summaryrefslogtreecommitdiffstatshomepage
path: root/src/mame/video/atarig1.c (follow)
Commit message (Expand)AuthorAgeFilesLines
* Initial checkin of MAME 0.121.mame0121 Aaron Giles2007-12-171-0/+221
0 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
// license:BSD-3-Clause
// copyright-holders:Aaron Giles
/***************************************************************************

    eepromser.c

    Serial EEPROM devices.

****************************************************************************

    Serial EEPROMs generally work the same across manufacturers and models,
    varying largely by the size of the EEPROM and the packaging details.

    At a basic level, there are 5 signals involved:

        * CS = chip select
        * CLK = serial data clock
        * DI = serial data in
        * DO = serial data out
        * RDY/BUSY = ready (1) or busy (0) status

    Data is read or written via serial commands. A command is begun on a
    low-to-high transition of the CS line, following by clocking a start
    bit (1) on the DI line. After the start bit, subsequent clocks
    assemble one of the following commands:

        Start   Opcode  Address     Data
          1       01    aaaaaaaaa   ddddddd     WRITE data
          1       10    aaaaaaaaa               READ data
          1       11    aaaaaaaaa               ERASE data
          1       00    00xxxxxxx               WREN = WRite ENable
          1       00    01xxxxxxx   ddddddd     WRAL = WRite ALl cells
          1       00    10xxxxxxx               ERAL = ERase ALl cells
          1       00    11xxxxxxx               WRDS = WRite DiSable

    The number of address bits (a) clocked varies based on the size of the
    chip, though it does not always map 1:1 with the size of the chip.
    For example, the 93C06 has 16 cells, which only needs 4 address bits;
    but commands to the 93C06 require 6 address bits (the top two must
    be 0).

    The number of data bits (d) clocked varies based on the chip and at
    times on the state of a pin on the chip which selects between multiple
    sizes (e.g., 8-bit versus 16-bit).

****************************************************************************

    Most EEPROMs are based on the 93Cxx design (and have similar part
    designations):

                                +--v--+
                             CS |1   8| Vcc
                            CLK |2   7| NC
                             DI |3   6| NC
                             DO |4   5| GND
                                +-----+

    Note the lack of a READY/BUSY pin. On the 93Cxx series, the DO pin
    serves double-duty, returning READY/BUSY during a write/erase cycle,
    and outputting data during a read cycle.

    Some manufacturers have released "enhanced" versions with additional
    features:

        * Several manufacturers (ST) map pin 6 to "ORG", specifying the
          logical organization of the data. Connecting ORG to ground
          makes the EEPROM work as an 8-bit device, while connecting it
          to Vcc makes it work as a 16-bit device with one less
          address bit.

        * Other manufacturers (ST) have enhanced the read operations to
          allow serially streaming more than one cell. Essentially, after
          reading the first cell, keep CS high and keep clocking, and
          data from following cells will be read as well.

    The ER5911 is only slightly different:

                                +--v--+
                             CS |1   8| Vcc
                            CLK |2   7| RDY/BUSY
                             DI |3   6| ORG
                             DO |4   5| GND
                                +-----+

    Here we have an explicit RDY/BUSY signal, and the ORG flag as described
    above.

    From a command perspective, the ER5911 is also slightly different:

        93Cxx has ERASE command; this maps to WRITE on ER5911
        93Cxx has WRITEALL command; no equivalent on ER5911

****************************************************************************

    Issues with:

    kickgoal.c - code seems wrong, clock logic writes 0-0-0 instead of 0-1-0 as expected
    overdriv.c - drops CS, raises CS, keeps DI=1, triggering extraneous start bit

***************************************************************************/

#include "emu.h"
#include "machine/eepromser.h"



//**************************************************************************
//  DEBUGGING
//**************************************************************************

// logging levels:
//  0 = errors and warnings only
//  1 = commands
//  2 = state machine
//  3 = DI/DO/READY reads & writes
//  4 = all reads & writes

#define VERBOSE_PRINTF 0
#define VERBOSE_LOGERROR 0

#define LOG0(x) do { if (VERBOSE_PRINTF >= 1) printf x; logerror x; } while (0)
#define LOG1(x) do { if (VERBOSE_PRINTF >= 1) printf x; if (VERBOSE_LOGERROR >= 1) logerror x; } while (0)
#define LOG2(x) do { if (VERBOSE_PRINTF >= 2) printf x; if (VERBOSE_LOGERROR >= 2) logerror x; } while (0)
#define LOG3(x) do { if (VERBOSE_PRINTF >= 3) printf x; if (VERBOSE_LOGERROR >= 3) logerror x; } while (0)
#define LOG4(x) do { if (VERBOSE_PRINTF >= 4) printf x; if (VERBOSE_LOGERROR >= 4) logerror x; } while (0)



//**************************************************************************
//  TYPE DEFINITIONS
//**************************************************************************

ALLOW_SAVE_TYPE(eeprom_serial_base_device::eeprom_command);
ALLOW_SAVE_TYPE(eeprom_serial_base_device::eeprom_state);



//**************************************************************************
//  BASE DEVICE IMPLEMENTATION
//**************************************************************************

