dstBpp, pack, _src, srcBpp, unpack, _width, _height, _depth, _srcPitch, _dstPitch); return true; } bool imageConvert(bx::AllocatorI* _allocator, void* _dst, TextureFormat::Enum _dstFormat, const void* _src, TextureFormat::Enum _srcFormat, uint32_t _width, uint32_t _height, uint32_t _depth) { const uint32_t srcBpp = s_imageBlockInfo[_srcFormat].bitsPerPixel; if (_dstFormat == _srcFormat) { bx::memCopy(_dst, _src, _width*_height*_depth*(srcBpp/8) ); return true; } const uint32_t dstBpp = s_imageBlockInfo[_dstFormat].bitsPerPixel; const uint32_t dstPitch = _width * dstBpp / 8; return imageConvert(_allocator, _dst, _dstFormat, _src, _srcFormat, _width, _height, _depth, _width*srcBpp/8, dstPitch); } ImageContainer* imageConvert(bx::AllocatorI* _allocator, TextureFormat::Enum _dstFormat, const ImageContainer& _input, bool _convertMips) { ImageContainer* output = imageAlloc(_allocator , _dstFormat , uint16_t(_input.m_width) , uint16_t(_input.m_height) , uint16_t(_input.m_depth) , _input.m_numLayers , _input.m_cubeMap , _convertMips && 1 < _input.m_numMips ); const uint16_t numSides = _input.m_numLayers * (_input.m_cubeMap ? 6 : 1); for (uint16_t side = 0; side < numSides; ++side) { for (uint8_t lod = 0, num = _convertMips ? _input.m_numMips : 1; lod < num; ++lod) { ImageMip mip; if (imageGetRawData(_input, side, lod, _input.m_data, _input.m_size, mip) ) { ImageMip dstMip; imageGetRawData(*output, side, lod, output->m_data, output->m_size, dstMip); uint8_t* dstData = const_cast(dstMip.m_data); bool ok = imageConvert( _allocator , dstData , _dstFormat , mip.m_data , mip.m_format , mip.m_width , mip.m_height , mip.m_depth ); BX_CHECK(ok, "Conversion from %s to %s failed!" , getName(_input.m_format) , getName(output->m_format) ); BX_UNUSED(ok); } } } return output; } typedef bool (*ParseFn)(ImageContainer&, bx::ReaderSeekerI*, bx::Error*); template ImageContainer* imageParseT(bx::AllocatorI* _allocator, const void* _src, uint32_t _size, bx::Error* _err) { bx::MemoryReader reader(_src, _size); uint32_t magic; bx::read(&reader, magic); ImageContainer imageContainer; if (magicT != magic || !parseFnT(imageContainer, &reader, _err) ) { return NULL; } ImageContainer* output = imageAlloc(_allocator , imageContainer.m_format , uint16_t(imageContainer.m_width) , uint16_t(imageContainer.m_height) , uint16_t(imageContainer.m_depth) , imageContainer.m_numLayers , imageContainer.m_cubeMap , 1 < imageContainer.m_numMips ); const uint16_t numSides = imageContainer.m_numLayers * (imageContainer.m_cubeMap ? 6 : 1); for (uint16_t side = 0; side < numSides; ++side) { for (uint8_t lod = 0, num = imageContainer.m_numMips; lod < num; ++lod) { ImageMip dstMip; if (imageGetRawData(*output, side, lod, output->m_data, output->m_size, dstMip) ) { ImageMip mip; if (imageGetRawData(imageContainer, side, lod, _src, _size, mip) ) { uint8_t* dstData = const_cast(dstMip.m_data); bx::memCopy(dstData, mip.m_data, mip.m_size); } } } } return output; } uint8_t bitRangeConvert(uint32_t _in, uint32_t _from, uint32_t _to) { using namespace bx; uint32_t tmp0 = uint32_sll(1, _to); uint32_t tmp1 = uint32_sll(1, _from); uint32_t tmp2 = uint32_dec(tmp0); uint32_t tmp3 = uint32_dec(tmp1); uint32_t tmp4 = uint32_mul(_in, tmp2); uint32_t tmp5 = uint32_add(tmp3, tmp4); uint32_t tmp6 = uint32_srl(tmp5, _from); uint32_t tmp7 = uint32_add(tmp5, tmp6); uint32_t result = uint32_srl(tmp7, _from); return uint8_t(result); } void decodeBlockDxt(uint8_t _dst[16*4], const uint8_t _src[8]) { uint8_t colors[4*3]; uint32_t c0 = _src[0] | (_src[1] << 8); colors[0] = bitRangeConvert( (c0>> 0)&0x1f, 5, 8); colors[1] = bitRangeConvert( (c0>> 5)&0x3f, 6, 8); colors[2] = bitRangeConvert( (c0>>11)&0x1f, 5, 8); uint32_t c1 = _src[2] | (_src[3] << 8); colors[3] = bitRangeConvert( (c1>> 0)&0x1f, 5, 8); colors[4] = bitRangeConvert( (c1>> 5)&0x3f, 6, 8); colors[5] = bitRangeConvert( (c1>>11)&0x1f, 5, 8); colors[6] = (2*colors[0] + colors[3]) / 3; colors[7] = (2*colors[1] + colors[4]) / 3; colors[8] = (2*colors[2] + colors[5]) / 3; colors[ 9] = (colors[0] + 2*colors[3]) / 3; colors[10] = (colors[1] + 2*colors[4]) / 3; colors[11] = (colors[2] + 2*colors[5]) / 3; for (uint32_t ii = 0, next = 8*4; ii < 16*4; ii += 4, next += 2) { int idx = ( (_src[next>>3] >> (next & 7) ) & 3) * 3; _dst[ii+0] = colors[idx+0]; _dst[ii+1] = colors[idx+1]; _dst[ii+2] = colors[idx+2]; } } void decodeBlockDxt1(uint8_t _dst[16*4], const uint8_t _src[8]) { uint8_t colors[4*4]; uint32_t c0 = _src[0] | (_src[1] << 8); colors[0] = bitRangeConvert( (c0>> 0)&0x1f, 5, 8); colors[1] = bitRangeConvert( (c0>> 5)&0x3f, 6, 8); colors[2] = bitRangeConvert( (c0>>11)&0x1f, 5, 8); colors[3] = 255; uint32_t c1 = _src[2] | (_src[3] << 8); colors[4] = bitRangeConvert( (c1>> 0)&0x1f, 5, 8); colors[5] = bitRangeConvert( (c1>> 5)&0x3f, 6, 8); colors[6] = bitRangeConvert( (c1>>11)&0x1f, 5, 8); colors[7] = 255; if (c0 > c1) { colors[ 8] = (2*colors[0] + colors[4]) / 3; colors[ 9] = (2*colors[1] + colors[5]) / 3; colors[10] = (2*colors[2] + colors[6]) / 3; colors[11] = 255; colors[12] = (colors[0] + 2*colors[4]) / 3; colors[13] = (colors[1] + 2*colors[5]) / 3; colors[14] = (colors[2] + 2*colors[6]) / 3; colors[15] = 255; } else { colors[ 8] = (colors[0] + colors[4]) / 2; colors[ 9] = (colors[1] + colors[5]) / 2; colors[10] = (colors[2] + colors[6]) / 2; colors[11] = 255; colors[12] = 0; colors[13] = 0; colors[14] = 0; colors[15] = 0; } for (uint32_t ii = 0, next = 8*4; ii < 16*4; ii += 4, next += 2) { int idx = ( (_src[next>>3] >> (next & 7) ) & 3) * 4; _dst[ii+0] = colors[idx+0]; _dst[ii+1] = colors[idx+1]; _dst[ii+2] = colors[idx+2]; _dst[ii+3] = colors[idx+3]; } } void decodeBlockDxt23A(uint8_t _dst[16*4], const uint8_t _src[8]) { for (uint32_t ii = 0, next = 0; ii < 16*4; ii += 4, next += 4) { uint32_t c0 = (_src[next>>3] >> (next&7) ) & 0xf; _dst[ii] = bitRangeConvert(c0, 4, 8); } } void decodeBlockDxt45A(uint8_t _dst[16*4], const uint8_t _src[8]) { uint8_t alpha[8]; alpha[0] = _src[0]; alpha[1] = _src[1]; if (alpha[0] > alpha[1]) { alpha[2] = (6*alpha[0] + 1*alpha[1]) / 7; alpha[3] = (5*alpha[0] + 2*alpha[1]) / 7; alpha[4] = (4*alpha[0] + 3*alpha[1]) / 7; alpha[5] = (3*alpha[0] + 4*alpha[1]) / 7; alpha[6] = (2*alpha[0] + 5*alpha[1]) / 7; alpha[7] = (1*alpha[0] + 6*alpha[1]) / 7; } else { alpha[2] = (4*alpha[0] + 1*alpha[1]) / 5; alpha[3] = (3*alpha[0] + 2*alpha[1]) / 5; alpha[4] = (2*alpha[0] + 3*alpha[1]) / 5; alpha[5] = (1*alpha[0] + 4*alpha[1]) / 5; alpha[6] = 0; alpha[7] = 255; } uint32_t idx0 = _src[2]; uint32_t idx1 = _src[5]; idx0 |= uint32_t(_src[3])<<8; idx1 |= uint32_t(_src[6])<<8; idx0 |= uint32_t(_src[4])<<16; idx1 |= uint32_t(_src[7])<<16; for (uint32_t ii = 0; ii < 8*4; ii += 4) { _dst[ii] = alpha[idx0&7]; _dst[ii+32] = alpha[idx1&7]; idx0 >>= 3; idx1 >>= 3; } } // BC6H, BC7 // // Reference(s): // - https://web.archive.org/web/20181126035446/https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB_texture_compression_bptc.txt // - https://web.archive.org/web/20181126035538/https://docs.microsoft.com/en-us/windows/desktop/direct3d11/bc6h-format // static const uint16_t s_bptcP2[] = { // 3210 0000000000 1111111111 2222222222 3333333333 0xcccc, // 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1 0x8888, // 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1 0xeeee, // 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1 0xecc8, // 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1 0xc880, // 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1 0xfeec, // 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1 0xfec8, // 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1 0xec80, // 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1 0xc800, // 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1 0xffec, // 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 0xfe80, // 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1 0xe800, // 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1 0xffe8, // 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 0xff00, // 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1 0xfff0, // 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 0xf000, // 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1 0xf710, // 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1 0x008e, // 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 0x7100, // 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0 0x08ce, // 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0 0x008c, // 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 0x7310, // 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0 0x3100, // 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0 0x8cce, // 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1 0x088c, // 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0 0x3110, // 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0 0x6666, // 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0 0x366c, // 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0 0x17e8, // 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0 0x0ff0, // 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 0x718e, // 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0 0x399c, // 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0 0xaaaa, // 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 0xf0f0, // 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1 0x5a5a, // 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0 0x33cc, // 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0 0x3c3c, // 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0 0x55aa, // 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0 0x9696, // 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1 0xa55a, // 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1 0x73ce, // 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0 0x13c8, // 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0 0x324c, // 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0 0x3bdc, // 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0 0x6996, // 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0 0xc33c, // 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1 0x9966, // 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1 0x0660, // 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0 0x0272, // 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0 0x04e4, // 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0 0x4e40, // 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0 0x2720, // 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0 0xc936, // 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1 0x936c, // 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1 0x39c6, // 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0 0x639c, // 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0 0x9336, // 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1 0x9cc6, // 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1 0x817e, // 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1 0xe718, // 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1 0xccf0, // 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1 0x0fcc, // 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 0x7744, // 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0 0xee22, // 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1 }; static const uint32_t s_bptcP3[] = { // 76543210 0000 1111 2222 3333 4444 5555 6666 7777 0xaa685050, // 0, 0, 1, 1, 0, 0, 1, 1, 0, 2, 2, 1, 2, 2, 2, 2 0x6a5a5040, // 0, 0, 0, 1, 0, 0, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1 0x5a5a4200, // 0, 0, 0, 0, 2, 0, 0, 1, 2, 2, 1, 1, 2, 2, 1, 1 0x5450a0a8, // 0, 2, 2, 2, 0, 0, 2, 2, 0, 0, 1, 1, 0, 1, 1, 1 0xa5a50000, // 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 1, 1, 2, 2 0xa0a05050, // 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 2, 0, 0, 2, 2 0x5555a0a0, // 0, 0, 2, 2, 0, 0, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 0x5a5a5050, // 0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1 0xaa550000, // 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2 0xaa555500, // 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2 0xaaaa5500, // 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2 0x90909090, // 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2 0x94949494, // 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2 0xa4a4a4a4, // 0, 1, 2, 2, 0, 1, 2, 2, 0, 1, 2, 2, 0, 1, 2, 2 0xa9a59450, // 0, 0, 1, 1, 0, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2 0x2a0a4250, // 0, 0, 1, 1, 2, 0, 0, 1, 2, 2, 0, 0, 2, 2, 2, 0 0xa5945040, // 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 2, 1, 1, 2, 2 0x0a425054, // 0, 1, 1, 1, 0, 0, 1, 1, 2, 0, 0, 1, 2, 2, 0, 0 0xa5a5a500, // 0, 0, 0, 0, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2 0x55a0a0a0, // 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 1, 1, 1, 1 0xa8a85454, // 0, 1, 1, 1, 0, 1, 1, 1, 0, 2, 2, 2, 0, 2, 2, 2 0x6a6a4040, // 0, 0, 0, 1, 0, 0, 0, 1, 2, 2, 2, 1, 2, 2, 2, 1 0xa4a45000, // 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 2, 2, 0, 1, 2, 2 0x1a1a0500, // 0, 0, 0, 0, 1, 1, 0, 0, 2, 2, 1, 0, 2, 2, 1, 0 0x0050a4a4, // 0, 1, 2, 2, 0, 1, 2, 2, 0, 0, 1, 1, 0, 0, 0, 0 0xaaa59090, // 0, 0, 1, 2, 0, 0, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2 0x14696914, // 0, 1, 1, 0, 1, 2, 2, 1, 1, 2, 2, 1, 0, 1, 1, 0 0x69691400, // 0, 0, 0, 0, 0, 1, 1, 0, 1, 2, 2, 1, 1, 2, 2, 1 0xa08585a0, // 0, 0, 2, 2, 1, 1, 0, 2, 1, 1, 0, 2, 0, 0, 2, 2 0xaa821414, // 0, 1, 1, 0, 0, 1, 1, 0, 2, 0, 0, 2, 2, 2, 2, 2 0x50a4a450, // 0, 0, 1, 1, 0, 1, 2, 2, 0, 1, 2, 2, 0, 0, 1, 1 0x6a5a0200, // 0, 0, 0, 0, 2, 0, 0, 0, 2, 2, 1, 1, 2, 2, 2, 1 0xa9a58000, // 0, 0, 0, 0, 0, 0, 0, 2, 1, 1, 2, 2, 1, 2, 2, 2 0x5090a0a8, // 0, 2, 2, 2, 0, 0, 2, 2, 0, 0, 1, 2, 0, 0, 1, 1 0xa8a09050, // 0, 0, 1, 1, 0, 0, 1, 2, 0, 0, 2, 2, 0, 2, 2, 2 0x24242424, // 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2, 0 0x00aa5500, // 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 0, 0, 0, 0 0x24924924, // 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0 0x24499224, // 0, 1, 2, 0, 2, 0, 1, 2, 1, 2, 0, 1, 0, 1, 2, 0 0x50a50a50, // 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1 0x500aa550, // 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 0, 0, 0, 0, 1, 1 0xaaaa4444, // 0, 1, 0, 1, 0, 1, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2 0x66660000, // 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 2, 1, 2, 1, 2, 1 0xa5a0a5a0, // 0, 0, 2, 2, 1, 1, 2, 2, 0, 0, 2, 2, 1, 1, 2, 2 0x50a050a0, // 0, 0, 2, 2, 0, 0, 1, 1, 0, 0, 2, 2, 0, 0, 1, 1 0x69286928, // 0, 2, 2, 0, 1, 2, 2, 1, 0, 2, 2, 0, 1, 2, 2, 1 0x44aaaa44, // 0, 1, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 0, 1, 0, 1 0x66666600, // 0, 0, 0, 0, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1 0xaa444444, // 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 2, 2, 2 0x54a854a8, // 0, 2, 2, 2, 0, 1, 1, 1, 0, 2, 2, 2, 0, 1, 1, 1 0x95809580, // 0, 0, 0, 2, 1, 1, 1, 2, 0, 0, 0, 2, 1, 1, 1, 2 0x96969600, // 0, 0, 0, 0, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2 0xa85454a8, // 0, 2, 2, 2, 0, 1, 1, 1, 0, 1, 1, 1, 0, 2, 2, 2 0x80959580, // 0, 0, 0, 2, 1, 1, 1, 2, 1, 1, 1, 2, 0, 0, 0, 2 0xaa141414, // 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 2, 2, 2, 2 0x96960000, // 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1, 2, 2, 1, 1, 2 0xaaaa1414, // 0, 1, 1, 0, 0, 1, 1, 0, 2, 2, 2, 2, 2, 2, 2, 2 0xa05050a0, // 0, 0, 2, 2, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 2 0xa0a5a5a0, // 0, 0, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 0, 0, 2, 2 0x96000000, // 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1, 2 0x40804080, // 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1 0xa9a8a9a8, // 0, 2, 2, 2, 1, 2, 2, 2, 0, 2, 2, 2, 1, 2, 2, 2 0xaaaaaa44, // 0, 1, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 0x2a4a5254, // 0, 1, 1, 1, 2, 0, 1, 1, 2, 2, 0, 1, 2, 2, 2, 0 }; static const uint8_t s_bptcA2[] = { 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 2, 8, 2, 2, 8, 8, 15, 2, 8, 2, 2, 8, 8, 2, 2, 15, 15, 6, 8, 2, 8, 15, 15, 2, 8, 2, 2, 2, 15, 15, 6, 6, 2, 6, 8, 15, 15, 2, 2, 15, 15, 15, 15, 15, 2, 2, 15, }; static const uint8_t s_bptcA3[2][64] = { { 3, 3, 15, 15, 8, 3, 15, 15, 8, 8, 6, 6, 6, 5, 3, 3, 3, 3, 8, 15, 3, 3, 6, 10, 5, 8, 8, 6, 8, 5, 15, 15, 8, 15, 3, 5, 6, 10, 8, 15, 15, 3, 15, 5, 15, 15, 15, 15, 3, 15, 5, 5, 5, 8, 5, 10, 5, 10, 8, 13, 15, 12, 3, 3, }, { 15, 8, 8, 3, 15, 15, 3, 8, 15, 15, 15, 15, 15, 15, 15, 8, 15, 8, 15, 3, 15, 8, 15, 8, 3, 15, 6, 10, 15, 15, 10, 8, 15, 3, 15, 10, 10, 8, 9, 10, 6, 15, 8, 15, 3, 6, 6, 8, 15, 3, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 3, 15, 15, 8, }, }; static const uint8_t s_bptcFactors[3][16] = { { 0, 21, 43, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 9, 18, 27, 37, 46, 55, 64, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 4, 9, 13, 17, 21, 26, 30, 34, 38, 43, 47, 51, 55, 60, 64 }, }; struct BitReader { BitReader(const uint8_t* _data, uint16_t _bitPos = 0) : m_data(_data) , m_bitPos(_bitPos) { } uint16_t read(uint8_t _numBits) { const uint16_t pos = m_bitPos / 8; const uint16_t shift = m_bitPos & 7; uint32_t data = 0; bx::memCopy(&data, &m_data[pos], bx::min(4, 16-pos) ); m_bitPos += _numBits; return uint16_t( (data >> shift) & ( (1 << _numBits)-1) ); } uint16_t peek(uint16_t _offset, uint8_t _numBits) { const uint16_t bitPos = m_bitPos + _offset; const uint16_t shift = bitPos & 7; uint16_t pos = bitPos / 8; uint32_t data = 0; bx::memCopy(&data, &m_data[pos], bx::min(4, 16-pos) ); return uint8_t( (data >> shift) & ( (1 << _numBits)-1) ); } const uint8_t* m_data; uint16_t m_bitPos; }; uint16_t bc6hUnquantize(uint16_t _value, bool _signed, uint8_t _endpointBits) { const uint16_t maxValue = 1<<(_endpointBits-1); if (_signed) { if (_endpointBits >= 16) { return _value; } const bool sign = !!(_value & 0x8000); _value &= 0x7fff; uint16_t unq; if (0 == _value) { unq = 0; } else if (_value >= maxValue-1) { unq = 0x7fff; } else { unq = ( (_value<<15) + 0x4000) >> (_endpointBits-1); } return sign ? -unq : unq; } if (_endpointBits >= 15) { return _value; } if (0 == _value) { return 0; } if (_value == maxValue) { return UINT16_MAX; } return ( (_value<<15) + 0x4000) >> (_endpointBits-1); } uint16_t bc6hUnquantizeFinal(uint16_t _value, bool _signed) { if (_signed) { const uint16_t sign = _value & 0x8000; _value &= 0x7fff; return ( (_value * 31) >> 5) | sign; } return (_value * 31) >> 6; } uint16_t signExtend(uint16_t _value, uint8_t _numBits) { const uint16_t mask = 1 << (_numBits - 1); const uint16_t result = (_value ^ mask) - mask; return result; } struct Bc6hModeInfo { uint8_t transformed; uint8_t partitionBits; uint8_t endpointBits; uint8_t deltaBits[3]; }; static const Bc6hModeInfo s_bc6hModeInfo[] = { // +--------------------------- transformed // | +------------------------ partition bits // | | +--------------------- endpoint bits // | | | +-------------- delta bits { 1, 5, 10, { 5, 5, 5 } }, // 00 2-bits { 1, 5, 7, { 6, 6, 6 } }, // 01 { 1, 5, 11, { 5, 4, 4 } }, // 00010 5-bits { 0, 0, 10, { 10, 10, 10 } }, // 00011 { 0, 0, 0, { 0, 0, 0 } }, // - { 0, 0, 0, { 0, 0, 0 } }, // - { 1, 5, 11, { 4, 5, 4 } }, // 00110 { 1, 0, 11, { 9, 9, 9 } }, // 00010 { 0, 0, 0, { 0, 0, 0 } }, // - { 0, 0, 0, { 0, 0, 0 } }, // - { 1, 5, 11, { 4, 4, 5 } }, // 00010 { 1, 0, 12, { 8, 8, 8 } }, // 00010 { 0, 0, 0, { 0, 0, 0 } }, // - { 0, 0, 0, { 0, 0, 0 } }, // - { 1, 5, 9, { 5, 5, 5 } }, // 00010 { 1, 0, 16, { 4, 4, 4 } }, // 00010 { 0, 0, 0, { 0, 0, 0 } }, // - { 0, 0, 0, { 0, 0, 0 } }, // - { 1, 5, 8, { 6, 5, 5 } }, // 00010 { 0, 0, 0, { 0, 0, 0 } }, // - { 0, 0, 0, { 0, 0, 0 } }, // - { 0, 0, 0, { 0, 0, 0 } }, // - { 1, 5, 8, { 5, 6, 5 } }, // 00010 { 0, 0, 0, { 0, 0, 0 } }, // - { 0, 0, 0, { 0, 0, 0 } }, // - { 0, 0, 0, { 0, 0, 0 } }, // - { 1, 5, 8, { 5, 5, 6 } }, // 00010 { 0, 0, 0, { 0, 0, 0 } }, // - { 0, 0, 0, { 0, 0, 0 } }, // - { 0, 0, 0, { 0, 0, 0 } }, // - { 0, 5, 6, { 6, 6, 6 } }, // 00010 { 0, 0, 0, { 0, 0, 0 } }, // - }; void decodeBlockBc6h(uint16_t _dst[16*3], const uint8_t _src[16], bool _signed) { BitReader bit(_src); uint8_t mode = uint8_t(bit.read(2) ); if (mode & 2) { // 5-bit mode mode |= bit.read(3) << 2; } const Bc6hModeInfo& mi = s_bc6hModeInfo[mode]; if (0 == mi.endpointBits) { bx::memSet(_dst, 0, 16*3*2); return; } uint16_t epR[4] = { /* rw, rx, ry, rz */ }; uint16_t epG[4] = { /* gw, gx, gy, gz */ }; uint16_t epB[4] = { /* bw, bx, by, bz */ }; switch (mode) { case 0: epG[2] |= bit.read( 1) << 4; epB[2] |= bit.read( 1) << 4; epB[3] |= bit.read( 1) << 4; epR[0] |= bit.read(10) << 0; epG[0] |= bit.read(10) << 0; epB[0] |= bit.read(10) << 0; epR[1] |= bit.read( 5) << 0; epG[3] |= bit.read( 1) << 4; epG[2] |= bit.read( 4) << 0; epG[1] |= bit.read( 5) << 0; epB[3] |= bit.read( 1) << 0; epG[3] |= bit.read( 4) << 0; epB[1] |= bit.read( 5) << 0; epB[3] |= bit.read( 1) << 1; epB[2] |= bit.read( 4) << 0; epR[2] |= bit.read( 5) << 0; epB[3] |= bit.read( 1) << 2; epR[3] |= bit.read( 5) << 0; epB[3] |= bit.read( 1) << 3; break; case 1: epG[2] |= bit.read( 1) << 5; epG[3] |= bit.read( 1) << 4; epG[3] |= bit.read( 1) << 5; epR[0] |= bit.read( 7) << 0; epB[3] |= bit.read( 1) << 0; epB[3] |= bit.read( 1) << 1; epB[2] |= bit.read( 1) << 4; epG[0] |= bit.read( 7) << 0; epB[2] |= bit.read( 1) << 5; epB[3] |= bit.read( 1) << 2; epG[2] |= bit.read( 1) << 4; epB[0] |= bit.read( 7) << 0; epB[3] |= bit.read( 1) << 3; epB[3] |= bit.read( 1) << 5; epB[3] |= bit.read( 1) << 4; epR[1] |= bit.read( 6) << 0; epG[2] |= bit.read( 4) << 0; epG[1] |= bit.read( 6) << 0; epG[3] |= bit.read( 4) << 0; epB[1] |= bit.read( 6) << 0; epB[2] |= bit.read( 4) << 0; epR[2] |= bit.read( 6) << 0; epR[3] |= bit.read( 6) << 0; break; case 2: epR[0] |= bit.read(10) << 0; epG[0] |= bit.read(10) << 0; epB[0] |= bit.read(10) << 0; epR[1] |= bit.read( 5) << 0; epR[0] |= bit.read( 1) << 10; epG[2] |= bit.read( 4) << 0; epG[1] |= bit.read( 4) << 0; epG[0] |= bit.read( 1) << 10; epB[3] |= bit.read( 1) << 0; epG[3] |= bit.read( 4) << 0; epB[1] |= bit.read( 4) << 0; epB[0] |= bit.read( 1) << 10; epB[3] |= bit.read( 1) << 1; epB[2] |= bit.read( 4) << 0; epR[2] |= bit.read( 5) << 0; epB[3] |= bit.read( 1) << 2; epR[3] |= bit.read( 5) << 0; epB[3] |= bit.read( 1) << 3; break; case 3: epR[0] |= bit.read(10) << 0; epG[0] |= bit.read(10) << 0; epB[0] |= bit.read(10) << 0; epR[1] |= bit.read(10) << 0; epG[1] |= bit.read(10) << 0; epB[1] |= bit.read(10) << 0; break; case 6: epR[0] |= bit.read(10) << 0; epG[0] |= bit.read(10) << 0; epB[0] |= bit.read(10) << 0; epR[1] |= bit.read( 4) << 0; epR[0] |= bit.read( 1) << 10; epG[3] |= bit.read( 1) << 4; epG[2] |= bit.read( 4) << 0; epG[1] |= bit.read( 5) << 0; epG[0] |= bit.read( 1) << 10; epG[3] |= bit.read( 4) << 0; epB[1] |= bit.read( 4) << 0; epB[0] |= bit.read( 1) << 10; epB[3] |= bit.read( 1) << 1; epB[2] |= bit.read( 4) << 0; epR[2] |= bit.read( 4) << 0; epB[3] |= bit.read( 1) << 0; epB[3] |= bit.read( 1) << 2; epR[3] |= bit.read( 4) << 0; epG[2] |= bit.read( 1) << 4; epB[3] |= bit.read( 1) << 3; break; case 7: epR[0] |= bit.read(10) << 0; epG[0] |= bit.read(10) << 0; epB[0] |= bit.read(10) << 0; epR[1] |= bit.read( 9) << 0; epR[0] |= bit.read( 1) << 10; epG[1] |= bit.read( 9) << 0; epG[0] |= bit.read( 1) << 10; epB[1] |= bit.read( 9) << 0; epB[0] |= bit.read( 1) << 10; break; case 10: epR[0] |= bit.read(10) << 0; epG[0] |= bit.read(10) << 0; epB[0] |= bit.read(10) << 0; epR[1] |= bit.read( 4) << 0; epR[0] |= bit.read( 1) << 10; epB[2] |= bit.read( 1) << 4; epG[2] |= bit.read( 4) << 0; epG[1] |= bit.read( 4) << 0; epG[0] |= bit.read( 1) << 10; epB[3] |= bit.read( 1) << 0; epG[3] |= bit.read( 4) << 0; epB[1] |= bit.read( 5) << 0; epB[0] |= bit.read( 1) << 10; epB[2] |= bit.read( 4) << 0; epR[2] |= bit.read( 4) << 0; epB[3] |= bit.read( 1) << 1; epB[3] |= bit.read( 1) << 2; epR[3] |= bit.read( 4) << 0; epB[3] |= bit.read( 1) << 4; epB[3] |= bit.read( 1) << 3; break; case 11: epR[0] |= bit.read(10) << 0; epG[0] |= bit.read(10) << 0; epB[0] |= bit.read(10) << 0; epR[1] |= bit.read( 8) << 0; epR[0] |= bit.read( 1) << 11; epR[0] |= bit.read( 1) << 10; epG[1] |= bit.read( 8) << 0; epG[0] |= bit.read( 1) << 11; epG[0] |= bit.read( 1) << 10; epB[1] |= bit.read( 8) << 0; epB[0] |= bit.read( 1) << 11; epB[0] |= bit.read( 1) << 10; break; case 14: epR[0] |= bit.read( 9) << 0; epB[2] |= bit.read( 1) << 4; epG[0] |= bit.read( 9) << 0; epG[2] |= bit.read( 1) << 4; epB[0] |= bit.read( 9) << 0; epB[3] |= bit.read( 1) << 4; epR[1] |= bit.read( 5) << 0; epG[3] |= bit.read( 1) << 4; epG[2] |= bit.read( 4) << 0; epG[1] |= bit.read( 5) << 0; epB[3] |= bit.read( 1) << 0; epG[3] |= bit.read( 4) << 0; epB[1] |= bit.read( 5) << 0; epB[3] |= bit.read( 1) << 1; epB[2] |= bit.read( 4) << 0; epR[2] |= bit.read( 5) << 0; epB[3] |= bit.read( 1) << 2; epR[3] |= bit.read( 5) << 0; epB[3] |= bit.read( 1) << 3; break; case 15: epR[0] |= bit.read(10) << 0; epG[0] |= bit.read(10) << 0; epB[0] |= bit.read(10) << 0; epR[1] |= bit.read( 4) << 0; epR[0] |= bit.read( 1) << 15; epR[0] |= bit.read( 1) << 14; epR[0] |= bit.read( 1) << 13; epR[0] |= bit.read( 1) << 12; epR[0] |= bit.read( 1) << 11; epR[0] |= bit.read( 1) << 10; epG[1] |= bit.read( 4) << 0; epG[0] |= bit.read( 1) << 15; epG[0] |= bit.read( 1) << 14; epG[0] |= bit.read( 1) << 13; epG[0] |= bit.read( 1) << 12; epG[0] |= bit.read( 1) << 11; epG[0] |= bit.read( 1) << 10; epB[1] |= bit.read( 4) << 0; epB[0] |= bit.read( 1) << 15; epB[0] |= bit.read( 1) << 14; epB[0] |= bit.read( 1) << 13; epB[0] |= bit.read( 1) << 12; epB[0] |= bit.read( 1) << 11; epB[0] |= bit.read( 1) << 10; break; case 18: epR[0] |= bit.read( 8) << 0; epG[3] |= bit.read( 1) << 4; epB[2] |= bit.read( 1) << 4; epG[0] |= bit.read( 8) << 0; epB[3] |= bit.read( 1) << 2; epG[2] |= bit.read( 1) << 4; epB[0] |= bit.read( 8) << 0; epB[3] |= bit.read( 1) << 3; epB[3] |= bit.read( 1) << 4; epR[1] |= bit.read( 6) << 0; epG[2] |= bit.read( 4) << 0; epG[1] |= bit.read( 5) << 0; epB[3] |= bit.read( 1) << 0; epG[3] |= bit.read( 4) << 0; epB[1] |= bit.read( 5) << 0; epB[3] |= bit.read( 1) << 1; epB[2] |= bit.read( 4) << 0; epR[2] |= bit.read( 6) << 0; epR[3] |= bit.read( 6) << 0; break; case 22: epR[0] |= bit.read( 8) << 0; epB[3] |= bit.read( 1) << 0; epB[2] |= bit.read( 1) << 4; epG[0] |= bit.read( 8) << 0; epG[2] |= bit.read( 1) << 5; epG[2] |= bit.read( 1) << 4; epB[0] |= bit.read( 8) << 0; epG[3] |= bit.read( 1) << 5; epB[3] |= bit.read( 1) << 4; epR[1] |= bit.read( 5) << 0; epG[3] |= bit.read( 1) << 4; epG[2] |= bit.read( 4) << 0; epG[1] |= bit.read( 6) << 0; epG[3] |= bit.read( 4) << 0; epB[1] |= bit.read( 5) << 0; epB[3] |= bit.read( 1) << 1; epB[2] |= bit.read( 4) << 0; epR[2] |= bit.read( 5) << 0; epB[3] |= bit.read( 1) << 2; epR[3] |= bit.read( 5) << 0; epB[3] |= bit.read( 1) << 3; break; case 26: epR[0] |= bit.read( 8) << 0; epB[3] |= bit.read( 1) << 1; epB[2] |= bit.read( 1) << 4; epG[0] |= bit.read( 8) << 0; epB[2] |= bit.read( 1) << 5; epG[2] |= bit.read( 1) << 4; epB[0] |= bit.read( 8) << 0; epB[3] |= bit.read( 1) << 5; epB[3] |= bit.read( 1) << 4; epR[1] |= bit.read( 5) << 0; epG[3] |= bit.read( 1) << 4; epG[2] |= bit.read( 4) << 0; epG[1] |= bit.read( 5) << 0; epB[3] |= bit.read( 1) << 0; epG[3] |= bit.read( 4) << 0; epB[1] |= bit.read( 6) << 0; epB[2] |= bit.read( 4) << 0; epR[2] |= bit.read( 5) << 0; epB[3] |= bit.read( 1) << 2; epR[3] |= bit.read( 5) << 0; epB[3] |= bit.read( 1) << 3; break; case 30: epR[0] |= bit.read( 6) << 0; epG[3] |= bit.read( 1) << 4; epB[3] |= bit.read( 1) << 0; epB[3] |= bit.read( 1) << 1; epB[2] |= bit.read( 1) << 4; epG[0] |= bit.read( 6) << 0; epG[2] |= bit.read( 1) << 5; epB[2] |= bit.read( 1) << 5; epB[3] |= bit.read( 1) << 2; epG[2] |= bit.read( 1) << 4; epB[0] |= bit.read( 6) << 0; epG[3] |= bit.read( 1) << 5; epB[3] |= bit.read( 1) << 3; epB[3] |= bit.read( 1) << 5; epB[3] |= bit.read( 1) << 4; epR[1] |= bit.read( 6) << 0; epG[2] |= bit.read( 4) << 0; epG[1] |= bit.read( 6) << 0; epG[3] |= bit.read( 4) << 0; epB[1] |= bit.read( 6) << 0; epB[2] |= bit.read( 4) << 0; epR[2] |= bit.read( 6) << 0; epR[3] |= bit.read( 6) << 0; break; default: break; } if (_signed) { epR[0] = signExtend(epR[0], mi.endpointBits); epG[0] = signExtend(epG[0], mi.endpointBits); epB[0] = signExtend(epB[0], mi.endpointBits); } const uint8_t numSubsets = !!mi.partitionBits + 1; for (uint8_t ii = 1, num = numSubsets*2; ii < num; ++ii) { if (_signed || mi.transformed) { epR[ii] = signExtend(epR[ii], mi.deltaBits[0]); epG[ii] = signExtend(epG[ii], mi.deltaBits[1]); epB[ii] = signExtend(epB[ii], mi.deltaBits[2]); } if (mi.transformed) { const uint16_t mask = (1<> idx) & 1; indexAnchor = subsetIndex ? s_bptcA2[partitionSetIdx] : 0; } const uint8_t anchor = idx == indexAnchor; const uint8_t num = indexBits - anchor; const uint8_t index = (uint8_t)bit.read(num); const uint8_t fc = factors[index]; const uint8_t fca = 64 - fc; const uint8_t fcb = fc; subsetIndex *= 2; uint16_t rr = bc6hUnquantizeFinal( (epR[subsetIndex]*fca + epR[subsetIndex + 1]*fcb + 32) >> 6, _signed); uint16_t gg = bc6hUnquantizeFinal( (epG[subsetIndex]*fca + epG[subsetIndex + 1]*fcb + 32) >> 6, _signed); uint16_t bb = bc6hUnquantizeFinal( (epB[subsetIndex]*fca + epB[subsetIndex + 1]*fcb + 32) >> 6, _signed); uint16_t* rgba = &_dst[idx*3]; rgba[0] = rr; rgba[1] = gg; rgba[2] = bb; } } } void decodeBlockBc6h(float _dst[16*4], const uint8_t _src[16]) { uint16_t tmp[16*3]; decodeBlockBc6h(tmp, _src, true); for (uint32_t ii = 0; ii < 16; ++ii) { _dst[ii*4+0] = bx::halfToFloat(tmp[ii*3+0]); _dst[ii*4+1] = bx::halfToFloat(tmp[ii*3+1]); _dst[ii*4+2] = bx::halfToFloat(tmp[ii*3+2]); _dst[ii*4+3] = 1.0f; } } struct Bc7ModeInfo { uint8_t numSubsets; uint8_t partitionBits; uint8_t rotationBits; uint8_t indexSelectionBits; uint8_t colorBits; uint8_t alphaBits; uint8_t endpointPBits; uint8_t sharedPBits; uint8_t indexBits[2]; }; static const Bc7ModeInfo s_bp7ModeInfo[] = { // +---------------------------- num subsets // | +------------------------- partition bits // | | +---------------------- rotation bits // | | | +------------------- index selection bits // | | | | +---------------- color bits // | | | | | +------------- alpha bits // | | | | | | +---------- endpoint P-bits // | | | | | | | +------- shared P-bits // | | | | | | | | +-- 2x index bits { 3, 4, 0, 0, 4, 0, 1, 0, { 3, 0 } }, // 0 { 2, 6, 0, 0, 6, 0, 0, 1, { 3, 0 } }, // 1 { 3, 6, 0, 0, 5, 0, 0, 0, { 2, 0 } }, // 2 { 2, 6, 0, 0, 7, 0, 1, 0, { 2, 0 } }, // 3 { 1, 0, 2, 1, 5, 6, 0, 0, { 2, 3 } }, // 4 { 1, 0, 2, 0, 7, 8, 0, 0, { 2, 2 } }, // 5 { 1, 0, 0, 0, 7, 7, 1, 0, { 4, 0 } }, // 6 { 2, 6, 0, 0, 5, 5, 1, 0, { 2, 0 } }, // 7 }; void decodeBlockBc7(uint8_t _dst[16*4], const uint8_t _src[16]) { BitReader bit(_src); uint8_t mode = 0; for (; mode < 8 && 0 == bit.read(1); ++mode) { } if (mode == 8) { bx::memSet(_dst, 0, 16*4); return; } const Bc7ModeInfo& mi = s_bp7ModeInfo[mode]; const uint8_t modePBits = 0 != mi.endpointPBits ? mi.endpointPBits : mi.sharedPBits ; const uint8_t partitionSetIdx = uint8_t(bit.read(mi.partitionBits) ); const uint8_t rotationMode = uint8_t(bit.read(mi.rotationBits) ); const uint8_t indexSelectionMode = uint8_t(bit.read(mi.indexSelectionBits) ); uint8_t epR[6]; uint8_t epG[6]; uint8_t epB[6]; uint8_t epA[6]; for (uint8_t ii = 0; ii < mi.numSubsets; ++ii) { epR[ii*2+0] = uint8_t(bit.read(mi.colorBits) << modePBits); epR[ii*2+1] = uint8_t(bit.read(mi.colorBits) << modePBits); } for (uint8_t ii = 0; ii < mi.numSubsets; ++ii) { epG[ii*2+0] = uint8_t(bit.read(mi.colorBits) << modePBits); epG[ii*2+1] = uint8_t(bit.read(mi.colorBits) << modePBits); } for (uint8_t ii = 0; ii < mi.numSubsets; ++ii) { epB[ii*2+0] = uint8_t(bit.read(mi.colorBits) << modePBits); epB[ii*2+1] = uint8_t(bit.read(mi.colorBits) << modePBits); } if (mi.alphaBits) { for (uint8_t ii = 0; ii < mi.numSubsets; ++ii) { epA[ii*2+0] = uint8_t(bit.read(mi.alphaBits) << modePBits); epA[ii*2+1] = uint8_t(bit.read(mi.alphaBits) << modePBits); } } else { bx::memSet(epA, 0xff, 6); } if (0 != modePBits) { for (uint8_t ii = 0; ii < mi.numSubsets; ++ii) { const uint8_t pda = uint8_t( bit.read(modePBits) ); const uint8_t pdb = uint8_t(0 == mi.sharedPBits ? bit.read(modePBits) : pda); epR[ii*2+0] |= pda; epR[ii*2+1] |= pdb; epG[ii*2+0] |= pda; epG[ii*2+1] |= pdb; epB[ii*2+0] |= pda; epB[ii*2+1] |= pdb; epA[ii*2+0] |= pda; epA[ii*2+1] |= pdb; } } const uint8_t colorBits = mi.colorBits + modePBits; for (uint8_t ii = 0; ii < mi.numSubsets; ++ii) { epR[ii*2+0] = bitRangeConvert(epR[ii*2+0], colorBits, 8); epR[ii*2+1] = bitRangeConvert(epR[ii*2+1], colorBits, 8); epG[ii*2+0] = bitRangeConvert(epG[ii*2+0], colorBits, 8); epG[ii*2+1] = bitRangeConvert(epG[ii*2+1], colorBits, 8); epB[ii*2+0] = bitRangeConvert(epB[ii*2+0], colorBits, 8); epB[ii*2+1] = bitRangeConvert(epB[ii*2+1], colorBits, 8); } if (mi.alphaBits) { const uint8_t alphaBits = mi.alphaBits + modePBits; for (uint8_t ii = 0; ii < mi.numSubsets; ++ii) { epA[ii*2+0] = bitRangeConvert(epA[ii*2+0], alphaBits, 8); epA[ii*2+1] = bitRangeConvert(epA[ii*2+1], alphaBits, 8); } } const bool hasIndexBits1 = 0 != mi.indexBits[1]; const uint8_t* factors[] = { s_bptcFactors[mi.indexBits[0]-2], hasIndexBits1 ? s_bptcFactors[mi.indexBits[1]-2] : factors[0], }; uint16_t offset[2] = { 0, uint16_t(mi.numSubsets*(16*mi.indexBits[0]-1) ), }; for (uint8_t yy = 0; yy < 4; ++yy) { for (uint8_t xx = 0; xx < 4; ++xx) { const uint8_t idx = yy*4+xx; uint8_t subsetIndex = 0; uint8_t indexAnchor = 0; switch (mi.numSubsets) { case 2: subsetIndex = (s_bptcP2[partitionSetIdx] >> idx) & 1; indexAnchor = 0 != subsetIndex ? s_bptcA2[partitionSetIdx] : 0; break; case 3: subsetIndex = (s_bptcP3[partitionSetIdx] >> (2*idx) ) & 3; indexAnchor = 0 != subsetIndex ? s_bptcA3[subsetIndex-1][partitionSetIdx] : 0; break; default: break; } const uint8_t anchor = idx == indexAnchor; const uint8_t num[2] = { uint8_t( mi.indexBits[0] - anchor ), uint8_t(hasIndexBits1 ? mi.indexBits[1] - anchor : 0), }; const uint8_t index[2] = { (uint8_t)bit.peek(offset[0], num[0]), hasIndexBits1 ? (uint8_t)bit.peek(offset[1], num[1]) : index[0], }; offset[0] += num[0]; offset[1] += num[1]; const uint8_t fc = factors[ indexSelectionMode][index[ indexSelectionMode] ]; const uint8_t fa = factors[!indexSelectionMode][index[!indexSelectionMode] ]; const uint8_t fca = 64 - fc; const uint8_t fcb = fc; const uint8_t faa = 64 - fa; const uint8_t fab = fa; subsetIndex *= 2; uint8_t rr = uint8_t(uint16_t(epR[subsetIndex]*fca + epR[subsetIndex + 1]*fcb + 32) >> 6); uint8_t gg = uint8_t(uint16_t(epG[subsetIndex]*fca + epG[subsetIndex + 1]*fcb + 32) >> 6); uint8_t bb = uint8_t(uint16_t(epB[subsetIndex]*fca + epB[subsetIndex + 1]*fcb + 32) >> 6); uint8_t aa = uint8_t(uint16_t(epA[subsetIndex]*faa + epA[subsetIndex + 1]*fab + 32) >> 6); switch (rotationMode) { case 1: bx::swap(aa, rr); break; case 2: bx::swap(aa, gg); break; case 3: bx::swap(aa, bb); break; default: break; }; uint8_t* bgra = &_dst[idx*4]; bgra[0] = bb; bgra[1] = gg; bgra[2] = rr; bgra[3] = aa; } } } // ATC // void decodeBlockATC(uint8_t _dst[16*4], const uint8_t _src[8]) { uint8_t colors[4*4]; uint32_t c0 = _src[0] | (_src[1] << 8); uint32_t c1 = _src[2] | (_src[3] << 8); if (0 == (c0 & 0x8000) ) { colors[ 0] = bitRangeConvert( (c0>> 0)&0x1f, 5, 8); colors[ 1] = bitRangeConvert( (c0>> 5)&0x1f, 5, 8); colors[ 2] = bitRangeConvert( (c0>>10)&0x1f, 5, 8); colors[12] = bitRangeConvert( (c1>> 0)&0x1f, 5, 8); colors[13] = bitRangeConvert( (c1>> 5)&0x3f, 6, 8); colors[14] = bitRangeConvert( (c1>>11)&0x1f, 5, 8); colors[ 4] = (2 * colors[0] + colors[12]) / 3; colors[ 5] = (2 * colors[1] + colors[13]) / 3; colors[ 6] = (2 * colors[2] + colors[14]) / 3; colors[ 8] = (colors[0] + 2 * colors[12]) / 3; colors[ 9] = (colors[1] + 2 * colors[13]) / 3; colors[10] = (colors[2] + 2 * colors[14]) / 3; } else { colors[ 0] = 0; colors[ 1] = 0; colors[ 2] = 0; colors[ 8] = bitRangeConvert( (c0>> 0)&0x1f, 5, 8); colors[ 9] = bitRangeConvert( (c0>> 5)&0x1f, 5, 8); colors[10] = bitRangeConvert( (c0>>10)&0x1f, 5, 8); colors[12] = bitRangeConvert( (c1>> 0)&0x1f, 5, 8); colors[13] = bitRangeConvert( (c1>> 5)&0x3f, 6, 8); colors[14] = bitRangeConvert( (c1>>11)&0x1f, 5, 8); colors[ 4] = colors[ 8] - colors[12] / 4; colors[ 5] = colors[ 9] - colors[13] / 4; colors[ 6] = colors[10] - colors[14] / 4; } for (uint32_t ii = 0, next = 8*4; ii < 16*4; ii += 4, next += 2) { int32_t idx = ( (_src[next>>3] >> (next & 7) ) & 3) * 4; _dst[ii+0] = colors[idx+0]; _dst[ii+1] = colors[idx+1]; _dst[ii+2] = colors[idx+2]; _dst[ii+3] = colors[idx+3]; } } static const int32_t s_etc1Mod[8][4] = { { 2, 8, -2, -8 }, { 5, 17, -5, -17 }, { 9, 29, -9, -29 }, { 13, 42, -13, -42 }, { 18, 60, -18, -60 }, { 24, 80, -24, -80 }, { 33, 106, -33, -106 }, { 47, 183, -47, -183 }, }; static const uint8_t s_etc2Mod[] = { 3, 6, 11, 16, 23, 32, 41, 64 }; uint8_t uint8_sat(int32_t _a) { using namespace bx; const uint32_t min = uint32_imin(_a, 255); const uint32_t result = uint32_imax(min, 0); return (uint8_t)result; } uint8_t uint8_satadd(int32_t _a, int32_t _b) { const int32_t add = _a + _b; return uint8_sat(add); } void decodeBlockEtc2ModeT(uint8_t _dst[16*4], const uint8_t _src[8]) { uint8_t rgb[16]; // 0 1 2 3 4 5 6 7 // 7654321076543210765432107654321076543210765432107654321076543210 // ...rr.rrggggbbbbrrrrggggbbbbDDD.mmmmmmmmmmmmmmmmllllllllllllllll // ^ ^ ^ ^ ^ // +-- c0 +-- c1 | +-- msb +-- lsb // +-- dist rgb[ 0] = ( (_src[0] >> 1) & 0xc) | (_src[0] & 0x3) ; rgb[ 1] = _src[1] >> 4; rgb[ 2] = _src[1] & 0xf; rgb[ 8] = _src[2] >> 4; rgb[ 9] = _src[2] & 0xf; rgb[10] = _src[3] >> 4; rgb[ 0] = bitRangeConvert(rgb[ 0], 4, 8); rgb[ 1] = bitRangeConvert(rgb[ 1], 4, 8); rgb[ 2] = bitRangeConvert(rgb[ 2], 4, 8); rgb[ 8] = bitRangeConvert(rgb[ 8], 4, 8); rgb[ 9] = bitRangeConvert(rgb[ 9], 4, 8); rgb[10] = bitRangeConvert(rgb[10], 4, 8); uint8_t dist = (_src[3] >> 1) & 0x7; int32_t mod = s_etc2Mod[dist]; rgb[ 4] = uint8_satadd(rgb[ 8], mod); rgb[ 5] = uint8_satadd(rgb[ 9], mod); rgb[ 6] = uint8_satadd(rgb[10], mod); rgb[12] = uint8_satadd(rgb[ 8], -mod); rgb[13] = uint8_satadd(rgb[ 9], -mod); rgb[14] = uint8_satadd(rgb[10], -mod); uint32_t indexMsb = (_src[4]<<8) | _src[5]; uint32_t indexLsb = (_src[6]<<8) | _src[7]; for (uint32_t ii = 0; ii < 16; ++ii) { const uint32_t idx = (ii&0xc) | ( (ii & 0x3)<<4); const uint32_t lsbi = indexLsb & 1; const uint32_t msbi = (indexMsb & 1)<<1; const uint32_t pal = (lsbi | msbi)<<2; _dst[idx + 0] = rgb[pal+2]; _dst[idx + 1] = rgb[pal+1]; _dst[idx + 2] = rgb[pal+0]; _dst[idx + 3] = 255; indexLsb >>= 1; indexMsb >>= 1; } } void decodeBlockEtc2ModeH(uint8_t _dst[16*4], const uint8_t _src[8]) { uint8_t rgb[16]; // 0 1 2 3 4 5 6 7 // 7654321076543210765432107654321076543210765432107654321076543210 // .rrrrggg...gb.bbbrrrrggggbbbbDD.mmmmmmmmmmmmmmmmllllllllllllllll // ^ ^ ^ ^ ^ // +-- c0 +-- c1 | +-- msb +-- lsb // +-- dist rgb[ 0] = (_src[0] >> 3) & 0xf; rgb[ 1] = ( (_src[0] << 1) & 0xe) | ( (_src[1] >> 4) & 0x1) ; rgb[ 2] = (_src[1] & 0x8) | ( (_src[1] << 1) & 0x6) | (_src[2] >> 7) ; rgb[ 8] = (_src[2] >> 3) & 0xf; rgb[ 9] = ( (_src[2] << 1) & 0xe) | (_src[3] >> 7) ; rgb[10] = (_src[2] >> 3) & 0xf; rgb[ 0] = bitRangeConvert(rgb[ 0], 4, 8); rgb[ 1] = bitRangeConvert(rgb[ 1], 4, 8); rgb[ 2] = bitRangeConvert(rgb[ 2], 4, 8); rgb[ 8] = bitRangeConvert(rgb[ 8], 4, 8); rgb[ 9] = bitRangeConvert(rgb[ 9], 4, 8); rgb[10] = bitRangeConvert(rgb[10], 4, 8); uint32_t col0 = uint32_t(rgb[0]<<16) | uint32_t(rgb[1]<<8) | uint32_t(rgb[ 2]); uint32_t col1 = uint32_t(rgb[8]<<16) | uint32_t(rgb[9]<<8) | uint32_t(rgb[10]); uint8_t dist = (_src[3] & 0x6) | (col0 >= col1); int32_t mod = s_etc2Mod[dist]; rgb[ 4] = uint8_satadd(rgb[ 0], -mod); rgb[ 5] = uint8_satadd(rgb[ 1], -mod); rgb[ 6] = uint8_satadd(rgb[ 2], -mod); rgb[ 0] = uint8_satadd(rgb[ 0], mod); rgb[ 1] = uint8_satadd(rgb[ 1], mod); rgb[ 2] = uint8_satadd(rgb[ 2], mod); rgb[12] = uint8_satadd(rgb[ 8], -mod); rgb[13] = uint8_satadd(rgb[ 9], -mod); rgb[14] = uint8_satadd(rgb[10], -mod); rgb[ 8] = uint8_satadd(rgb[ 8], mod); rgb[ 9] = uint8_satadd(rgb[ 9], mod); rgb[10] = uint8_satadd(rgb[10], mod); uint32_t indexMsb = (_src[4]<<8) | _src[5]; uint32_t indexLsb = (_src[6]<<8) | _src[7]; for (uint32_t ii = 0; ii < 16; ++ii) { const uint32_t idx = (ii&0xc) | ( (ii & 0x3)<<4); const uint32_t lsbi = indexLsb & 1; const uint32_t msbi = (indexMsb & 1)<<1; const uint32_t pal = (lsbi | msbi)<<2; _dst[idx + 0] = rgb[pal+2]; _dst[idx + 1] = rgb[pal+1]; _dst[idx + 2] = rgb[pal+0]; _dst[idx + 3] = 255; indexLsb >>= 1; indexMsb >>= 1; } } void decodeBlockEtc2ModePlanar(uint8_t _dst[16*4], const uint8_t _src[8]) { // 0 1 2 3 4 5 6 7 // 7654321076543210765432107654321076543210765432107654321076543210 // .rrrrrrg.ggggggb...bb.bbbrrrrr.rgggggggbbbbbbrrrrrrgggggggbbbbbb // ^ ^ ^ // +-- c0 +-- cH +-- cV uint8_t c0[3]; uint8_t cH[3]; uint8_t cV[3]; c0[0] = (_src[0] >> 1) & 0x3f; c0[1] = ( (_src[0] & 1) << 6) | ( (_src[1] >> 1) & 0x3f) ; c0[2] = ( (_src[1] & 1) << 5) | ( (_src[2] & 0x18) ) | ( (_src[2] << 1) & 6) | ( (_src[3] >> 7) ) ; cH[0] = ( (_src[3] >> 1) & 0x3e) | (_src[3] & 1) ; cH[1] = _src[4] >> 1; cH[2] = ( (_src[4] & 1) << 5) | (_src[5] >> 3) ; cV[0] = ( (_src[5] & 0x7) << 3) | (_src[6] >> 5) ; cV[1] = ( (_src[6] & 0x1f) << 2) | (_src[7] >> 5) ; cV[2] = _src[7] & 0x3f; c0[0] = bitRangeConvert(c0[0], 6, 8); c0[1] = bitRangeConvert(c0[1], 7, 8); c0[2] = bitRangeConvert(c0[2], 6, 8); cH[0] = bitRangeConvert(cH[0], 6, 8); cH[1] = bitRangeConvert(cH[1], 7, 8); cH[2] = bitRangeConvert(cH[2], 6, 8); cV[0] = bitRangeConvert(cV[0], 6, 8); cV[1] = bitRangeConvert(cV[1], 7, 8); cV[2] = bitRangeConvert(cV[2], 6, 8); int16_t dy[3]; dy[0] = cV[0] - c0[0]; dy[1] = cV[1] - c0[1]; dy[2] = cV[2] - c0[2]; int16_t sx[3]; sx[0] = int16_t(c0[0])<<2; sx[1] = int16_t(c0[1])<<2; sx[2] = int16_t(c0[2])<<2; int16_t ex[3]; ex[0] = int16_t(cH[0])<<2; ex[1] = int16_t(cH[1])<<2; ex[2] = int16_t(cH[2])<<2; for (int32_t vv = 0; vv < 4; ++vv) { int16_t dx[3]; dx[0] = (ex[0] - sx[0])>>2; dx[1] = (ex[1] - sx[1])>>2; dx[2] = (ex[2] - sx[2])>>2; for (int32_t hh = 0; hh < 4; ++hh) { const uint32_t idx = (vv<<4) + (hh<<2); _dst[idx + 0] = uint8_sat( (sx[2] + dx[2]*hh)>>2); _dst[idx + 1] = uint8_sat( (sx[1] + dx[1]*hh)>>2); _dst[idx + 2] = uint8_sat( (sx[0] + dx[0]*hh)>>2); _dst[idx + 3] = 255; } sx[0] += dy[0]; sx[1] += dy[1]; sx[2] += dy[2]; ex[0] += dy[0]; ex[1] += dy[1]; ex[2] += dy[2]; } } void decodeBlockEtc12(uint8_t _dst[16*4], const uint8_t _src[8]) { bool flipBit = 0 != (_src[3] & 0x1); bool diffBit = 0 != (_src[3] & 0x2); uint8_t rgb[8]; if (diffBit) { rgb[0] = _src[0] >> 3; rgb[1] = _src[1] >> 3; rgb[2] = _src[2] >> 3; int8_t diff[3]; diff[0] = int8_t( (_src[0] & 0x7)<<5)>>5; diff[1] = int8_t( (_src[1] & 0x7)<<5)>>5; diff[2] = int8_t( (_src[2] & 0x7)<<5)>>5; int8_t rr = rgb[0] + diff[0]; int8_t gg = rgb[1] + diff[1]; int8_t bb = rgb[2] + diff[2]; // Etc2 3-modes if (rr < 0 || rr > 31) { decodeBlockEtc2ModeT(_dst, _src); return; } if (gg < 0 || gg > 31) { decodeBlockEtc2ModeH(_dst, _src); return; } if (bb < 0 || bb > 31) { decodeBlockEtc2ModePlanar(_dst, _src); return; } // Etc1 rgb[0] = bitRangeConvert(rgb[0], 5, 8); rgb[1] = bitRangeConvert(rgb[1], 5, 8); rgb[2] = bitRangeConvert(rgb[2], 5, 8); rgb[4] = bitRangeConvert(rr, 5, 8); rgb[5] = bitRangeConvert(gg, 5, 8); rgb[6] = bitRangeConvert(bb, 5, 8); } else { rgb[0] = _src[0] >> 4; rgb[1] = _src[1] >> 4; rgb[2] = _src[2] >> 4; rgb[4] = _src[0] & 0xf; rgb[5] = _src[1] & 0xf; rgb[6] = _src[2] & 0xf; rgb[0] = bitRangeConvert(rgb[0], 4, 8); rgb[1] = bitRangeConvert(rgb[1], 4, 8); rgb[2] = bitRangeConvert(rgb[2], 4, 8); rgb[4] = bitRangeConvert(rgb[4], 4, 8); rgb[5] = bitRangeConvert(rgb[5], 4, 8); rgb[6] = bitRangeConvert(rgb[6], 4, 8); } uint32_t table[2]; table[0] = (_src[3] >> 5) & 0x7; table[1] = (_src[3] >> 2) & 0x7; uint32_t indexMsb = (_src[4]<<8) | _src[5]; uint32_t indexLsb = (_src[6]<<8) | _src[7]; if (flipBit) { for (uint32_t ii = 0; ii < 16; ++ii) { const uint32_t block = (ii>>1)&1; const uint32_t color = block<<2; const uint32_t idx = (ii&0xc) | ( (ii & 0x3)<<4); const uint32_t lsbi = indexLsb & 1; const uint32_t msbi = (indexMsb & 1)<<1; const int32_t mod = s_etc1Mod[table[block] ][lsbi | msbi]; _dst[idx + 0] = uint8_satadd(rgb[color+2], mod); _dst[idx + 1] = uint8_satadd(rgb[color+1], mod); _dst[idx + 2] = uint8_satadd(rgb[color+0], mod); _dst[idx + 3] = 255; indexLsb >>= 1; indexMsb >>= 1; } } else { for (uint32_t ii = 0; ii < 16; ++ii) { const uint32_t block = ii>>3; const uint32_t color = block<<2; const uint32_t idx = (ii&0xc) | ( (ii & 0x3)<<4); const uint32_t lsbi = indexLsb & 1; const uint32_t msbi = (indexMsb & 1)<<1; const int32_t mod = s_etc1Mod[table[block] ][lsbi | msbi]; _dst[idx + 0] = uint8_satadd(rgb[color+2], mod); _dst[idx + 1] = uint8_satadd(rgb[color+1], mod); _dst[idx + 2] = uint8_satadd(rgb[color+0], mod); _dst[idx + 3] = 255; indexLsb >>= 1; indexMsb >>= 1; } } } static const uint8_t s_pvrtcFactors[16][4] = { { 4, 4, 4, 4 }, { 2, 6, 2, 6 }, { 8, 0, 8, 0 }, { 6, 2, 6, 2 }, { 2, 2, 6, 6 }, { 1, 3, 3, 9 }, { 4, 0, 12, 0 }, { 3, 1, 9, 3 }, { 8, 8, 0, 0 }, { 4, 12, 0, 0 }, { 16, 0, 0, 0 }, { 12, 4, 0, 0 }, { 6, 6, 2, 2 }, { 3, 9, 1, 3 }, { 12, 0, 4, 0 }, { 9, 3, 3, 1 }, }; static const uint8_t s_pvrtcWeights[8][4] = { { 8, 0, 8, 0 }, { 5, 3, 5, 3 }, { 3, 5, 3, 5 }, { 0, 8, 0, 8 }, { 8, 0, 8, 0 }, { 4, 4, 4, 4 }, { 4, 4, 4, 4 }, { 0, 8, 0, 8 }, }; uint32_t morton2d(uint32_t _x, uint32_t _y) { using namespace bx; const uint32_t tmpx = uint32_part1by1(_x); const uint32_t xbits = uint32_sll(tmpx, 1); const uint32_t ybits = uint32_part1by1(_y); const uint32_t result = uint32_or(xbits, ybits); return result; } uint32_t getColor(const uint8_t _src[8]) { return 0 | _src[7]<<24 | _src[6]<<16 | _src[5]<<8 | _src[4] ; } void decodeBlockPtc14RgbAddA(uint32_t _block, uint32_t* _r, uint32_t* _g, uint32_t* _b, uint8_t _factor) { if (0 != (_block & (1<<15) ) ) { *_r += bitRangeConvert( (_block >> 10) & 0x1f, 5, 8) * _factor; *_g += bitRangeConvert( (_block >> 5) & 0x1f, 5, 8) * _factor; *_b += bitRangeConvert( (_block >> 1) & 0x0f, 4, 8) * _factor; } else { *_r += bitRangeConvert( (_block >> 8) & 0xf, 4, 8) * _factor; *_g += bitRangeConvert( (_block >> 4) & 0xf, 4, 8) * _factor; *_b += bitRangeConvert( (_block >> 1) & 0x7, 3, 8) * _factor; } } void decodeBlockPtc14RgbAddB(uint32_t _block, uint32_t* _r, uint32_t* _g, uint32_t* _b, uint8_t _factor) { if (0 != (_block & (1<<31) ) ) { *_r += bitRangeConvert( (_block >> 26) & 0x1f, 5, 8) * _factor; *_g += bitRangeConvert( (_block >> 21) & 0x1f, 5, 8) * _factor; *_b += bitRangeConvert( (_block >> 16) & 0x1f, 5, 8) * _factor; } else { *_r += bitRangeConvert( (_block >> 24) & 0xf, 4, 8) * _factor; *_g += bitRangeConvert( (_block >> 20) & 0xf, 4, 8) * _factor; *_b += bitRangeConvert( (_block >> 16) & 0xf, 4, 8) * _factor; } } void decodeBlockPtc14(uint8_t _dst[16*4], const uint8_t* _src, uint32_t _x, uint32_t _y, uint32_t _width, uint32_t _height) { // 0 1 2 3 4 5 6 7 // 7654321076543210765432107654321076543210765432107654321076543210 // mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmyrrrrrgggggbbbbbxrrrrrgggggbbbbp // ^ ^^ ^^ ^ // +-- modulation data |+- B color |+- A color | // +-- B opaque +-- A opaque | // alpha punchthrough --+ const uint8_t* bc = &_src[morton2d(_x, _y) * 8]; uint32_t mod = 0 | bc[3]<<24 | bc[2]<<16 | bc[1]<<8 | bc[0] ; const bool punchthrough = !!(bc[7] & 1); const uint8_t* weightTable = s_pvrtcWeights[4 * punchthrough]; const uint8_t* factorTable = s_pvrtcFactors[0]; for (int yy = 0; yy < 4; ++yy) { const uint32_t yOffset = (yy < 2) ? -1 : 0; const uint32_t y0 = (_y + yOffset) % _height; const uint32_t y1 = (y0 + 1) % _height; for (int xx = 0; xx < 4; ++xx) { const uint32_t xOffset = (xx < 2) ? -1 : 0; const uint32_t x0 = (_x + xOffset) % _width; const uint32_t x1 = (x0 + 1) % _width; const uint32_t bc0 = getColor(&_src[morton2d(x0, y0) * 8]); const uint32_t bc1 = getColor(&_src[morton2d(x1, y0) * 8]); const uint32_t bc2 = getColor(&_src[morton2d(x0, y1) * 8]); const uint32_t bc3 = getColor(&_src[morton2d(x1, y1) * 8]); const uint8_t f0 = factorTable[0]; const uint8_t f1 = factorTable[1]; const uint8_t f2 = factorTable[2]; const uint8_t f3 = factorTable[3]; uint32_t ar = 0, ag = 0, ab = 0; decodeBlockPtc14RgbAddA(bc0, &ar, &ag, &ab, f0); decodeBlockPtc14RgbAddA(bc1, &ar, &ag, &ab, f1); decodeBlockPtc14RgbAddA(bc2, &ar, &ag, &ab, f2); decodeBlockPtc14RgbAddA(bc3, &ar, &ag, &ab, f3); uint32_t br = 0, bg = 0, bb = 0; decodeBlockPtc14RgbAddB(bc0, &br, &bg, &bb, f0); decodeBlockPtc14RgbAddB(bc1, &br, &bg, &bb, f1); decodeBlockPtc14RgbAddB(bc2, &br, &bg, &bb, f2); decodeBlockPtc14RgbAddB(bc3, &br, &bg, &bb, f3); const uint8_t* weight = &weightTable[(mod & 3)*4]; const uint8_t wa = weight[0]; const uint8_t wb = weight[1]; _dst[(yy*4 + xx)*4+0] = uint8_t( (ab * wa + bb * wb) >> 7); _dst[(yy*4 + xx)*4+1] = uint8_t( (ag * wa + bg * wb) >> 7); _dst[(yy*4 + xx)*4+2] = uint8_t( (ar * wa + br * wb) >> 7); _dst[(yy*4 + xx)*4+3] = 255; mod >>= 2; factorTable += 4; } } } void decodeBlockPtc14ARgbaAddA(uint32_t _block, uint32_t* _r, uint32_t* _g, uint32_t* _b, uint32_t* _a, uint8_t _factor) { if (0 != (_block & (1<<15) ) ) { *_r += bitRangeConvert( (_block >> 10) & 0x1f, 5, 8) * _factor; *_g += bitRangeConvert( (_block >> 5) & 0x1f, 5, 8) * _factor; *_b += bitRangeConvert( (_block >> 1) & 0x0f, 4, 8) * _factor; *_a += 255 * _factor; } else { *_r += bitRangeConvert( (_block >> 8) & 0xf, 4, 8) * _factor; *_g += bitRangeConvert( (_block >> 4) & 0xf, 4, 8) * _factor; *_b += bitRangeConvert( (_block >> 1) & 0x7, 3, 8) * _factor; *_a += bitRangeConvert( (_block >> 12) & 0x7, 3, 8) * _factor; } } void decodeBlockPtc14ARgbaAddB(uint32_t _block, uint32_t* _r, uint32_t* _g, uint32_t* _b, uint32_t* _a, uint8_t _factor) { if (0 != (_block & (1<<31) ) ) { *_r += bitRangeConvert( (_block >> 26) & 0x1f, 5, 8) * _factor; *_g += bitRangeConvert( (_block >> 21) & 0x1f, 5, 8) * _factor; *_b += bitRangeConvert( (_block >> 16) & 0x1f, 5, 8) * _factor; *_a += 255 * _factor; } else { *_r += bitRangeConvert( (_block >> 24) & 0xf, 4, 8) * _factor; *_g += bitRangeConvert( (_block >> 20) & 0xf, 4, 8) * _factor; *_b += bitRangeConvert( (_block >> 16) & 0xf, 4, 8) * _factor; *_a += bitRangeConvert( (_block >> 28) & 0x7, 3, 8) * _factor; } } void decodeBlockPtc14A(uint8_t _dst[16*4], const uint8_t* _src, uint32_t _x, uint32_t _y, uint32_t _width, uint32_t _height) { // 0 1 2 3 4 5 6 7 // 7654321076543210765432107654321076543210765432107654321076543210 // mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmyrrrrrgggggbbbbbxrrrrrgggggbbbbp // ^ ^^ ^^ ^ // +-- modulation data |+- B color |+- A color | // +-- B opaque +-- A opaque | // alpha punchthrough --+ const uint8_t* bc = &_src[morton2d(_x, _y) * 8]; uint32_t mod = 0 | bc[3]<<24 | bc[2]<<16 | bc[1]<<8 | bc[0] ; const bool punchthrough = !!(bc[7] & 1); const uint8_t* weightTable = s_pvrtcWeights[4 * punchthrough]; const uint8_t* factorTable = s_pvrtcFactors[0]; for (int yy = 0; yy < 4; ++yy) { const uint32_t yOffset = (yy < 2) ? -1 : 0; const uint32_t y0 = (_y + yOffset) % _height; const uint32_t y1 = (y0 + 1) % _height; for (int xx = 0; xx < 4; ++xx) { const uint32_t xOffset = (xx < 2) ? -1 : 0; const uint32_t x0 = (_x + xOffset) % _width; const uint32_t x1 = (x0 + 1) % _width; const uint32_t bc0 = getColor(&_src[morton2d(x0, y0) * 8]); const uint32_t bc1 = getColor(&_src[morton2d(x1, y0) * 8]); const uint32_t bc2 = getColor(&_src[morton2d(x0, y1) * 8]); const uint32_t bc3 = getColor(&_src[morton2d(x1, y1) * 8]); const uint8_t f0 = factorTable[0]; const uint8_t f1 = factorTable[1]; const uint8_t f2 = factorTable[2]; const uint8_t f3 = factorTable[3]; uint32_t ar = 0, ag = 0, ab = 0, aa = 0; decodeBlockPtc14ARgbaAddA(bc0, &ar, &ag, &ab, &aa, f0); decodeBlockPtc14ARgbaAddA(bc1, &ar, &ag, &ab, &aa, f1); decodeBlockPtc14ARgbaAddA(bc2, &ar, &ag, &ab, &aa, f2); decodeBlockPtc14ARgbaAddA(bc3, &ar, &ag, &ab, &aa, f3); uint32_t br = 0, bg = 0, bb = 0, ba = 0; decodeBlockPtc14ARgbaAddB(bc0, &br, &bg, &bb, &ba, f0); decodeBlockPtc14ARgbaAddB(bc1, &br, &bg, &bb, &ba, f1); decodeBlockPtc14ARgbaAddB(bc2, &br, &bg, &bb, &ba, f2); decodeBlockPtc14ARgbaAddB(bc3, &br, &bg, &bb, &ba, f3); const uint8_t* weight = &weightTable[(mod & 3)*4]; const uint8_t wa = weight[0]; const uint8_t wb = weight[1]; const uint8_t wc = weight[2]; const uint8_t wd = weight[3]; _dst[(yy*4 + xx)*4+0] = uint8_t( (ab * wa + bb * wb) >> 7); _dst[(yy*4 + xx)*4+1] = uint8_t( (ag * wa + bg * wb) >> 7); _dst[(yy*4 + xx)*4+2] = uint8_t( (ar * wa + br * wb) >> 7); _dst[(yy*4 + xx)*4+3] = uint8_t( (aa * wc + ba * wd) >> 7); mod >>= 2; factorTable += 4; } } } ImageContainer* imageAlloc(bx::AllocatorI* _allocator, TextureFormat::Enum _format, uint16_t _width, uint16_t _height, uint16_t _depth, uint16_t _numLayers, bool _cubeMap, bool _hasMips, const void* _data) { const ImageBlockInfo& blockInfo = getBlockInfo(_format); const uint16_t blockWidth = blockInfo.blockWidth; const uint16_t blockHeight = blockInfo.blockHeight; const uint16_t minBlockX = blockInfo.minBlockX; const uint16_t minBlockY = blockInfo.minBlockY; _width = bx::max(blockWidth * minBlockX, ( (_width + blockWidth - 1) / blockWidth)*blockWidth); _height = bx::max(blockHeight * minBlockY, ( (_height + blockHeight - 1) / blockHeight)*blockHeight); _depth = bx::max(1, _depth); _numLayers = bx::max(1, _numLayers); const uint8_t numMips = _hasMips ? imageGetNumMips(_format, _width, _height, _depth) : 1; uint32_t size = imageGetSize(NULL, _width, _height, _depth, _cubeMap, _hasMips, _numLayers, _format); ImageContainer* imageContainer = (ImageContainer*)BX_ALIGNED_ALLOC(_allocator, size + BX_ALIGN_16(sizeof(ImageContainer) ), 16); imageContainer->m_allocator = _allocator; imageContainer->m_data = bx::alignPtr(imageContainer + 1, 0, 16); imageContainer->m_format = _format; imageContainer->m_orientation = Orientation::R0; imageContainer->m_size = size; imageContainer->m_offset = 0; imageContainer->m_width = _width; imageContainer->m_height = _height; imageContainer->m_depth = _depth; imageContainer->m_numLayers = _numLayers; imageContainer->m_numMips = numMips; imageContainer->m_hasAlpha = false; imageContainer->m_cubeMap = _cubeMap; imageContainer->m_ktx = false; imageContainer->m_ktxLE = false; imageContainer->m_srgb = false; if (NULL != _data) { bx::memCopy(imageContainer->m_data, _data, imageContainer->m_size); } return imageContainer; } void imageFree(ImageContainer* _imageContainer) { BX_ALIGNED_FREE(_imageContainer->m_allocator, _imageContainer, 16); } // DDS #define DDS_MAGIC BX_MAKEFOURCC('D', 'D', 'S', ' ') #define DDS_HEADER_SIZE 124 #define DDS_DXT1 BX_MAKEFOURCC('D', 'X', 'T', '1') #define DDS_DXT2 BX_MAKEFOURCC('D', 'X', 'T', '2') #define DDS_DXT3 BX_MAKEFOURCC('D', 'X', 'T', '3') #define DDS_DXT4 BX_MAKEFOURCC('D', 'X', 'T', '4') #define DDS_DXT5 BX_MAKEFOURCC('D', 'X', 'T', '5') #define DDS_ATI1 BX_MAKEFOURCC('A', 'T', 'I', '1') #define DDS_BC4U BX_MAKEFOURCC('B', 'C', '4', 'U') #define DDS_ATI2 BX_MAKEFOURCC('A', 'T', 'I', '2') #define DDS_BC5U BX_MAKEFOURCC('B', 'C', '5', 'U') #define DDS_DX10 BX_MAKEFOURCC('D', 'X', '1', '0') #define DDS_ETC1 BX_MAKEFOURCC('E', 'T', 'C', '1') #define DDS_ETC2 BX_MAKEFOURCC('E', 'T', 'C', '2') #define DDS_ET2A BX_MAKEFOURCC('E', 'T', '2', 'A') #define DDS_PTC2 BX_MAKEFOURCC('P', 'T', 'C', '2') #define DDS_PTC4 BX_MAKEFOURCC('P', 'T', 'C', '4') #define DDS_ATC BX_MAKEFOURCC('A', 'T', 'C', ' ') #define DDS_ATCE BX_MAKEFOURCC('A', 'T', 'C', 'E') #define DDS_ATCI BX_MAKEFOURCC('A', 'T', 'C', 'I') #define DDS_ASTC4x4 BX_MAKEFOURCC('A', 'S', '4', '4') #define DDS_ASTC5x5 BX_MAKEFOURCC('A', 'S', '5', '5') #define DDS_ASTC6x6 BX_MAKEFOURCC('A', 'S', '6', '6') #define DDS_ASTC8x5 BX_MAKEFOURCC('A', 'S', '8', '5') #define DDS_ASTC8x6 BX_MAKEFOURCC('A', 'S', '8', '6') #define DDS_ASTC10x5 BX_MAKEFOURCC('A', 'S', ':', '5') #define DDS_R8G8B8 20 #define DDS_A8R8G8B8 21 #define DDS_R5G6B5 23 #define DDS_A1R5G5B5 25 #define DDS_A4R4G4B4 26 #define DDS_A2B10G10R10 31 #define DDS_G16R16 34 #define DDS_A2R10G10B10 35 #define DDS_A16B16G16R16 36 #define DDS_A8L8 51 #define DDS_R16F 111 #define DDS_G16R16F 112 #define DDS_A16B16G16R16F 113 #define DDS_R32F 114 #define DDS_G32R32F 115 #define DDS_A32B32G32R32F 116 #define DDS_FORMAT_R32G32B32A32_FLOAT 2 #define DDS_FORMAT_R32G32B32A32_UINT 3 #define DDS_FORMAT_R16G16B16A16_FLOAT 10 #define DDS_FORMAT_R16G16B16A16_UNORM 11 #define DDS_FORMAT_R16G16B16A16_UINT 12 #define DDS_FORMAT_R32G32_FLOAT 16 #define DDS_FORMAT_R32G32_UINT 17 #define DDS_FORMAT_R10G10B10A2_UNORM 24 #define DDS_FORMAT_R11G11B10_FLOAT 26 #define DDS_FORMAT_R8G8B8A8_UNORM 28 #define DDS_FORMAT_R8G8B8A8_UNORM_SRGB 29 #define DDS_FORMAT_R16G16_FLOAT 34 #define DDS_FORMAT_R16G16_UNORM 35 #define DDS_FORMAT_R32_FLOAT 41 #define DDS_FORMAT_R32_UINT 42 #define DDS_FORMAT_R8G8_UNORM 49 #define DDS_FORMAT_R16_FLOAT 54 #define DDS_FORMAT_R16_UNORM 56 #define DDS_FORMAT_R8_UNORM 61 #define DDS_FORMAT_R1_UNORM 66 #define DDS_FORMAT_BC1_UNORM 71 #define DDS_FORMAT_BC1_UNORM_SRGB 72 #define DDS_FORMAT_BC2_UNORM 74 #define DDS_FORMAT_BC2_UNORM_SRGB 75 #define DDS_FORMAT_BC3_UNORM 77 #define DDS_FORMAT_BC3_UNORM_SRGB 78 #define DDS_FORMAT_BC4_UNORM 80 #define DDS_FORMAT_BC5_UNORM 83 #define DDS_FORMAT_B5G6R5_UNORM 85 #define DDS_FORMAT_B5G5R5A1_UNORM 86 #define DDS_FORMAT_B8G8R8A8_UNORM 87 #define DDS_FORMAT_B8G8R8A8_UNORM_SRGB 91 #define DDS_FORMAT_BC6H_SF16 96 #define DDS_FORMAT_BC7_UNORM 98 #define DDS_FORMAT_BC7_UNORM_SRGB 99 #define DDS_FORMAT_B4G4R4A4_UNORM 115 #define DDS_DX10_DIMENSION_TEXTURE2D 3 #define DDS_DX10_DIMENSION_TEXTURE3D 4 #define DDS_DX10_MISC_TEXTURECUBE 4 #define DDSD_CAPS 0x00000001 #define DDSD_HEIGHT 0x00000002 #define DDSD_WIDTH 0x00000004 #define DDSD_PITCH 0x00000008 #define DDSD_PIXELFORMAT 0x00001000 #define DDSD_MIPMAPCOUNT 0x00020000 #define DDSD_LINEARSIZE 0x00080000 #define DDSD_DEPTH 0x00800000 #define DDPF_ALPHAPIXELS 0x00000001 #define DDPF_ALPHA 0x00000002 #define DDPF_FOURCC 0x00000004 #define DDPF_INDEXED 0x00000020 #define DDPF_RGB 0x00000040 #define DDPF_YUV 0x00000200 #define DDPF_LUMINANCE 0x00020000 #define DDPF_BUMPDUDV 0x00080000 #define DDSCAPS_COMPLEX 0x00000008 #define DDSCAPS_TEXTURE 0x00001000 #define DDSCAPS_MIPMAP 0x00400000 #define DDSCAPS2_VOLUME 0x00200000 #define DDSCAPS2_CUBEMAP 0x00000200 #define DDSCAPS2_CUBEMAP_POSITIVEX 0x00000400 #define DDSCAPS2_CUBEMAP_NEGATIVEX 0x00000800 #define DDSCAPS2_CUBEMAP_POSITIVEY 0x00001000 #define DDSCAPS2_CUBEMAP_NEGATIVEY 0x00002000 #define DDSCAPS2_CUBEMAP_POSITIVEZ 0x00004000 #define DDSCAPS2_CUBEMAP_NEGATIVEZ 0x00008000 #define DSCAPS2_CUBEMAP_ALLSIDES (0 \ | DDSCAPS2_CUBEMAP_POSITIVEX \ | DDSCAPS2_CUBEMAP_NEGATIVEX \ | DDSCAPS2_CUBEMAP_POSITIVEY \ | DDSCAPS2_CUBEMAP_NEGATIVEY \ | DDSCAPS2_CUBEMAP_POSITIVEZ \ | DDSCAPS2_CUBEMAP_NEGATIVEZ \ ) struct TranslateDdsFormat { uint32_t m_format; TextureFormat::Enum m_textureFormat; bool m_srgb; }; static const TranslateDdsFormat s_translateDdsFourccFormat[] = { { DDS_DXT1, TextureFormat::BC1, false }, { DDS_DXT2, TextureFormat::BC2, false }, { DDS_DXT3, TextureFormat::BC2, false }, { DDS_DXT4, TextureFormat::BC3, false }, { DDS_DXT5, TextureFormat::BC3, false }, { DDS_ATI1, TextureFormat::BC4, false }, { DDS_BC4U, TextureFormat::BC4, false }, { DDS_ATI2, TextureFormat::BC5, false }, { DDS_BC5U, TextureFormat::BC5, false }, { DDS_ETC1, TextureFormat::ETC1, false }, { DDS_ETC2, TextureFormat::ETC2, false }, { DDS_ET2A, TextureFormat::ETC2A, false }, { DDS_PTC2, TextureFormat::PTC12A, false }, { DDS_PTC4, TextureFormat::PTC14A, false }, { DDS_ATC , TextureFormat::ATC, false }, { DDS_ATCE, TextureFormat::ATCE, false }, { DDS_ATCI, TextureFormat::ATCI, false }, { DDS_ASTC4x4, TextureFormat::ASTC4x4, false }, { DDS_ASTC5x5, TextureFormat::ASTC5x5, false }, { DDS_ASTC6x6, TextureFormat::ASTC6x6, false }, { DDS_ASTC8x5, TextureFormat::ASTC8x5, false }, { DDS_ASTC8x6, TextureFormat::ASTC8x6, false }, { DDS_ASTC10x5, TextureFormat::ASTC10x5, false }, { DDS_A16B16G16R16, TextureFormat::RGBA16, false }, { DDS_A16B16G16R16F, TextureFormat::RGBA16F, false }, { DDPF_RGB|DDPF_ALPHAPIXELS, TextureFormat::BGRA8, false }, { DDPF_INDEXED, TextureFormat::R8, false }, { DDPF_LUMINANCE, TextureFormat::R8, false }, { DDPF_ALPHA, TextureFormat::R8, false }, { DDS_R16F, TextureFormat::R16F, false }, { DDS_R32F, TextureFormat::R32F, false }, { DDS_A8L8, TextureFormat::RG8, false }, { DDS_G16R16, TextureFormat::RG16, false }, { DDS_G16R16F, TextureFormat::RG16F, false }, { DDS_G32R32F, TextureFormat::RG32F, false }, { DDS_R8G8B8, TextureFormat::RGB8, false }, { DDS_A8R8G8B8, TextureFormat::BGRA8, false }, { DDS_A16B16G16R16, TextureFormat::RGBA16, false }, { DDS_A16B16G16R16F, TextureFormat::RGBA16F, false }, { DDS_A32B32G32R32F, TextureFormat::RGBA32F, false }, { DDS_R5G6B5, TextureFormat::R5G6B5, false }, { DDS_A4R4G4B4, TextureFormat::RGBA4, false }, { DDS_A1R5G5B5, TextureFormat::RGB5A1, false }, { DDS_A2B10G10R10, TextureFormat::RGB10A2, false }, }; static const TranslateDdsFormat s_translateDxgiFormat[] = { { DDS_FORMAT_BC1_UNORM, TextureFormat::BC1, false }, { DDS_FORMAT_BC1_UNORM_SRGB, TextureFormat::BC1, true }, { DDS_FORMAT_BC2_UNORM, TextureFormat::BC2, false }, { DDS_FORMAT_BC2_UNORM_SRGB, TextureFormat::BC2, true }, { DDS_FORMAT_BC3_UNORM, TextureFormat::BC3, false }, { DDS_FORMAT_BC3_UNORM_SRGB, TextureFormat::BC3, true }, { DDS_FORMAT_BC4_UNORM, TextureFormat::BC4, false }, { DDS_FORMAT_BC5_UNORM, TextureFormat::BC5, false }, { DDS_FORMAT_BC6H_SF16, TextureFormat::BC6H, false }, { DDS_FORMAT_BC7_UNORM, TextureFormat::BC7, false }, { DDS_FORMAT_BC7_UNORM_SRGB, TextureFormat::BC7, true }, { DDS_FORMAT_R1_UNORM, TextureFormat::R1, false }, { DDS_FORMAT_R8_UNORM, TextureFormat::R8, false }, { DDS_FORMAT_R16_UNORM, TextureFormat::R16, false }, { DDS_FORMAT_R16_FLOAT, TextureFormat::R16F, false }, { DDS_FORMAT_R32_UINT, TextureFormat::R32U, false }, { DDS_FORMAT_R32_FLOAT, TextureFormat::R32F, false }, { DDS_FORMAT_R8G8_UNORM, TextureFormat::RG8, false }, { DDS_FORMAT_R16G16_UNORM, TextureFormat::RG16, false }, { DDS_FORMAT_R16G16_FLOAT, TextureFormat::RG16F, false }, { DDS_FORMAT_R32G32_UINT, TextureFormat::RG32U, false }, { DDS_FORMAT_R32G32_FLOAT, TextureFormat::RG32F, false }, { DDS_FORMAT_B8G8R8A8_UNORM, TextureFormat::BGRA8, false }, { DDS_FORMAT_B8G8R8A8_UNORM_SRGB, TextureFormat::BGRA8, true }, { DDS_FORMAT_R8G8B8A8_UNORM, TextureFormat::RGBA8, false }, { DDS_FORMAT_R8G8B8A8_UNORM_SRGB, TextureFormat::RGBA8, true }, { DDS_FORMAT_R16G16B16A16_UNORM, TextureFormat::RGBA16, false }, { DDS_FORMAT_R16G16B16A16_FLOAT, TextureFormat::RGBA16F, false }, { DDS_FORMAT_R32G32B32A32_UINT, TextureFormat::RGBA32U, false }, { DDS_FORMAT_R32G32B32A32_FLOAT, TextureFormat::RGBA32F, false }, { DDS_FORMAT_B5G6R5_UNORM, TextureFormat::R5G6B5, false }, { DDS_FORMAT_B4G4R4A4_UNORM, TextureFormat::RGBA4, false }, { DDS_FORMAT_B5G5R5A1_UNORM, TextureFormat::RGB5A1, false }, { DDS_FORMAT_R10G10B10A2_UNORM, TextureFormat::RGB10A2, false }, { DDS_FORMAT_R11G11B10_FLOAT, TextureFormat::RG11B10F, false }, }; struct TranslateDdsPixelFormat { uint32_t m_bitCount; uint32_t m_flags; uint32_t m_bitmask[4]; TextureFormat::Enum m_textureFormat; }; static const TranslateDdsPixelFormat s_translateDdsPixelFormat[] = { { 8, DDPF_LUMINANCE, { 0x000000ff, 0x00000000, 0x00000000, 0x00000000 }, TextureFormat::R8 }, { 16, DDPF_BUMPDUDV, { 0x000000ff, 0x0000ff00, 0x00000000, 0x00000000 }, TextureFormat::RG8S }, { 16, DDPF_RGB, { 0x0000ffff, 0x00000000, 0x00000000, 0x00000000 }, TextureFormat::R16U }, { 16, DDPF_RGB|DDPF_ALPHAPIXELS, { 0x00000f00, 0x000000f0, 0x0000000f, 0x0000f000 }, TextureFormat::RGBA4 }, { 16, DDPF_RGB, { 0x0000f800, 0x000007e0, 0x0000001f, 0x00000000 }, TextureFormat::R5G6B5 }, { 16, DDPF_RGB, { 0x00007c00, 0x000003e0, 0x0000001f, 0x00008000 }, TextureFormat::RGB5A1 }, { 24, DDPF_RGB, { 0x00ff0000, 0x0000ff00, 0x000000ff, 0x00000000 }, TextureFormat::RGB8 }, { 24, DDPF_RGB, { 0x000000ff, 0x0000ff00, 0x00ff0000, 0x00000000 }, TextureFormat::RGB8 }, { 32, DDPF_RGB, { 0x00ff0000, 0x0000ff00, 0x000000ff, 0x00000000 }, TextureFormat::BGRA8 }, { 32, DDPF_RGB|DDPF_ALPHAPIXELS, { 0x000000ff, 0x0000ff00, 0x00ff0000, 0xff000000 }, TextureFormat::RGBA8 }, { 32, DDPF_BUMPDUDV, { 0x000000ff, 0x0000ff00, 0x00ff0000, 0xff000000 }, TextureFormat::RGBA8S }, { 32, DDPF_RGB, { 0x00ff0000, 0x0000ff00, 0x000000ff, 0xff000000 }, TextureFormat::BGRA8 }, { 32, DDPF_RGB|DDPF_ALPHAPIXELS, { 0x00ff0000, 0x0000ff00, 0x000000ff, 0xff000000 }, TextureFormat::BGRA8 }, // D3DFMT_A8R8G8B8 { 32, DDPF_RGB|DDPF_ALPHAPIXELS, { 0x00ff0000, 0x0000ff00, 0x000000ff, 0x00000000 }, TextureFormat::BGRA8 }, // D3DFMT_X8R8G8B8 { 32, DDPF_RGB|DDPF_ALPHAPIXELS, { 0x000003ff, 0x000ffc00, 0x3ff00000, 0xc0000000 }, TextureFormat::RGB10A2 }, { 32, DDPF_RGB, { 0x0000ffff, 0xffff0000, 0x00000000, 0x00000000 }, TextureFormat::RG16 }, { 32, DDPF_BUMPDUDV, { 0x0000ffff, 0xffff0000, 0x00000000, 0x00000000 }, TextureFormat::RG16S }, { 32, DDPF_RGB, { 0xffffffff, 0x00000000, 0x00000000, 0x00000000 }, TextureFormat::R32U }, }; bool imageParseDds(ImageContainer& _imageContainer, bx::ReaderSeekerI* _reader, bx::Error* _err) { BX_ERROR_SCOPE(_err); int32_t total = 0; uint32_t headerSize; total += bx::read(_reader, headerSize, _err); if (!_err->isOk() || headerSize < DDS_HEADER_SIZE) { return false; } uint32_t flags; total += bx::read(_reader, flags, _err); if (!_err->isOk() ) { return false; } if ( (flags & (DDSD_CAPS|DDSD_HEIGHT|DDSD_WIDTH|DDSD_PIXELFORMAT) ) != (DDSD_CAPS|DDSD_HEIGHT|DDSD_WIDTH|DDSD_PIXELFORMAT) ) { BX_ERROR_SET(_err, BIMG_ERROR, "DDS: Invalid flags."); return false; } uint32_t height; total += bx::read(_reader, height, _err); uint32_t width; total += bx::read(_reader, width, _err); uint32_t pitch; total += bx::read(_reader, pitch, _err); uint32_t depth; total += bx::read(_reader, depth, _err); uint32_t mips; total += bx::read(_reader, mips, _err); bx::skip(_reader, 44); // reserved total += 44; uint32_t pixelFormatSize; total += bx::read(_reader, pixelFormatSize, _err); uint32_t pixelFlags; total += bx::read(_reader, pixelFlags, _err); uint32_t fourcc; total += bx::read(_reader, fourcc, _err); uint32_t bitCount; total += bx::read(_reader, bitCount, _err); uint32_t bitmask[4]; total += bx::read(_reader, bitmask, sizeof(bitmask), _err); uint32_t caps[4]; total += bx::read(_reader, caps, _err); bx::skip(_reader, 4); total += 4; // reserved if (!_err->isOk() ) { return false; } uint32_t dxgiFormat = 0; uint32_t arraySize = 1; if (DDPF_FOURCC == (pixelFlags & DDPF_FOURCC) && DDS_DX10 == fourcc) { total += bx::read(_reader, dxgiFormat, _err); uint32_t dims; total += bx::read(_reader, dims, _err); uint32_t miscFlags; total += bx::read(_reader, miscFlags, _err); total += bx::read(_reader, arraySize, _err); uint32_t miscFlags2; total += bx::read(_reader, miscFlags2, _err); } if (!_err->isOk() ) { return false; } if ( (caps[0] & DDSCAPS_TEXTURE) == 0) { BX_ERROR_SET(_err, BIMG_ERROR, "DDS: Unsupported caps."); return false; } bool cubeMap = 0 != (caps[1] & DDSCAPS2_CUBEMAP); if (cubeMap) { if ( (caps[1] & DSCAPS2_CUBEMAP_ALLSIDES) != DSCAPS2_CUBEMAP_ALLSIDES) { // partial cube map is not supported. BX_ERROR_SET(_err, BIMG_ERROR, "DDS: Incomplete cubemap."); return false; } } TextureFormat::Enum format = TextureFormat::Unknown; bool hasAlpha = pixelFlags & DDPF_ALPHAPIXELS; bool srgb = false; if (dxgiFormat == 0) { if (DDPF_FOURCC == (pixelFlags & DDPF_FOURCC) ) { for (uint32_t ii = 0; ii < BX_COUNTOF(s_translateDdsFourccFormat); ++ii) { if (s_translateDdsFourccFormat[ii].m_format == fourcc) { format = s_translateDdsFourccFormat[ii].m_textureFormat; break; } } } else { for (uint32_t ii = 0; ii < BX_COUNTOF(s_translateDdsPixelFormat); ++ii) { const TranslateDdsPixelFormat& pf = s_translateDdsPixelFormat[ii]; if (pf.m_bitCount == bitCount && pf.m_flags == pixelFlags && pf.m_bitmask[0] == bitmask[0] && pf.m_bitmask[1] == bitmask[1] && pf.m_bitmask[2] == bitmask[2] && pf.m_bitmask[3] == bitmask[3]) { format = pf.m_textureFormat; break; } } } } else { for (uint32_t ii = 0; ii < BX_COUNTOF(s_translateDxgiFormat); ++ii) { if (s_translateDxgiFormat[ii].m_format == dxgiFormat) { format = s_translateDxgiFormat[ii].m_textureFormat; srgb = s_translateDxgiFormat[ii].m_srgb; break; } } } if (TextureFormat::Unknown == format) { BX_ERROR_SET(_err, BIMG_ERROR, "DDS: Unknown texture format."); return false; } _imageContainer.m_allocator = NULL; _imageContainer.m_data = NULL; _imageContainer.m_size = 0; _imageContainer.m_offset = (uint32_t)bx::seek(_reader); _imageContainer.m_width = width; _imageContainer.m_height = height; _imageContainer.m_depth = depth; _imageContainer.m_format = format; _imageContainer.m_orientation = Orientation::R0; _imageContainer.m_numLayers = uint16_t(arraySize); _imageContainer.m_numMips = uint8_t( (caps[0] & DDSCAPS_MIPMAP) ? mips : 1); _imageContainer.m_hasAlpha = hasAlpha; _imageContainer.m_cubeMap = cubeMap; _imageContainer.m_ktx = false; _imageContainer.m_ktxLE = false; _imageContainer.m_srgb = srgb; return true; } ImageContainer* imageParseDds(bx::AllocatorI* _allocator, const void* _src, uint32_t _size, bx::Error* _err) { return imageParseT(_allocator, _src, _size, _err); } // KTX #define KTX_MAGIC BX_MAKEFOURCC(0xAB, 'K', 'T', 'X') #define KTX_HEADER_SIZE 64 #define KTX_ETC1_RGB8_OES 0x8D64 #define KTX_COMPRESSED_R11_EAC 0x9270 #define KTX_COMPRESSED_SIGNED_R11_EAC 0x9271 #define KTX_COMPRESSED_RG11_EAC 0x9272 #define KTX_COMPRESSED_SIGNED_RG11_EAC 0x9273 #define KTX_COMPRESSED_RGB8_ETC2 0x9274 #define KTX_COMPRESSED_SRGB8_ETC2 0x9275 #define KTX_COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2 0x9276 #define KTX_COMPRESSED_SRGB8_PUNCHTHROUGH_ALPHA1_ETC2 0x9277 #define KTX_COMPRESSED_RGBA8_ETC2_EAC 0x9278 #define KTX_COMPRESSED_SRGB8_ALPHA8_ETC2_EAC 0x9279 #define KTX_COMPRESSED_RGB_PVRTC_4BPPV1_IMG 0x8C00 #define KTX_COMPRESSED_RGB_PVRTC_2BPPV1_IMG 0x8C01 #define KTX_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG 0x8C02 #define KTX_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG 0x8C03 #define KTX_COMPRESSED_RGBA_PVRTC_2BPPV2_IMG 0x9137 #define KTX_COMPRESSED_RGBA_PVRTC_4BPPV2_IMG 0x9138 #define KTX_COMPRESSED_RGB_S3TC_DXT1_EXT 0x83F0 #define KTX_COMPRESSED_RGBA_S3TC_DXT1_EXT 0x83F1 #define KTX_COMPRESSED_RGBA_S3TC_DXT3_EXT 0x83F2 #define KTX_COMPRESSED_RGBA_S3TC_DXT5_EXT 0x83F3 #define KTX_COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT 0x8C4D #define KTX_COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT 0x8C4E #define KTX_COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT 0x8C4F #define KTX_COMPRESSED_LUMINANCE_LATC1_EXT 0x8C70 #define KTX_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT 0x8C72 #define KTX_COMPRESSED_RGBA_BPTC_UNORM_ARB 0x8E8C #define KTX_COMPRESSED_SRGB_ALPHA_BPTC_UNORM_ARB 0x8E8D #define KTX_COMPRESSED_RGB_BPTC_SIGNED_FLOAT_ARB 0x8E8E #define KTX_COMPRESSED_RGB_BPTC_UNSIGNED_FLOAT_ARB 0x8E8F #define KTX_COMPRESSED_SRGB_PVRTC_2BPPV1_EXT 0x8A54 #define KTX_COMPRESSED_SRGB_PVRTC_4BPPV1_EXT 0x8A55 #define KTX_COMPRESSED_SRGB_ALPHA_PVRTC_2BPPV1_EXT 0x8A56 #define KTX_COMPRESSED_SRGB_ALPHA_PVRTC_4BPPV1_EXT 0x8A57 #define KTX_ATC_RGB_AMD 0x8C92 #define KTX_ATC_RGBA_EXPLICIT_ALPHA_AMD 0x8C93 #define KTX_ATC_RGBA_INTERPOLATED_ALPHA_AMD 0x87EE #define KTX_COMPRESSED_RGBA_ASTC_4x4_KHR 0x93B0 #define KTX_COMPRESSED_RGBA_ASTC_5x5_KHR 0x93B2 #define KTX_COMPRESSED_RGBA_ASTC_6x6_KHR 0x93B4 #define KTX_COMPRESSED_RGBA_ASTC_8x5_KHR 0x93B5 #define KTX_COMPRESSED_RGBA_ASTC_8x6_KHR 0x93B6 #define KTX_COMPRESSED_RGBA_ASTC_10x5_KHR 0x93B8 #define KTX_COMPRESSED_SRGB8_ALPHA8_ASTC_4x4_KHR 0x93D0 #define KTX_COMPRESSED_SRGB8_ALPHA8_ASTC_5x5_KHR 0x93D2 #define KTX_COMPRESSED_SRGB8_ALPHA8_ASTC_6x6_KHR 0x93D4 #define KTX_COMPRESSED_SRGB8_ALPHA8_ASTC_8x5_KHR 0x93D5 #define KTX_COMPRESSED_SRGB8_ALPHA8_ASTC_8x6_KHR 0x93D6 #define KTX_COMPRESSED_SRGB8_ALPHA8_ASTC_10x5_KHR 0x93D8 #define KTX_A8 0x803C #define KTX_R8 0x8229 #define KTX_R16 0x822A #define KTX_RG8 0x822B #define KTX_RG16 0x822C #define KTX_R16F 0x822D #define KTX_R32F 0x822E #define KTX_RG16F 0x822F #define KTX_RG32F 0x8230 #define KTX_RGBA8 0x8058 #define KTX_RGBA16 0x805B #define KTX_RGBA16F 0x881A #define KTX_R32UI 0x8236 #define KTX_RG32UI 0x823C #define KTX_RGBA32UI 0x8D70 #define KTX_RGBA32F 0x8814 #define KTX_RGB565 0x8D62 #define KTX_RGBA4 0x8056 #define KTX_RGB5_A1 0x8057 #define KTX_RGB10_A2 0x8059 #define KTX_R8I 0x8231 #define KTX_R8UI 0x8232 #define KTX_R16I 0x8233 #define KTX_R16UI 0x8234 #define KTX_R32I 0x8235 #define KTX_R32UI 0x8236 #define KTX_RG8I 0x8237 #define KTX_RG8UI 0x8238 #define KTX_RG16I 0x8239 #define KTX_RG16UI 0x823A #define KTX_RG32I 0x823B #define KTX_RG32UI 0x823C #define KTX_R8_SNORM 0x8F94 #define KTX_RG8_SNORM 0x8F95 #define KTX_RGB8_SNORM 0x8F96 #define KTX_RGBA8_SNORM 0x8F97 #define KTX_R16_SNORM 0x8F98 #define KTX_RG16_SNORM 0x8F99 #define KTX_RGB16_SNORM 0x8F9A #define KTX_RGBA16_SNORM 0x8F9B #define KTX_SRGB8 0x8C41 #define KTX_SRGB8_ALPHA8 0x8C43 #define KTX_RGBA32UI 0x8D70 #define KTX_RGB32UI 0x8D71 #define KTX_RGBA16UI 0x8D76 #define KTX_RGB16UI 0x8D77 #define KTX_RGBA8UI 0x8D7C #define KTX_RGB8UI 0x8D7D #define KTX_RGBA32I 0x8D82 #define KTX_RGB32I 0x8D83 #define KTX_RGBA16I 0x8D88 #define KTX_RGB16I 0x8D89 #define KTX_RGBA8I 0x8D8E #define KTX_RGB8 0x8051 #define KTX_RGB8I 0x8D8F #define KTX_RGB9_E5 0x8C3D #define KTX_R11F_G11F_B10F 0x8C3A #define KTX_ZERO 0 #define KTX_RED 0x1903 #define KTX_ALPHA 0x1906 #define KTX_RGB 0x1907 #define KTX_RGBA 0x1908 #define KTX_BGRA 0x80E1 #define KTX_RG 0x8227 #define KTX_BYTE 0x1400 #define KTX_UNSIGNED_BYTE 0x1401 #define KTX_SHORT 0x1402 #define KTX_UNSIGNED_SHORT 0x1403 #define KTX_INT 0x1404 #define KTX_UNSIGNED_INT 0x1405 #define KTX_FLOAT 0x1406 #define KTX_HALF_FLOAT 0x140B #define KTX_UNSIGNED_INT_5_9_9_9_REV 0x8C3E #define KTX_UNSIGNED_SHORT_5_6_5 0x8363 #define KTX_UNSIGNED_SHORT_4_4_4_4 0x8033 #define KTX_UNSIGNED_SHORT_5_5_5_1 0x8034 #define KTX_UNSIGNED_INT_2_10_10_10_REV 0x8368 #define KTX_UNSIGNED_INT_10F_11F_11F_REV 0x8C3B struct KtxFormatInfo { uint32_t m_internalFmt; uint32_t m_internalFmtSrgb; uint32_t m_fmt; uint32_t m_type; }; static const KtxFormatInfo s_translateKtxFormat[] = { { KTX_COMPRESSED_RGBA_S3TC_DXT1_EXT, KTX_COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT, KTX_COMPRESSED_RGBA_S3TC_DXT1_EXT, KTX_ZERO, }, // BC1 { KTX_COMPRESSED_RGBA_S3TC_DXT3_EXT, KTX_COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT, KTX_COMPRESSED_RGBA_S3TC_DXT3_EXT, KTX_ZERO, }, // BC2 { KTX_COMPRESSED_RGBA_S3TC_DXT5_EXT, KTX_COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT, KTX_COMPRESSED_RGBA_S3TC_DXT5_EXT, KTX_ZERO, }, // BC3 { KTX_COMPRESSED_LUMINANCE_LATC1_EXT, KTX_ZERO, KTX_COMPRESSED_LUMINANCE_LATC1_EXT, KTX_ZERO, }, // BC4 { KTX_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT, KTX_ZERO, KTX_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT, KTX_ZERO, }, // BC5 { KTX_COMPRESSED_RGB_BPTC_SIGNED_FLOAT_ARB, KTX_ZERO, KTX_COMPRESSED_RGB_BPTC_SIGNED_FLOAT_ARB, KTX_ZERO, }, // BC6H { KTX_COMPRESSED_RGBA_BPTC_UNORM_ARB, KTX_ZERO, KTX_COMPRESSED_RGBA_BPTC_UNORM_ARB, KTX_ZERO, }, // BC7 { KTX_ETC1_RGB8_OES, KTX_ZERO, KTX_ETC1_RGB8_OES, KTX_ZERO, }, // ETC1 { KTX_COMPRESSED_RGB8_ETC2, KTX_ZERO, KTX_COMPRESSED_RGB8_ETC2, KTX_ZERO, }, // ETC2 { KTX_COMPRESSED_RGBA8_ETC2_EAC, KTX_COMPRESSED_SRGB8_ETC2, KTX_COMPRESSED_RGBA8_ETC2_EAC, KTX_ZERO, }, // ETC2A { KTX_COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2, KTX_COMPRESSED_SRGB8_PUNCHTHROUGH_ALPHA1_ETC2, KTX_COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2, KTX_ZERO, }, // ETC2A1 { KTX_COMPRESSED_RGB_PVRTC_2BPPV1_IMG, KTX_COMPRESSED_SRGB_PVRTC_2BPPV1_EXT, KTX_COMPRESSED_RGB_PVRTC_2BPPV1_IMG, KTX_ZERO, }, // PTC12 { KTX_COMPRESSED_RGB_PVRTC_4BPPV1_IMG, KTX_COMPRESSED_SRGB_PVRTC_4BPPV1_EXT, KTX_COMPRESSED_RGB_PVRTC_4BPPV1_IMG, KTX_ZERO, }, // PTC14 { KTX_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG, KTX_COMPRESSED_SRGB_ALPHA_PVRTC_2BPPV1_EXT, KTX_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG, KTX_ZERO, }, // PTC12A { KTX_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG, KTX_COMPRESSED_SRGB_ALPHA_PVRTC_4BPPV1_EXT, KTX_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG, KTX_ZERO, }, // PTC14A { KTX_COMPRESSED_RGBA_PVRTC_2BPPV2_IMG, KTX_ZERO, KTX_COMPRESSED_RGBA_PVRTC_2BPPV2_IMG, KTX_ZERO, }, // PTC22 { KTX_COMPRESSED_RGBA_PVRTC_4BPPV2_IMG, KTX_ZERO, KTX_COMPRESSED_RGBA_PVRTC_4BPPV2_IMG, KTX_ZERO, }, // PTC24 { KTX_ATC_RGB_AMD, KTX_ZERO, KTX_ATC_RGB_AMD, KTX_ZERO, }, // ATC { KTX_ATC_RGBA_EXPLICIT_ALPHA_AMD, KTX_ZERO, KTX_ATC_RGBA_EXPLICIT_ALPHA_AMD, KTX_ZERO, }, // ATCE { KTX_ATC_RGBA_INTERPOLATED_ALPHA_AMD, KTX_ZERO, KTX_ATC_RGBA_INTERPOLATED_ALPHA_AMD, KTX_ZERO, }, // ATCI { KTX_COMPRESSED_RGBA_ASTC_4x4_KHR, KTX_COMPRESSED_SRGB8_ALPHA8_ASTC_4x4_KHR, KTX_COMPRESSED_RGBA_ASTC_4x4_KHR, KTX_ZERO, }, // ASTC4x4 { KTX_COMPRESSED_RGBA_ASTC_5x5_KHR, KTX_COMPRESSED_SRGB8_ALPHA8_ASTC_5x5_KHR, KTX_COMPRESSED_RGBA_ASTC_5x5_KHR, KTX_ZERO, }, // ASTC5x5 { KTX_COMPRESSED_RGBA_ASTC_6x6_KHR, KTX_COMPRESSED_SRGB8_ALPHA8_ASTC_6x6_KHR, KTX_COMPRESSED_RGBA_ASTC_6x6_KHR, KTX_ZERO, }, // ASTC6x6 { KTX_COMPRESSED_RGBA_ASTC_8x5_KHR, KTX_COMPRESSED_SRGB8_ALPHA8_ASTC_8x5_KHR, KTX_COMPRESSED_RGBA_ASTC_8x5_KHR, KTX_ZERO, }, // ASTC8x5 { KTX_COMPRESSED_RGBA_ASTC_8x6_KHR, KTX_COMPRESSED_SRGB8_ALPHA8_ASTC_8x6_KHR, KTX_COMPRESSED_RGBA_ASTC_8x6_KHR, KTX_ZERO, }, // ASTC8x6 { KTX_COMPRESSED_RGBA_ASTC_10x5_KHR, KTX_COMPRESSED_SRGB8_ALPHA8_ASTC_10x5_KHR, KTX_COMPRESSED_RGBA_ASTC_10x5_KHR, KTX_ZERO, }, // ASTC10x5 { KTX_ZERO, KTX_ZERO, KTX_ZERO, KTX_ZERO, }, // Unknown { KTX_ZERO, KTX_ZERO, KTX_ZERO, KTX_ZERO, }, // R1 { KTX_ALPHA, KTX_ZERO, KTX_ALPHA, KTX_UNSIGNED_BYTE, }, // A8 { KTX_R8, KTX_ZERO, KTX_RED, KTX_UNSIGNED_BYTE, }, // R8 { KTX_R8I, KTX_ZERO, KTX_RED, KTX_BYTE, }, // R8S { KTX_R8UI, KTX_ZERO, KTX_RED, KTX_UNSIGNED_BYTE, }, // R8S { KTX_R8_SNORM, KTX_ZERO, KTX_RED, KTX_BYTE, }, // R8S { KTX_R16, KTX_ZERO, KTX_RED, KTX_UNSIGNED_SHORT, }, // R16 { KTX_R16I, KTX_ZERO, KTX_RED, KTX_SHORT, }, // R16I { KTX_R16UI, KTX_ZERO, KTX_RED, KTX_UNSIGNED_SHORT, }, // R16U { KTX_R16F, KTX_ZERO, KTX_RED, KTX_HALF_FLOAT, }, // R16F { KTX_R16_SNORM, KTX_ZERO, KTX_RED, KTX_SHORT, }, // R16S { KTX_R32I, KTX_ZERO, KTX_RED, KTX_INT, }, // R32I { KTX_R32UI, KTX_ZERO, KTX_RED, KTX_UNSIGNED_INT, }, // R32U { KTX_R32F, KTX_ZERO, KTX_RED, KTX_FLOAT, }, // R32F { KTX_RG8, KTX_ZERO, KTX_RG, KTX_UNSIGNED_BYTE, }, // RG8 { KTX_RG8I, KTX_ZERO, KTX_RG, KTX_BYTE, }, // RG8I { KTX_RG8UI, KTX_ZERO, KTX_RG, KTX_UNSIGNED_BYTE, }, // RG8U { KTX_RG8_SNORM, KTX_ZERO, KTX_RG, KTX_BYTE, }, // RG8S { KTX_RG16, KTX_ZERO, KTX_RG, KTX_UNSIGNED_SHORT, }, // RG16 { KTX_RG16I, KTX_ZERO, KTX_RG, KTX_SHORT, }, // RG16 { KTX_RG16UI, KTX_ZERO, KTX_RG, KTX_UNSIGNED_SHORT, }, // RG16 { KTX_RG16F, KTX_ZERO, KTX_RG, KTX_FLOAT, }, // RG16F { KTX_RG16_SNORM, KTX_ZERO, KTX_RG, KTX_SHORT, }, // RG16S { KTX_RG32I, KTX_ZERO, KTX_RG, KTX_INT, }, // RG32I { KTX_RG32UI, KTX_ZERO, KTX_RG, KTX_UNSIGNED_INT, }, // RG32U { KTX_RG32F, KTX_ZERO, KTX_RG, KTX_FLOAT, }, // RG32F { KTX_RGB8, KTX_SRGB8, KTX_RGB, KTX_UNSIGNED_BYTE, }, // RGB8 { KTX_RGB8I, KTX_ZERO, KTX_RGB, KTX_BYTE, }, // RGB8I { KTX_RGB8UI, KTX_ZERO, KTX_RGB, KTX_UNSIGNED_BYTE, }, // RGB8U { KTX_RGB8_SNORM, KTX_ZERO, KTX_RGB, KTX_BYTE, }, // RGB8S { KTX_RGB9_E5, KTX_ZERO, KTX_RGB, KTX_UNSIGNED_INT_5_9_9_9_REV, }, // RGB9E5F { KTX_BGRA, KTX_SRGB8_ALPHA8, KTX_BGRA, KTX_UNSIGNED_BYTE, }, // BGRA8 { KTX_RGBA8, KTX_SRGB8_ALPHA8, KTX_RGBA, KTX_UNSIGNED_BYTE, }, // RGBA8 { KTX_RGBA8I, KTX_ZERO, KTX_RGBA, KTX_BYTE, }, // RGBA8I { KTX_RGBA8UI, KTX_ZERO, KTX_RGBA, KTX_UNSIGNED_BYTE, }, // RGBA8U { KTX_RGBA8_SNORM, KTX_ZERO, KTX_RGBA, KTX_BYTE, }, // RGBA8S { KTX_RGBA16, KTX_ZERO, KTX_RGBA, KTX_UNSIGNED_SHORT, }, // RGBA16 { KTX_RGBA16I, KTX_ZERO, KTX_RGBA, KTX_SHORT, }, // RGBA16I { KTX_RGBA16UI, KTX_ZERO, KTX_RGBA, KTX_UNSIGNED_SHORT, }, // RGBA16U { KTX_RGBA16F, KTX_ZERO, KTX_RGBA, KTX_HALF_FLOAT, }, // RGBA16F { KTX_RGBA16_SNORM, KTX_ZERO, KTX_RGBA, KTX_SHORT, }, // RGBA16S { KTX_RGBA32I, KTX_ZERO, KTX_RGBA, KTX_INT, }, // RGBA32I { KTX_RGBA32UI, KTX_ZERO, KTX_RGBA, KTX_UNSIGNED_INT, }, // RGBA32U { KTX_RGBA32F, KTX_ZERO, KTX_RGBA, KTX_FLOAT, }, // RGBA32F { KTX_RGB565, KTX_ZERO, KTX_RGB, KTX_UNSIGNED_SHORT_5_6_5, }, // R5G6B5 { KTX_RGBA4, KTX_ZERO, KTX_RGBA, KTX_UNSIGNED_SHORT_4_4_4_4, }, // RGBA4 { KTX_RGB5_A1, KTX_ZERO, KTX_RGBA, KTX_UNSIGNED_SHORT_5_5_5_1, }, // RGB5A1 { KTX_RGB10_A2, KTX_ZERO, KTX_RGBA, KTX_UNSIGNED_INT_2_10_10_10_REV, }, // RGB10A2 { KTX_R11F_G11F_B10F, KTX_ZERO, KTX_RGB, KTX_UNSIGNED_INT_10F_11F_11F_REV, }, // RG11B10F }; BX_STATIC_ASSERT(TextureFormat::UnknownDepth == BX_COUNTOF(s_translateKtxFormat) ); struct KtxFormatInfo2 { uint32_t m_internalFmt; TextureFormat::Enum m_format; }; static const KtxFormatInfo2 s_translateKtxFormat2[] = { { KTX_A8, TextureFormat::A8 }, { KTX_RED, TextureFormat::R8 }, { KTX_RGB, TextureFormat::RGB8 }, { KTX_RGBA, TextureFormat::RGBA8 }, { KTX_COMPRESSED_RGB_S3TC_DXT1_EXT, TextureFormat::BC1 }, }; bool imageParseKtx(ImageContainer& _imageContainer, bx::ReaderSeekerI* _reader, bx::Error* _err) { BX_ERROR_SCOPE(_err); uint8_t identifier[8]; bx::read(_reader, identifier); if (identifier[1] != '1' && identifier[2] != '1') { return false; } uint32_t endianness; bx::read(_reader, endianness); bool fromLittleEndian = 0x04030201 == endianness; uint32_t glType; bx::readHE(_reader, glType, fromLittleEndian); uint32_t glTypeSize; bx::readHE(_reader, glTypeSize, fromLittleEndian); uint32_t glFormat; bx::readHE(_reader, glFormat, fromLittleEndian); uint32_t glInternalFormat; bx::readHE(_reader, glInternalFormat, fromLittleEndian); uint32_t glBaseInternalFormat; bx::readHE(_reader, glBaseInternalFormat, fromLittleEndian); uint32_t width; bx::readHE(_reader, width, fromLittleEndian); uint32_t height; bx::readHE(_reader, height, fromLittleEndian); uint32_t depth; bx::readHE(_reader, depth, fromLittleEndian); uint32_t numberOfArrayElements; bx::readHE(_reader, numberOfArrayElements, fromLittleEndian); uint32_t numFaces; bx::readHE(_reader, numFaces, fromLittleEndian); uint32_t numMips; bx::readHE(_reader, numMips, fromLittleEndian); uint32_t metaDataSize; bx::readHE(_reader, metaDataSize, fromLittleEndian); // skip meta garbage... int64_t offset = bx::skip(_reader, metaDataSize); TextureFormat::Enum format = TextureFormat::Unknown; bool hasAlpha = false; for (uint32_t ii = 0; ii < BX_COUNTOF(s_translateKtxFormat); ++ii) { if (s_translateKtxFormat[ii].m_internalFmt == glInternalFormat) { format = TextureFormat::Enum(ii); break; } } if (TextureFormat::Unknown == format) { for (uint32_t ii = 0; ii < BX_COUNTOF(s_translateKtxFormat2); ++ii) { if (s_translateKtxFormat2[ii].m_internalFmt == glInternalFormat) { format = s_translateKtxFormat2[ii].m_format; break; } } } _imageContainer.m_allocator = NULL; _imageContainer.m_data = NULL; _imageContainer.m_size = 0; _imageContainer.m_offset = (uint32_t)offset; _imageContainer.m_width = width; _imageContainer.m_height = height; _imageContainer.m_depth = depth; _imageContainer.m_format = format; _imageContainer.m_orientation = Orientation::R0; _imageContainer.m_numLayers = uint16_t(bx::max(numberOfArrayElements, 1) ); _imageContainer.m_numMips = uint8_t(bx::max(numMips, 1) ); _imageContainer.m_hasAlpha = hasAlpha; _imageContainer.m_cubeMap = numFaces > 1; _imageContainer.m_ktx = true; _imageContainer.m_ktxLE = fromLittleEndian; _imageContainer.m_srgb = false; if (TextureFormat::Unknown == format) { BX_ERROR_SET(_err, BIMG_ERROR, "Unrecognized image format."); return false; } return true; } ImageContainer* imageParseKtx(bx::AllocatorI* _allocator, const void* _src, uint32_t _size, bx::Error* _err) { return imageParseT(_allocator, _src, _size, _err); } // PVR3 #define PVR3_MAKE8CC(_a, _b, _c, _d, _e, _f, _g, _h) (uint64_t(BX_MAKEFOURCC(_a, _b, _c, _d) ) | (uint64_t(BX_MAKEFOURCC(_e, _f, _g, _h) )<<32) ) #define PVR3_MAGIC BX_MAKEFOURCC('P', 'V', 'R', 3) #define PVR3_HEADER_SIZE 52 #define PVR3_PVRTC1_2BPP_RGB 0 #define PVR3_PVRTC1_2BPP_RGBA 1 #define PVR3_PVRTC1_4BPP_RGB 2 #define PVR3_PVRTC1_4BPP_RGBA 3 #define PVR3_PVRTC2_2BPP_RGBA 4 #define PVR3_PVRTC2_4BPP_RGBA 5 #define PVR3_ETC1 6 #define PVR3_DXT1 7 #define PVR3_DXT2 8 #define PVR3_DXT3 9 #define PVR3_DXT4 10 #define PVR3_DXT5 11 #define PVR3_BC4 12 #define PVR3_BC5 13 #define PVR3_R8 PVR3_MAKE8CC('r', 0, 0, 0, 8, 0, 0, 0) #define PVR3_R16 PVR3_MAKE8CC('r', 0, 0, 0, 16, 0, 0, 0) #define PVR3_R32 PVR3_MAKE8CC('r', 0, 0, 0, 32, 0, 0, 0) #define PVR3_RG8 PVR3_MAKE8CC('r', 'g', 0, 0, 8, 8, 0, 0) #define PVR3_RG16 PVR3_MAKE8CC('r', 'g', 0, 0, 16, 16, 0, 0) #define PVR3_RG32 PVR3_MAKE8CC('r', 'g', 0, 0, 32, 32, 0, 0) #define PVR3_BGRA8 PVR3_MAKE8CC('b', 'g', 'r', 'a', 8, 8, 8, 8) #define PVR3_RGBA16 PVR3_MAKE8CC('r', 'g', 'b', 'a', 16, 16, 16, 16) #define PVR3_RGBA32 PVR3_MAKE8CC('r', 'g', 'b', 'a', 32, 32, 32, 32) #define PVR3_RGB565 PVR3_MAKE8CC('r', 'g', 'b', 0, 5, 6, 5, 0) #define PVR3_RGBA4 PVR3_MAKE8CC('r', 'g', 'b', 'a', 4, 4, 4, 4) #define PVR3_RGBA51 PVR3_MAKE8CC('r', 'g', 'b', 'a', 5, 5, 5, 1) #define PVR3_RGB10A2 PVR3_MAKE8CC('r', 'g', 'b', 'a', 10, 10, 10, 2) #define PVR3_CHANNEL_TYPE_ANY UINT32_MAX #define PVR3_CHANNEL_TYPE_FLOAT UINT32_C(12) struct TranslatePvr3Format { uint64_t m_format; uint32_t m_channelTypeMask; TextureFormat::Enum m_textureFormat; }; static const TranslatePvr3Format s_translatePvr3Format[] = { { PVR3_PVRTC1_2BPP_RGB, PVR3_CHANNEL_TYPE_ANY, TextureFormat::PTC12 }, { PVR3_PVRTC1_2BPP_RGBA, PVR3_CHANNEL_TYPE_ANY, TextureFormat::PTC12A }, { PVR3_PVRTC1_4BPP_RGB, PVR3_CHANNEL_TYPE_ANY, TextureFormat::PTC14 }, { PVR3_PVRTC1_4BPP_RGBA, PVR3_CHANNEL_TYPE_ANY, TextureFormat::PTC14A }, { PVR3_PVRTC2_2BPP_RGBA, PVR3_CHANNEL_TYPE_ANY, TextureFormat::PTC22 }, { PVR3_PVRTC2_4BPP_RGBA, PVR3_CHANNEL_TYPE_ANY, TextureFormat::PTC24 }, { PVR3_ETC1, PVR3_CHANNEL_TYPE_ANY, TextureFormat::ETC1 }, { PVR3_DXT1, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC1 }, { PVR3_DXT2, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC2 }, { PVR3_DXT3, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC2 }, { PVR3_DXT4, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC3 }, { PVR3_DXT5, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC3 }, { PVR3_BC4, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC4 }, { PVR3_BC5, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BC5 }, { PVR3_R8, PVR3_CHANNEL_TYPE_ANY, TextureFormat::R8 }, { PVR3_R16, PVR3_CHANNEL_TYPE_ANY, TextureFormat::R16U }, { PVR3_R16, PVR3_CHANNEL_TYPE_FLOAT, TextureFormat::R16F }, { PVR3_R32, PVR3_CHANNEL_TYPE_ANY, TextureFormat::R32U }, { PVR3_R32, PVR3_CHANNEL_TYPE_FLOAT, TextureFormat::R32F }, { PVR3_RG8, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RG8 }, { PVR3_RG16, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RG16 }, { PVR3_RG16, PVR3_CHANNEL_TYPE_FLOAT, TextureFormat::RG16F }, { PVR3_RG32, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RG16 }, { PVR3_RG32, PVR3_CHANNEL_TYPE_FLOAT, TextureFormat::RG32F }, { PVR3_BGRA8, PVR3_CHANNEL_TYPE_ANY, TextureFormat::BGRA8 }, { PVR3_RGBA16, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RGBA16 }, { PVR3_RGBA16, PVR3_CHANNEL_TYPE_FLOAT, TextureFormat::RGBA16F }, { PVR3_RGBA32, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RGBA32U }, { PVR3_RGBA32, PVR3_CHANNEL_TYPE_FLOAT, TextureFormat::RGBA32F }, { PVR3_RGB565, PVR3_CHANNEL_TYPE_ANY, TextureFormat::R5G6B5 }, { PVR3_RGBA4, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RGBA4 }, { PVR3_RGBA51, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RGB5A1 }, { PVR3_RGB10A2, PVR3_CHANNEL_TYPE_ANY, TextureFormat::RGB10A2 }, }; bool imageParsePvr3(ImageContainer& _imageContainer, bx::ReaderSeekerI* _reader, bx::Error* _err) { BX_ERROR_SCOPE(_err); uint32_t flags; bx::read(_reader, flags); uint64_t pixelFormat; bx::read(_reader, pixelFormat); uint32_t colorSpace; bx::read(_reader, colorSpace); // 0 - linearRGB, 1 - sRGB uint32_t channelType; bx::read(_reader, channelType); uint32_t height; bx::read(_reader, height); uint32_t width; bx::read(_reader, width); uint32_t depth; bx::read(_reader, depth); uint32_t numSurfaces; bx::read(_reader, numSurfaces); uint32_t numFaces; bx::read(_reader, numFaces); uint32_t numMips; bx::read(_reader, numMips); uint32_t metaDataSize; bx::read(_reader, metaDataSize); // skip meta garbage... int64_t offset = bx::skip(_reader, metaDataSize); TextureFormat::Enum format = TextureFormat::Unknown; bool hasAlpha = false; for (uint32_t ii = 0; ii < BX_COUNTOF(s_translatePvr3Format); ++ii) { if (s_translatePvr3Format[ii].m_format == pixelFormat && channelType == (s_translatePvr3Format[ii].m_channelTypeMask & channelType) ) { format = s_translatePvr3Format[ii].m_textureFormat; break; } } _imageContainer.m_allocator = NULL; _imageContainer.m_data = NULL; _imageContainer.m_size = 0; _imageContainer.m_offset = (uint32_t)offset; _imageContainer.m_width = width; _imageContainer.m_height = height; _imageContainer.m_depth = depth; _imageContainer.m_format = format; _imageContainer.m_orientation = Orientation::R0; _imageContainer.m_numLayers = 1; _imageContainer.m_numMips = uint8_t(bx::max(numMips, 1) ); _imageContainer.m_hasAlpha = hasAlpha; _imageContainer.m_cubeMap = numFaces > 1; _imageContainer.m_ktx = false; _imageContainer.m_ktxLE = false; _imageContainer.m_srgb = colorSpace > 0; return TextureFormat::Unknown != format; } ImageContainer* imageParsePvr3(bx::AllocatorI* _allocator, const void* _src, uint32_t _size, bx::Error* _err) { return imageParseT(_allocator, _src, _size, _err); } bool imageParse(ImageContainer& _imageContainer, bx::ReaderSeekerI* _reader, bx::Error* _err) { BX_ERROR_SCOPE(_err); uint32_t magic; bx::read(_reader, magic, _err); if (DDS_MAGIC == magic) { return imageParseDds(_imageContainer, _reader, _err); } else if (KTX_MAGIC == magic) { return imageParseKtx(_imageContainer, _reader, _err); } else if (PVR3_MAGIC == magic) { return imageParsePvr3(_imageContainer, _reader, _err); } else if (BIMG_CHUNK_MAGIC_GNF == magic) { return imageParseGnf(_imageContainer, _reader, _err); } else if (BIMG_CHUNK_MAGIC_TEX == magic) { TextureCreate tc; bx::read(_reader, tc); _imageContainer.m_format = tc.m_format; _imageContainer.m_orientation = Orientation::R0; _imageContainer.m_offset = UINT32_MAX; _imageContainer.m_allocator = NULL; if (NULL == tc.m_mem) { _imageContainer.m_data = NULL; _imageContainer.m_size = 0; } else { _imageContainer.m_data = tc.m_mem->data; _imageContainer.m_size = tc.m_mem->size; } _imageContainer.m_width = tc.m_width; _imageContainer.m_height = tc.m_height; _imageContainer.m_depth = tc.m_depth; _imageContainer.m_numLayers = tc.m_numLayers; _imageContainer.m_numMips = tc.m_numMips; _imageContainer.m_hasAlpha = false; _imageContainer.m_cubeMap = tc.m_cubeMap; _imageContainer.m_ktx = false; _imageContainer.m_ktxLE = false; _imageContainer.m_srgb = false; return _err->isOk(); } BX_TRACE("Unrecognized image format (magic: 0x%08x)!", magic); BX_ERROR_SET(_err, BIMG_ERROR, "Unrecognized image format."); return false; } bool imageParse(ImageContainer& _imageContainer, const void* _data, uint32_t _size, bx::Error* _err) { BX_ERROR_SCOPE(_err); bx::MemoryReader reader(_data, _size); return imageParse(_imageContainer, &reader, _err); } void imageDecodeToR8(bx::AllocatorI* _allocator, void* _dst, const void* _src, uint32_t _width, uint32_t _height, uint32_t _depth, uint32_t _dstPitch, TextureFormat::Enum _srcFormat) { const uint8_t* src = (const uint8_t*)_src; uint8_t* dst = (uint8_t*)_dst; const uint32_t srcBpp = s_imageBlockInfo[_srcFormat].bitsPerPixel; const uint32_t srcPitch = _width*srcBpp/8; for (uint32_t zz = 0; zz < _depth; ++zz, src += _height*srcPitch, dst += _height*_dstPitch) { if (isCompressed(_srcFormat)) { uint32_t size = imageGetSize(NULL, uint16_t(_width), uint16_t(_height), 0, false, false, 1, TextureFormat::RGBA8); void* temp = BX_ALLOC(_allocator, size); imageDecodeToRgba8(_allocator, temp, _src, _width, _height, _width*4, _srcFormat); imageConvert(_allocator, dst, TextureFormat::R8, temp, TextureFormat::RGBA8, _width, _height, 1, _width*4, _dstPitch); BX_FREE(_allocator, temp); } else { imageConvert(_allocator, dst, TextureFormat::R8, src, _srcFormat, _width, _height, 1, srcPitch, _dstPitch); } } } void imageDecodeToBgra8(bx::AllocatorI* _allocator, void* _dst, const void* _src, uint32_t _width, uint32_t _height, uint32_t _dstPitch, TextureFormat::Enum _srcFormat) { const uint8_t* src = (const uint8_t*)_src; uint8_t* dst = (uint8_t*)_dst; uint32_t width = _width/4; uint32_t height = _height/4; uint8_t temp[16*4]; switch (_srcFormat) { case TextureFormat::BC1: for (uint32_t yy = 0; yy < height; ++yy) { for (uint32_t xx = 0; xx < width; ++xx) { decodeBlockDxt1(temp, src); src += 8; uint8_t* block = &dst[yy*_dstPitch*4 + xx*16]; bx::memCopy(&block[0*_dstPitch], &temp[ 0], 16); bx::memCopy(&block[1*_dstPitch], &temp[16], 16); bx::memCopy(&block[2*_dstPitch], &temp[32], 16); bx::memCopy(&block[3*_dstPitch], &temp[48], 16); } } break; case TextureFormat::BC2: for (uint32_t yy = 0; yy < height; ++yy) { for (uint32_t xx = 0; xx < width; ++xx) { decodeBlockDxt23A(temp+3, src); src += 8; decodeBlockDxt(temp, src); src += 8; uint8_t* block = &dst[yy*_dstPitch*4 + xx*16]; bx::memCopy(&block[0*_dstPitch], &temp[ 0], 16); bx::memCopy(&block[1*_dstPitch], &temp[16], 16); bx::memCopy(&block[2*_dstPitch], &temp[32], 16); bx::memCopy(&block[3*_dstPitch], &temp[48], 16); } } break; case TextureFormat::BC3: for (uint32_t yy = 0; yy < height; ++yy) { for (uint32_t xx = 0; xx < width; ++xx) { decodeBlockDxt45A(temp+3, src); src += 8; decodeBlockDxt(temp, src); src += 8; uint8_t* block = &dst[yy*_dstPitch*4 + xx*16]; bx::memCopy(&block[0*_dstPitch], &temp[ 0], 16); bx::memCopy(&block[1*_dstPitch], &temp[16], 16); bx::memCopy(&block[2*_dstPitch], &temp[32], 16); bx::memCopy(&block[3*_dstPitch], &temp[48], 16); } } break; case TextureFormat::BC4: for (uint32_t yy = 0; yy < height; ++yy) { for (uint32_t xx = 0; xx < width; ++xx) { decodeBlockDxt45A(temp, src); src += 8; uint8_t* block = &dst[yy*_dstPitch*4 + xx*16]; bx::memCopy(&block[0*_dstPitch], &temp[ 0], 16); bx::memCopy(&block[1*_dstPitch], &temp[16], 16); bx::memCopy(&block[2*_dstPitch], &temp[32], 16); bx::memCopy(&block[3*_dstPitch], &temp[48], 16); } } break; case TextureFormat::BC5: for (uint32_t yy = 0; yy < height; ++yy) { for (uint32_t xx = 0; xx < width; ++xx) { decodeBlockDxt45A(temp+2, src); src += 8; decodeBlockDxt45A(temp+1, src); src += 8; for (uint32_t ii = 0; ii < 16; ++ii) { float nx = temp[ii*4+2]*2.0f/255.0f - 1.0f; float ny = temp[ii*4+1]*2.0f/255.0f - 1.0f; float nz = bx::sqrt(1.0f - nx*nx - ny*ny); temp[ii*4+0] = uint8_t( (nz + 1.0f)*255.0f/2.0f); temp[ii*4+3] = 0; } uint8_t* block = &dst[yy*_dstPitch*4 + xx*16]; bx::memCopy(&block[0*_dstPitch], &temp[ 0], 16); bx::memCopy(&block[1*_dstPitch], &temp[16], 16); bx::memCopy(&block[2*_dstPitch], &temp[32], 16); bx::memCopy(&block[3*_dstPitch], &temp[48], 16); } } break; case TextureFormat::BC6H: { ImageContainer* rgba32f = imageAlloc(_allocator , TextureFormat::RGBA32F , uint16_t(_width) , uint16_t(_height) , uint16_t(1) , 1 , false , false ); imageDecodeToRgba32f(_allocator, rgba32f->m_data, _src, _width, _height, 1, _width*16, _srcFormat); imageConvert(_allocator, _dst, TextureFormat::BGRA8, rgba32f->m_data, TextureFormat::RGBA32F, _width, _height, 1, _width*16, _dstPitch); imageFree(rgba32f); } break; case TextureFormat::BC7: for (uint32_t yy = 0; yy < height; ++yy) { for (uint32_t xx = 0; xx < width; ++xx) { decodeBlockBc7(temp, src); src += 16; uint8_t* block = &dst[yy*_dstPitch*4 + xx*16]; bx::memCopy(&block[0*_dstPitch], &temp[ 0], 16); bx::memCopy(&block[1*_dstPitch], &temp[16], 16); bx::memCopy(&block[2*_dstPitch], &temp[32], 16); bx::memCopy(&block[3*_dstPitch], &temp[48], 16); } } break; case TextureFormat::ETC1: case TextureFormat::ETC2: for (uint32_t yy = 0; yy < height; ++yy) { for (uint32_t xx = 0; xx < width; ++xx) { decodeBlockEtc12(temp, src); src += 8; uint8_t* block = &dst[yy*_dstPitch*4 + xx*16]; bx::memCopy(&block[0*_dstPitch], &temp[ 0], 16); bx::memCopy(&block[1*_dstPitch], &temp[16], 16); bx::memCopy(&block[2*_dstPitch], &temp[32], 16); bx::memCopy(&block[3*_dstPitch], &temp[48], 16); } } break; case TextureFormat::ETC2A: BX_WARN(false, "ETC2A decoder is not implemented."); imageCheckerboard(_dst, _width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xff00ff00) ); break; case TextureFormat::ETC2A1: BX_WARN(false, "ETC2A1 decoder is not implemented."); imageCheckerboard(_dst, _width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xffff0000) ); break; case TextureFormat::PTC12: BX_WARN(false, "PTC12 decoder is not implemented."); imageCheckerboard(_dst, _width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xffff00ff) ); break; case TextureFormat::PTC12A: BX_WARN(false, "PTC12A decoder is not implemented."); imageCheckerboard(_dst, _width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xffffff00) ); break; case TextureFormat::PTC14: for (uint32_t yy = 0; yy < height; ++yy) { for (uint32_t xx = 0; xx < width; ++xx) { decodeBlockPtc14(temp, src, xx, yy, width, height); uint8_t* block = &dst[yy*_dstPitch*4 + xx*16]; bx::memCopy(&block[0*_dstPitch], &temp[ 0], 16); bx::memCopy(&block[1*_dstPitch], &temp[16], 16); bx::memCopy(&block[2*_dstPitch], &temp[32], 16); bx::memCopy(&block[3*_dstPitch], &temp[48], 16); } } break; case TextureFormat::PTC14A: for (uint32_t yy = 0; yy < height; ++yy) { for (uint32_t xx = 0; xx < width; ++xx) { decodeBlockPtc14A(temp, src, xx, yy, width, height); uint8_t* block = &dst[yy*_dstPitch*4 + xx*16]; bx::memCopy(&block[0*_dstPitch], &temp[ 0], 16); bx::memCopy(&block[1*_dstPitch], &temp[16], 16); bx::memCopy(&block[2*_dstPitch], &temp[32], 16); bx::memCopy(&block[3*_dstPitch], &temp[48], 16); } } break; case TextureFormat::PTC22: BX_WARN(false, "PTC22 decoder is not implemented."); imageCheckerboard(_dst, _width, _height, 16, UINT32_C(0xff00ff00), UINT32_C(0xff0000ff) ); break; case TextureFormat::PTC24: BX_WARN(false, "PTC24 decoder is not implemented."); imageCheckerboard(_dst, _width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xffffffff) ); break; case TextureFormat::ATC: for (uint32_t yy = 0; yy < height; ++yy) { for (uint32_t xx = 0; xx < width; ++xx) { decodeBlockATC(temp, src); src += 8; uint8_t* block = &dst[(yy*_dstPitch+xx*4)*4]; bx::memCopy(&block[0*_dstPitch], &temp[ 0], 16); bx::memCopy(&block[1*_dstPitch], &temp[16], 16); bx::memCopy(&block[2*_dstPitch], &temp[32], 16); bx::memCopy(&block[3*_dstPitch], &temp[48], 16); } } break; case TextureFormat::ATCE: for (uint32_t yy = 0; yy < height; ++yy) { for (uint32_t xx = 0; xx < width; ++xx) { decodeBlockDxt23A(temp+3, src); src += 8; decodeBlockATC(temp, src); src += 8; uint8_t* block = &dst[(yy*_dstPitch+xx*4)*4]; bx::memCopy(&block[0*_dstPitch], &temp[ 0], 16); bx::memCopy(&block[1*_dstPitch], &temp[16], 16); bx::memCopy(&block[2*_dstPitch], &temp[32], 16); bx::memCopy(&block[3*_dstPitch], &temp[48], 16); } } break; case TextureFormat::ATCI: for (uint32_t yy = 0; yy < height; ++yy) { for (uint32_t xx = 0; xx < width; ++xx) { decodeBlockDxt45A(temp+3, src); src += 8; decodeBlockATC(temp, src); src += 8; uint8_t* block = &dst[(yy*_dstPitch+xx*4)*4]; bx::memCopy(&block[0*_dstPitch], &temp[ 0], 16); bx::memCopy(&block[1*_dstPitch], &temp[16], 16); bx::memCopy(&block[2*_dstPitch], &temp[32], 16); bx::memCopy(&block[3*_dstPitch], &temp[48], 16); } } break; case TextureFormat::ASTC4x4: case TextureFormat::ASTC5x5: case TextureFormat::ASTC6x6: case TextureFormat::ASTC8x5: case TextureFormat::ASTC8x6: case TextureFormat::ASTC10x5: imageDecodeToRgba8(_allocator, _dst, _src, _width, _height, _dstPitch, _srcFormat); imageSwizzleBgra8(_dst, _dstPitch, _width, _height, _dst, _dstPitch); break; case TextureFormat::RGBA8: { const uint32_t srcPitch = _width * 4; imageSwizzleBgra8(_dst, _dstPitch, _width, _height, _src, srcPitch); } break; case TextureFormat::BGRA8: { const uint32_t srcPitch = _width * 4; const uint32_t size = bx::uint32_min(srcPitch, _dstPitch); bx::memCopy(_dst, _dstPitch, _src, srcPitch, size, _height); } break; default: { const uint32_t srcBpp = s_imageBlockInfo[_srcFormat].bitsPerPixel; const uint32_t srcPitch = _width * srcBpp / 8; if (!imageConvert(_allocator, _dst, TextureFormat::BGRA8, _src, _srcFormat, _width, _height, 1, srcPitch, _dstPitch) ) { // Failed to convert, just make ugly red-yellow checkerboard texture. imageCheckerboard(_dst, _width, _height, 16, UINT32_C(0xffff0000), UINT32_C(0xffffff00) ); } } break; } } void imageDecodeToRgba8(bx::AllocatorI* _allocator, void* _dst, const void* _src, uint32_t _width, uint32_t _height, uint32_t _dstPitch, TextureFormat::Enum _srcFormat) { switch (_srcFormat) { case TextureFormat::RGBA8: { const uint32_t srcPitch = _width * 4; const uint32_t size = bx::uint32_min(srcPitch, _dstPitch); bx::memCopy(_dst, _dstPitch, _src, srcPitch, size, _height); } break; case TextureFormat::BGRA8: { const uint32_t srcPitch = _width * 4; imageSwizzleBgra8(_dst, _dstPitch, _width, _height, _src, srcPitch); } break; case TextureFormat::ASTC4x4: case TextureFormat::ASTC5x5: case TextureFormat::ASTC6x6: case TextureFormat::ASTC8x5: case TextureFormat::ASTC8x6: case TextureFormat::ASTC10x5: if (!astc_codec::ASTCDecompressToRGBA( (const uint8_t*)_src , imageGetSize(NULL, uint16_t(_width), uint16_t(_height), 0, false, false, 1, _srcFormat) , _width , _height , TextureFormat::ASTC4x4 == _srcFormat ? astc_codec::FootprintType::k4x4 : TextureFormat::ASTC5x5 == _srcFormat ? astc_codec::FootprintType::k5x5 : TextureFormat::ASTC6x6 == _srcFormat ? astc_codec::FootprintType::k6x6 : TextureFormat::ASTC8x5 == _srcFormat ? astc_codec::FootprintType::k8x5 : TextureFormat::ASTC8x6 == _srcFormat ? astc_codec::FootprintType::k8x6 : astc_codec::FootprintType::k10x5 , (uint8_t*)_dst , _width*_height*4 , _dstPitch ) ) { imageCheckerboard(_dst, _width, _height, 16, UINT32_C(0xff000000), UINT32_C(0xffffff00) ); } break; default: { const uint32_t srcPitch = _width * 4; imageDecodeToBgra8(_allocator, _dst, _src, _width, _height, _dstPitch, _srcFormat); imageSwizzleBgra8(_dst, _dstPitch, _width, _height, _dst, srcPitch); } break; } } void imageRgba8ToRgba32fRef(void* _dst, uint32_t _width, uint32_t _height, uint32_t _srcPitch, const void* _src) { const uint32_t dstWidth = _width; const uint32_t dstHeight = _height; if (0 == dstWidth || 0 == dstHeight) { return; } float* dst = (float*)_dst; const uint8_t* src = (const uint8_t*)_src; for (uint32_t yy = 0, ystep = _srcPitch; yy < dstHeight; ++yy, src += ystep) { const uint8_t* rgba = src; for (uint32_t xx = 0; xx < dstWidth; ++xx, rgba += 4, dst += 4) { dst[0] = bx::toLinear(rgba[0]); dst[1] = bx::toLinear(rgba[1]); dst[2] = bx::toLinear(rgba[2]); dst[3] = rgba[3]; } } } void imageRgba8ToRgba32f(void* _dst, uint32_t _width, uint32_t _height, uint32_t _srcPitch, const void* _src) { const uint32_t dstWidth = _width; const uint32_t dstHeight = _height; if (0 == dstWidth || 0 == dstHeight) { return; } float* dst = (float*)_dst; const uint8_t* src = (const uint8_t*)_src; using namespace bx; const simd128_t unpack = simd_ld(1.0f/256.0f, 1.0f/256.0f/256.0f, 1.0f/65536.0f/256.0f, 1.0f/16777216.0f/256.0f); const simd128_t umask = simd_ild(0xff, 0xff00, 0xff0000, 0xff000000); const simd128_t wflip = simd_ild(0, 0, 0, 0x80000000); const simd128_t wadd = simd_ld(0.0f, 0.0f, 0.0f, 32768.0f*65536.0f); for (uint32_t yy = 0, ystep = _srcPitch; yy < dstHeight; ++yy, src += ystep) { const uint8_t* rgba = src; for (uint32_t xx = 0; xx < dstWidth; ++xx, rgba += 4, dst += 4) { const simd128_t abgr0 = simd_splat(rgba); const simd128_t abgr0m = simd_and(abgr0, umask); const simd128_t abgr0x = simd_xor(abgr0m, wflip); const simd128_t abgr0f = simd_itof(abgr0x); const simd128_t abgr0c = simd_add(abgr0f, wadd); const simd128_t abgr0n = simd_mul(abgr0c, unpack); simd_st(dst, abgr0n); } } } void imageDecodeToRgba32f(bx::AllocatorI* _allocator, void* _dst, const void* _src, uint32_t _width, uint32_t _height, uint32_t _depth, uint32_t _dstPitch, TextureFormat::Enum _srcFormat) { const uint8_t* src = (const uint8_t*)_src; uint8_t* dst = (uint8_t*)_dst; const uint32_t srcBpp = s_imageBlockInfo[_srcFormat].bitsPerPixel; const uint32_t srcPitch = _width*srcBpp/8; for (uint32_t zz = 0; zz < _depth; ++zz, src += _height*srcPitch, dst += _height*_dstPitch) { switch (_srcFormat) { case TextureFormat::BC5: { uint32_t width = _width/4; uint32_t height = _height/4; const uint8_t* srcData = src; for (uint32_t yy = 0; yy < height; ++yy) { for (uint32_t xx = 0; xx < width; ++xx) { uint8_t temp[16*4]; decodeBlockDxt45A(temp+2, srcData); srcData += 8; decodeBlockDxt45A(temp+1, srcData); srcData += 8; for (uint32_t ii = 0; ii < 16; ++ii) { float nx = temp[ii*4+2]*2.0f/255.0f - 1.0f; float ny = temp[ii*4+1]*2.0f/255.0f - 1.0f; float nz = bx::sqrt(1.0f - nx*nx - ny*ny); const uint32_t offset = (yy*4 + ii/4)*_width*16 + (xx*4 + ii%4)*16; float* block = (float*)&dst[offset]; block[0] = nx; block[1] = ny; block[2] = nz; block[3] = 0.0f; } } } } break; case TextureFormat::BC6H: { uint32_t width = _width/4; uint32_t height = _height/4; const uint8_t* srcData = src; for (uint32_t yy = 0; yy < height; ++yy) { for (uint32_t xx = 0; xx < width; ++xx) { float tmp[16*4]; decodeBlockBc6h(tmp, srcData); srcData += 16; uint8_t* block = (uint8_t*)&dst[yy*_dstPitch*4 + xx*64]; bx::memCopy(&block[0*_dstPitch], &tmp[ 0], 64); bx::memCopy(&block[1*_dstPitch], &tmp[16], 64); bx::memCopy(&block[2*_dstPitch], &tmp[32], 64); bx::memCopy(&block[3*_dstPitch], &tmp[48], 64); } } } break; case TextureFormat::RGBA32F: bx::memCopy(dst, src, _dstPitch*_height); break; default: if (isCompressed(_srcFormat) ) { uint32_t size = imageGetSize(NULL, uint16_t(_width), uint16_t(_height), 0, false, false, 1, TextureFormat::RGBA8); void* temp = BX_ALLOC(_allocator, size); imageDecodeToRgba8(_allocator, temp, src, _width, _height, _width*4, _srcFormat); imageRgba8ToRgba32f(dst, _width, _height, _width*4, temp); BX_FREE(_allocator, temp); } else { imageConvert(_allocator, dst, TextureFormat::RGBA32F, src, _srcFormat, _width, _height, 1, srcPitch, _dstPitch); } break; } } } bool imageGetRawData(const ImageContainer& _imageContainer, uint16_t _side, uint8_t _lod, const void* _data, uint32_t _size, ImageMip& _mip) { uint32_t offset = _imageContainer.m_offset; TextureFormat::Enum format = TextureFormat::Enum(_imageContainer.m_format); bool hasAlpha = _imageContainer.m_hasAlpha; const ImageBlockInfo& blockInfo = s_imageBlockInfo[format]; const uint8_t bpp = blockInfo.bitsPerPixel; const uint32_t blockSize = blockInfo.blockSize; const uint32_t blockWidth = blockInfo.blockWidth; const uint32_t blockHeight = blockInfo.blockHeight; const uint32_t minBlockX = blockInfo.minBlockX; const uint32_t minBlockY = blockInfo.minBlockY; if (UINT32_MAX == _imageContainer.m_offset) { if (NULL == _imageContainer.m_data) { return false; } offset = 0; _data = _imageContainer.m_data; _size = _imageContainer.m_size; } const uint8_t* data = (const uint8_t*)_data; const uint16_t numSides = _imageContainer.m_numLayers * (_imageContainer.m_cubeMap ? 6 : 1); if (_imageContainer.m_ktx) { uint32_t width = _imageContainer.m_width; uint32_t height = _imageContainer.m_height; uint32_t depth = _imageContainer.m_depth; for (uint8_t lod = 0, num = _imageContainer.m_numMips; lod < num; ++lod) { width = bx::max(blockWidth * minBlockX, ( (width + blockWidth - 1) / blockWidth )*blockWidth); height = bx::max(blockHeight * minBlockY, ( (height + blockHeight - 1) / blockHeight)*blockHeight); depth = bx::max(1, depth); const uint32_t mipSize = width/blockWidth * height/blockHeight * depth * blockSize; const uint32_t size = mipSize*numSides; uint32_t imageSize = bx::toHostEndian(*(const uint32_t*)&data[offset], _imageContainer.m_ktxLE); BX_CHECK(size == imageSize, "KTX: Image size mismatch %d (expected %d).", size, imageSize); BX_UNUSED(size, imageSize); offset += sizeof(uint32_t); for (uint16_t side = 0; side < numSides; ++side) { BX_CHECK(offset <= _size, "Reading past size of data buffer! (offset %d, size %d)", offset, _size); if (side == _side && lod == _lod) { _mip.m_width = width; _mip.m_height = height; _mip.m_depth = depth; _mip.m_blockSize = blockSize; _mip.m_size = mipSize; _mip.m_data = &data[offset]; _mip.m_bpp = bpp; _mip.m_format = format; _mip.m_hasAlpha = hasAlpha; return true; } offset += mipSize; BX_UNUSED(_size); } width >>= 1; height >>= 1; depth >>= 1; } } else { for (uint16_t side = 0; side < numSides; ++side) { uint32_t width = _imageContainer.m_width; uint32_t height = _imageContainer.m_height; uint32_t depth = _imageContainer.m_depth; for (uint8_t lod = 0, num = _imageContainer.m_numMips; lod < num; ++lod) { BX_CHECK(offset <= _size, "Reading past size of data buffer! (offset %d, size %d)", offset, _size); width = bx::max(blockWidth * minBlockX, ( (width + blockWidth - 1) / blockWidth )*blockWidth); height = bx::max(blockHeight * minBlockY, ( (height + blockHeight - 1) / blockHeight)*blockHeight); depth = bx::max(1, depth); uint32_t mipSize = width/blockWidth * height/blockHeight * depth * blockSize; if (side == _side && lod == _lod) { _mip.m_width = width; _mip.m_height = height; _mip.m_depth = depth; _mip.m_blockSize = blockSize; _mip.m_size = mipSize; _mip.m_data = &data[offset]; _mip.m_bpp = bpp; _mip.m_format = format; _mip.m_hasAlpha = hasAlpha; return true; } offset += mipSize; BX_UNUSED(_size); width >>= 1; height >>= 1; depth >>= 1; } } } return false; } int32_t imageWriteTga(bx::WriterI* _writer, uint32_t _width, uint32_t _height, uint32_t _srcPitch, const void* _src, bool _grayscale, bool _yflip, bx::Error* _err) { BX_ERROR_SCOPE(_err); uint8_t type = _grayscale ? 3 : 2; uint8_t bpp = _grayscale ? 8 : 32; uint8_t header[18] = {}; header[ 2] = type; header[12] = _width &0xff; header[13] = (_width >>8)&0xff; header[14] = _height &0xff; header[15] = (_height>>8)&0xff; header[16] = bpp; header[17] = 32; int32_t total = 0; total += bx::write(_writer, header, sizeof(header), _err); uint32_t dstPitch = _width*bpp/8; if (_yflip) { const uint8_t* data = (const uint8_t*)_src + _srcPitch*_height - _srcPitch; for (uint32_t yy = 0; yy < _height && _err->isOk(); ++yy) { total += bx::write(_writer, data, dstPitch, _err); data -= _srcPitch; } } else if (_srcPitch == dstPitch) { total += bx::write(_writer, _src, _height*_srcPitch, _err); } else { const uint8_t* data = (const uint8_t*)_src; for (uint32_t yy = 0; yy < _height && _err->isOk(); ++yy) { total += bx::write(_writer, data, dstPitch, _err); data += _srcPitch; } } return total; } template class HashWriter : public bx::WriterI { public: HashWriter(bx::WriterI* _writer) : m_writer(_writer) { begin(); } void begin() { m_hash.begin(); } uint32_t end() { return m_hash.end(); } virtual int32_t write(const void* _data, int32_t _size, bx::Error* _err) override { m_hash.add(_data, _size); return m_writer->write(_data, _size, _err); } private: Ty m_hash; bx::WriterI* m_writer; }; int32_t imageWritePng(bx::WriterI* _writer, uint32_t _width, uint32_t _height, uint32_t _srcPitch, const void* _src, TextureFormat::Enum _format, bool _yflip, bx::Error* _err) { BX_ERROR_SCOPE(_err); switch (_format) { case TextureFormat::R8: case TextureFormat::RGBA8: case TextureFormat::BGRA8: break; default: BX_ERROR_SET(_err, BIMG_ERROR, "PNG: Unsupported texture format."); return 0; } const bool grayscale = TextureFormat::R8 == _format; const bool bgra = TextureFormat::BGRA8 == _format; int32_t total = 0; total += bx::write(_writer, "\x89PNG\r\n\x1a\n", _err); total += bx::write(_writer, bx::toBigEndian(13), _err); HashWriter writerC(_writer); total += bx::write(&writerC, "IHDR", _err); total += bx::write(&writerC, bx::toBigEndian(_width), _err); total += bx::write(&writerC, bx::toBigEndian(_height), _err); total += bx::write(&writerC, "\x08\x06", _err); total += bx::writeRep(&writerC, 0, 3, _err); total += bx::write(_writer, bx::toBigEndian(writerC.end() ), _err); const uint32_t bpp = grayscale ? 8 : 32; const uint32_t stride = _width*bpp/8; const uint16_t zlen = bx::toLittleEndian(uint16_t(stride + 1) ); const uint16_t zlenC = bx::toLittleEndian(~zlen); total += bx::write(_writer, bx::toBigEndian(_height*(stride+6)+6), _err); writerC.begin(); total += bx::write(&writerC, "IDAT", _err); total += bx::write(&writerC, "\x78\x9c", _err); const uint8_t* data = (const uint8_t*)_src; int32_t step = int32_t(_srcPitch); if (_yflip) { data += _srcPitch*_height - _srcPitch; step = -step; } HashWriter writerA(&writerC); for (uint32_t ii = 0; ii < _height && _err->isOk(); ++ii) { total += bx::write(&writerC, uint8_t(ii == _height-1 ? 1 : 0), _err); total += bx::write(&writerC, zlen, _err); total += bx::write(&writerC, zlenC, _err); total += bx::write(&writerA, uint8_t(0), _err); if (bgra) { for (uint32_t xx = 0; xx < _width; ++xx) { const uint8_t* texel = &data[xx*4]; const uint8_t bb = texel[0]; const uint8_t gg = texel[1]; const uint8_t rr = texel[2]; const uint8_t aa = texel[3]; total += bx::write(&writerA, rr, _err); total += bx::write(&writerA, gg, _err); total += bx::write(&writerA, bb, _err); total += bx::write(&writerA, aa, _err); } } else { total += bx::write(&writerA, data, stride, _err); } data += step; } total += bx::write(&writerC, bx::toBigEndian(writerA.end() ), _err); total += bx::write(_writer, bx::toBigEndian(writerC.end() ), _err); total += bx::write(&writerC, uint32_t(0), _err); writerC.begin(); total += bx::write(&writerC, "IEND", _err); total += bx::write(_writer, bx::toBigEndian(writerC.end() ), _err); return total; } int32_t imageWriteExr(bx::WriterI* _writer, uint32_t _width, uint32_t _height, uint32_t _srcPitch, const void* _src, TextureFormat::Enum _format, bool _yflip, bx::Error* _err) { BX_ERROR_SCOPE(_err); const uint32_t bpp = getBitsPerPixel(_format); uint32_t bytesPerChannel = 0; switch (_format) { case TextureFormat::RGBA16F: bytesPerChannel = 2; break; default: BX_ERROR_SET(_err, BIMG_ERROR, "EXR: Unsupported texture format."); return 0; } int32_t total = 0; total += bx::write(_writer, "v/1\x01", _err); total += bx::writeLE(_writer, uint32_t(2), _err); total += bx::write(_writer, "channels", _err); total += bx::write(_writer, '\0', _err); total += bx::write(_writer, "chlist", _err); total += bx::write(_writer, '\0', _err); total += bx::writeLE(_writer, uint32_t(18*4+1), _err); const uint8_t cdata[] = { 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0 }; // Order is always ABGR order because Photoshop and GIMP ignore these fields and // assume it's in ABGR order. total += bx::write(_writer, 'A', _err); total += bx::write(_writer, cdata, BX_COUNTOF(cdata), _err); total += bx::write(_writer, 'B', _err); total += bx::write(_writer, cdata, BX_COUNTOF(cdata), _err); total += bx::write(_writer, 'G', _err); total += bx::write(_writer, cdata, BX_COUNTOF(cdata), _err); total += bx::write(_writer, 'R', _err); total += bx::write(_writer, cdata, BX_COUNTOF(cdata), _err); total += bx::write(_writer, '\0', _err); total += bx::write(_writer, "compression", _err); total += bx::write(_writer, '\0', _err); total += bx::write(_writer, "compression", _err); total += bx::write(_writer, '\0', _err); total += bx::writeLE(_writer, uint32_t(1), _err); total += bx::write(_writer, '\0', _err); // no compression total += bx::write(_writer, "dataWindow", _err); total += bx::write(_writer, '\0', _err); total += bx::write(_writer, "box2i", _err); total += bx::write(_writer, '\0', _err); total += bx::writeLE(_writer, uint32_t(16), _err); total += bx::writeRep(_writer, '\0', 8, _err); total += bx::writeLE(_writer, _width-1, _err); total += bx::writeLE(_writer, _height-1, _err); total += bx::write(_writer, "displayWindow", _err); total += bx::write(_writer, '\0', _err); total += bx::write(_writer, "box2i", _err); total += bx::write(_writer, '\0', _err); total += bx::writeLE(_writer, uint32_t(16), _err); total += bx::writeRep(_writer, '\0', 8, _err); total += bx::writeLE(_writer, _width-1, _err); total += bx::writeLE(_writer, _height-1, _err); total += bx::write(_writer, "lineOrder", _err); total += bx::write(_writer, '\0', _err); total += bx::write(_writer, "lineOrder", _err); total += bx::write(_writer, '\0', _err); total += bx::writeLE(_writer, uint32_t(1), _err); total += bx::write(_writer, _yflip, _err); total += bx::write(_writer, "pixelAspectRatio", _err); total += bx::write(_writer, '\0', _err); total += bx::write(_writer, "float", _err); total += bx::write(_writer, '\0', _err); total += bx::writeLE(_writer, uint32_t(4), _err); total += bx::writeLE(_writer, 1.0f, _err); total += bx::write(_writer, "screenWindowCenter", _err); total += bx::write(_writer, '\0', _err); total += bx::write(_writer, "v2f", _err); total += bx::write(_writer, '\0', _err); total += bx::writeLE(_writer, uint32_t(8), _err); total += bx::writeRep(_writer, '\0', 8, _err); total += bx::write(_writer, "screenWindowWidth", _err); total += bx::write(_writer, '\0', _err); total += bx::write(_writer, "float", _err); total += bx::write(_writer, '\0', _err); total += bx::writeLE(_writer, uint32_t(4), _err); total += bx::writeLE(_writer, 1.0f, _err); total += bx::write(_writer, '\0', _err); const uint32_t exrStride = _width*bpp/8; uint64_t offset = 0; for (uint32_t yy = 0; yy < _height && _err->isOk(); ++yy) { total += bx::writeLE(_writer, (offset), _err); offset += exrStride + 8 /* offset */; } const uint8_t* data = (const uint8_t*)_src; for (uint32_t yy = 0; yy < _height && _err->isOk(); ++yy) { total += bx::writeLE(_writer, yy, _err); total += bx::writeLE(_writer, exrStride, _err); for (uint32_t xx = 0; xx < _width && _err->isOk(); ++xx) { total += bx::write(_writer, &data[xx*bpp/8+3*bytesPerChannel], bytesPerChannel, _err); } for (uint32_t xx = 0; xx < _width && _err->isOk(); ++xx) { total += bx::write(_writer, &data[xx*bpp/8+2*bytesPerChannel], bytesPerChannel, _err); } for (uint32_t xx = 0; xx < _width && _err->isOk(); ++xx) { total += bx::write(_writer, &data[xx*bpp/8+1*bytesPerChannel], bytesPerChannel, _err); } for (uint32_t xx = 0; xx < _width && _err->isOk(); ++xx) { total += bx::write(_writer, &data[xx*bpp/8+0*bytesPerChannel], bytesPerChannel, _err); } data += _srcPitch; } return total; } int32_t imageWriteHdr(bx::WriterI* _writer, uint32_t _width, uint32_t _height, uint32_t _srcPitch, const void* _src, TextureFormat::Enum _format, bool _yflip, bx::Error* _err) { BX_ERROR_SCOPE(_err); int32_t total = 0; total += bx::write(_writer, "#?RADIANCE\n" , _err); total += bx::write(_writer, "FORMAT=32-bit_rle_rgbe\n" , _err); total += bx::write(_writer, '\n' , _err); total += bx::write(_writer, _err, "%cY %d +X %d\n", _yflip ? '+' : '-', _height, _width); UnpackFn unpack = getUnpack(_format); const uint32_t bpp = getBitsPerPixel(_format); const uint8_t* data = (const uint8_t*)_src; for (uint32_t yy = 0; yy < _height && _err->isOk(); ++yy) { for (uint32_t xx = 0; xx < _width && _err->isOk(); ++xx) { float rgba[4]; unpack(rgba, &data[xx*bpp/8]); const float maxVal = bx::max(rgba[0], rgba[1], rgba[2]); const float exp = bx::ceil(bx::log2(maxVal) ); const float toRgb8 = 255.0f * 1.0f/bx::ldexp(1.0f, int(exp) ); uint8_t rgbe[4]; rgbe[0] = uint8_t(rgba[0] * toRgb8); rgbe[1] = uint8_t(rgba[1] * toRgb8); rgbe[2] = uint8_t(rgba[2] * toRgb8); rgbe[3] = uint8_t(exp+128.0f); total += bx::write(_writer, rgbe, 4, _err); } data += _srcPitch; } return total; } static int32_t imageWriteDdsHeader(bx::WriterI* _writer, TextureFormat::Enum _format, bool _cubeMap, uint32_t _width, uint32_t _height, uint32_t _depth, uint8_t _numMips, bx::Error* _err) { BX_ERROR_SCOPE(_err); uint32_t ddspf = UINT32_MAX; uint32_t dxgiFormat = UINT32_MAX; uint32_t fourccFormat = UINT32_MAX; for (uint32_t ii = 0; ii < BX_COUNTOF(s_translateDdsPixelFormat); ++ii) { if (s_translateDdsPixelFormat[ii].m_textureFormat == _format) { ddspf = ii; break; } } if (UINT32_MAX == ddspf) { for (uint32_t ii = 0; ii < BX_COUNTOF(s_translateDxgiFormat); ++ii) { if (s_translateDxgiFormat[ii].m_textureFormat == _format) { dxgiFormat = s_translateDxgiFormat[ii].m_format; break; } } } if (UINT32_MAX == ddspf && UINT32_MAX == dxgiFormat) { for (uint32_t ii = 0; ii < BX_COUNTOF(s_translateDdsFourccFormat); ++ii) { if (s_translateDdsFourccFormat[ii].m_textureFormat == _format) { fourccFormat = s_translateDdsFourccFormat[ii].m_format; break; } } } if (UINT32_MAX == ddspf && UINT32_MAX == dxgiFormat && UINT32_MAX == fourccFormat) { BX_ERROR_SET(_err, BIMG_ERROR, "DDS: output format not supported."); return 0; } const uint32_t bpp = getBitsPerPixel(_format); uint32_t total = 0; total += bx::write(_writer, uint32_t(DDS_MAGIC), _err); uint32_t headerStart = total; total += bx::write(_writer, uint32_t(DDS_HEADER_SIZE), _err); total += bx::write(_writer, uint32_t(0 | DDSD_HEIGHT | DDSD_WIDTH | DDSD_PIXELFORMAT | DDSD_CAPS | (1 < _depth ? DDSD_DEPTH : 0) | (1 < _numMips ? DDSD_MIPMAPCOUNT : 0) | (isCompressed(_format) ? DDSD_LINEARSIZE : DDSD_PITCH) ) , _err ); const uint32_t pitchOrLinearSize = isCompressed(_format) ? _width*_height*bpp/8 : _width*bpp/8 ; total += bx::write(_writer, _height, _err); total += bx::write(_writer, _width, _err); total += bx::write(_writer, pitchOrLinearSize, _err); total += bx::write(_writer, _depth, _err); total += bx::write(_writer, uint32_t(_numMips), _err); total += bx::writeRep(_writer, 0, 44, _err); // reserved1 if (UINT32_MAX != ddspf) { const TranslateDdsPixelFormat& pf = s_translateDdsPixelFormat[ddspf]; total += bx::write(_writer, uint32_t(8*sizeof(uint32_t) ), _err); // pixelFormatSize total += bx::write(_writer, pf.m_flags, _err); total += bx::write(_writer, uint32_t(0), _err); total += bx::write(_writer, pf.m_bitCount, _err); total += bx::write(_writer, pf.m_bitmask, _err); } else { total += bx::write(_writer, uint32_t(8*sizeof(uint32_t) ), _err); // pixelFormatSize total += bx::write(_writer, uint32_t(DDPF_FOURCC), _err); if (UINT32_MAX != fourccFormat) total += bx::write(_writer, fourccFormat, _err); else total += bx::write(_writer, uint32_t(DDS_DX10), _err); total += bx::write(_writer, uint32_t(0), _err); // bitCount total += bx::writeRep(_writer, 0, 4*sizeof(uint32_t), _err); // bitmask } uint32_t caps[4] = { uint32_t(DDSCAPS_TEXTURE | (1 < _numMips ? DDSCAPS_COMPLEX|DDSCAPS_MIPMAP : 0) ), uint32_t(_cubeMap ? DDSCAPS2_CUBEMAP|DSCAPS2_CUBEMAP_ALLSIDES : 0), 0, 0, }; total += bx::write(_writer, caps, sizeof(caps) ); total += bx::writeRep(_writer, 0, 4, _err); // reserved2 BX_WARN(total-headerStart == DDS_HEADER_SIZE , "DDS: Failed to write header size %d (expected: %d)." , total-headerStart , DDS_HEADER_SIZE ); if (UINT32_MAX != dxgiFormat) { total += bx::write(_writer, dxgiFormat); total += bx::write(_writer, uint32_t(1 < _depth ? DDS_DX10_DIMENSION_TEXTURE3D : DDS_DX10_DIMENSION_TEXTURE2D), _err); // dims total += bx::write(_writer, uint32_t(_cubeMap ? DDS_DX10_MISC_TEXTURECUBE : 0), _err); // miscFlags total += bx::write(_writer, uint32_t(1), _err); // arraySize total += bx::write(_writer, uint32_t(0), _err); // miscFlags2 BX_WARN(total-headerStart == DDS_HEADER_SIZE+20 , "DDS: Failed to write header size %d (expected: %d)." , total-headerStart , DDS_HEADER_SIZE+20 ); BX_UNUSED(headerStart); } return total; } int32_t imageWriteDds(bx::WriterI* _writer, ImageContainer& _imageContainer, const void* _data, uint32_t _size, bx::Error* _err) { BX_ERROR_SCOPE(_err); int32_t total = 0; total += imageWriteDdsHeader(_writer , TextureFormat::Enum(_imageContainer.m_format) , _imageContainer.m_cubeMap , _imageContainer.m_width , _imageContainer.m_height , _imageContainer.m_depth , _imageContainer.m_numMips , _err ); if (!_err->isOk() ) { return total; } for (uint8_t side = 0, numSides = _imageContainer.m_cubeMap ? 6 : 1; side < numSides && _err->isOk(); ++side) { for (uint8_t lod = 0, num = _imageContainer.m_numMips; lod < num && _err->isOk(); ++lod) { ImageMip mip; if (imageGetRawData(_imageContainer, side, lod, _data, _size, mip) ) { total += bx::write(_writer, mip.m_data, mip.m_size, _err); } } } return total; } static int32_t imageWriteKtxHeader(bx::WriterI* _writer, TextureFormat::Enum _format, bool _cubeMap, uint32_t _width, uint32_t _height, uint32_t _depth, uint8_t _numMips, uint32_t _numLayers, bx::Error* _err) { BX_ERROR_SCOPE(_err); const KtxFormatInfo& tfi = s_translateKtxFormat[_format]; int32_t total = 0; total += bx::write(_writer, "\xabKTX 11\xbb\r\n\x1a\n", 12, _err); total += bx::write(_writer, uint32_t(0x04030201), _err); total += bx::write(_writer, uint32_t(0), _err); // glType total += bx::write(_writer, uint32_t(1), _err); // glTypeSize total += bx::write(_writer, uint32_t(0), _err); // glFormat total += bx::write(_writer, tfi.m_internalFmt, _err); // glInternalFormat total += bx::write(_writer, tfi.m_fmt, _err); // glBaseInternalFormat total += bx::write(_writer, _width, _err); total += bx::write(_writer, _height, _err); total += bx::write(_writer, _depth, _err); total += bx::write(_writer, _numLayers, _err); // numberOfArrayElements total += bx::write(_writer, _cubeMap ? uint32_t(6) : uint32_t(0), _err); total += bx::write(_writer, uint32_t(_numMips), _err); total += bx::write(_writer, uint32_t(0), _err); // Meta-data size. BX_WARN(total == 64, "KTX: Failed to write header size %d (expected: %d).", total, 64); return total; } int32_t imageWriteKtx(bx::WriterI* _writer, TextureFormat::Enum _format, bool _cubeMap, uint32_t _width, uint32_t _height, uint32_t _depth, uint8_t _numMips, uint32_t _numLayers, const void* _src, bx::Error* _err) { BX_ERROR_SCOPE(_err); int32_t total = 0; total += imageWriteKtxHeader(_writer, _format, _cubeMap, _width, _height, _depth, _numMips, _numLayers, _err); if (!_err->isOk() ) { return total; } const ImageBlockInfo& blockInfo = s_imageBlockInfo[_format]; const uint32_t blockWidth = blockInfo.blockWidth; const uint32_t blockHeight = blockInfo.blockHeight; const uint32_t minBlockX = blockInfo.minBlockX; const uint32_t minBlockY = blockInfo.minBlockY; const uint8_t blockSize = blockInfo.blockSize; const uint8_t* src = (const uint8_t*)_src; const uint32_t numLayers = bx::max(_numLayers, 1); const uint32_t numSides = _cubeMap ? 6 : 1; uint32_t width = _width; uint32_t height = _height; uint32_t depth = _depth; for (uint8_t lod = 0; lod < _numMips && _err->isOk(); ++lod) { width = bx::max(blockWidth * minBlockX, ( (width + blockWidth - 1) / blockWidth )*blockWidth); height = bx::max(blockHeight * minBlockY, ( (height + blockHeight - 1) / blockHeight)*blockHeight); depth = bx::max(1, depth); const uint32_t mipSize = width/blockWidth * height/blockHeight * depth * blockSize; const uint32_t size = mipSize * numLayers * numSides; total += bx::write(_writer, size, _err); for (uint32_t layer = 0; layer < numLayers && _err->isOk(); ++layer) { for (uint8_t side = 0; side < numSides && _err->isOk(); ++side) { total += bx::write(_writer, src, size, _err); src += size; } } width >>= 1; height >>= 1; depth >>= 1; } return total; } int32_t imageWriteKtx(bx::WriterI* _writer, ImageContainer& _imageContainer, const void* _data, uint32_t _size, bx::Error* _err) { BX_ERROR_SCOPE(_err); int32_t total = 0; total += imageWriteKtxHeader(_writer , TextureFormat::Enum(_imageContainer.m_format) , _imageContainer.m_cubeMap , _imageContainer.m_width , _imageContainer.m_height , _imageContainer.m_depth , _imageContainer.m_numMips , _imageContainer.m_numLayers , _err ); if (!_err->isOk() ) { return total; } const uint32_t numMips = _imageContainer.m_numMips; const uint32_t numLayers = bx::max(_imageContainer.m_numLayers, 1); const uint32_t numSides = _imageContainer.m_cubeMap ? 6 : 1; for (uint8_t lod = 0; lod < numMips && _err->isOk(); ++lod) { ImageMip mip; imageGetRawData(_imageContainer, 0, lod, _data, _size, mip); const uint32_t size = mip.m_size*numSides*numLayers; total += bx::write(_writer, size, _err); for (uint32_t layer = 0; layer < numLayers && _err->isOk(); ++layer) { for (uint8_t side = 0; side < numSides && _err->isOk(); ++side) { if (imageGetRawData(_imageContainer, uint16_t(layer*numSides + side), lod, _data, _size, mip) ) { total += bx::write(_writer, mip.m_data, mip.m_size, _err); } } } } return total; } } // namespace bimg