//-------------------------------------------------
//  eeprom_serial_base_device - constructor
//-------------------------------------------------

eeprom_serial_base_device::eeprom_serial_base_device(const machine_config &mconfig, device_type devtype, const char *name, const char *tag, device_t *owner, const char *shortname, const char *file)
	: eeprom_base_device(mconfig, devtype, name, tag, owner, shortname, file),
		m_command_address_bits(0),
		m_streaming_enabled(false),
		m_output_on_falling_clock_enabled(false),
		m_state(STATE_IN_RESET),
		m_cs_state(CLEAR_LINE),
		m_last_cs_rising_edge_time(attotime::zero),
		m_oe_state(CLEAR_LINE),
		m_clk_state(CLEAR_LINE),
		m_di_state(CLEAR_LINE),
		m_locked(true),
		m_bits_accum(0),
		m_command_address_accum(0),
		m_command(COMMAND_INVALID),
		m_address(0),
		m_shift_register(0)
{
}


//-------------------------------------------------
//  static_set_address_bits - configuration helper
//  to set the number of address bits in the
//  serial commands
//-------------------------------------------------

void eeprom_serial_base_device::static_set_address_bits(device_t &device, int addrbits)
{
	downcast<eeprom_serial_base_device &>(device).m_command_address_bits = addrbits;
}


//-------------------------------------------------
//  static_enable_streaming - configuration helper
//  to enable streaming data
//-------------------------------------------------

void eeprom_serial_base_device::static_enable_streaming(device_t &device)
{
	downcast<eeprom_serial_base_device &>(device).m_streaming_enabled = true;
}


//-----------------------------------------------------------------
//  static_enable_output_on_falling_clock - configuration helper
//  to enable updating the output on the falling edge of the clock
//-----------------------------------------------------------------

void eeprom_serial_base_device::static_enable_output_on_falling_clock(device_t &device)
{
	downcast<eeprom_serial_base_device &>(device).m_output_on_falling_clock_enabled = true;
}


//-------------------------------------------------
//  device_start - device-specific startup
//-------------------------------------------------

void eeprom_serial_base_device::device_start()
{
	// if no command address bits set, just inherit from the address bits
	if (m_command_address_bits == 0)
		m_command_address_bits = m_address_bits;

	// start the base class
	eeprom_base_device::device_start();

	// save the current state
	save_item(NAME(m_state));
	save_item(NAME(m_cs_state));
	save_item(NAME(m_oe_state));
	save_item(NAME(m_clk_state));
	save_item(NAME(m_di_state));
	save_item(NAME(m_locked));
	save_item(NAME(m_bits_accum));
	save_item(NAME(m_command_address_accum));
	save_item(NAME(m_command));
	save_item(NAME(m_address));
	save_item(NAME(m_shift_register));
}


//-------------------------------------------------
//  device_reset - device-specific reset
//-------------------------------------------------

void eeprom_serial_base_device::device_reset()
{
	// reset the base class
	eeprom_base_device::device_reset();

	// reset the state
	set_state(STATE_IN_RESET);
	m_locked = true;
	m_bits_accum = 0;
	m_command_address_accum = 0;
	m_command = COMMAND_INVALID;
	m_address = 0;
	m_shift_register = 0;
}



//**************************************************************************
//  READ/WRITE HANDLERS
//**************************************************************************

//-------------------------------------------------
//  base_cs_write - set the state of the chip
//  select (CS) line
//-------------------------------------------------

void eeprom_serial_base_device::base_cs_write(int state)
{
	// ignore if the state is not changing
	state &= 1;
	if (state == m_cs_state)
		return;

	// set the new state
	LOG4(("  cs_write(%d)\n", state));
	m_cs_state = state;

	// remember the rising edge time so we don't process CLK signals at the same time
	if (state == ASSERT_LINE)
		m_last_cs_rising_edge_time = machine().time();
	handle_event((m_cs_state == ASSERT_LINE) ? EVENT_CS_RISING_EDGE : EVENT_CS_FALLING_EDGE);
}


//-------------------------------------------------
//  base_clk_write - set the state of the clock
//  (CLK) line
//-------------------------------------------------

void eeprom_serial_base_device::base_clk_write(int state)
{
	// ignore if the state is not changing
	state &= 1;
	if (state == m_clk_state)
		return;

	// set the new state
	LOG4(("  clk_write(%d)\n", state));
	m_clk_state = state;
	handle_event((m_clk_state == ASSERT_LINE) ? EVENT_CLK_RISING_EDGE : EVENT_CLK_FALLING_EDGE);
}


//-------------------------------------------------
//  base_di_write - set the state of the data input
//  (DI) line
//-------------------------------------------------

void eeprom_serial_base_device::base_di_write(int state)
{
	if (state != 0 && state != 1)
		LOG0(("EEPROM: Unexpected data at input 0x%X treated as %d\n", state, state & 1));
	LOG3(("  di_write(%d)\n", state));
	m_di_state = state & 1;
}


//-------------------------------------------------
//  base_do_read - read the state of the data
//  output (DO) line
//-------------------------------------------------

int eeprom_serial_base_device::base_do_read()
{
	// in most states, the output is tristated, and generally connected to a pull up
	// to send back a 1 value; the only exception is if reading data and the current output
	// bit is a 0
	int result = (m_state == STATE_READING_DATA && ((m_shift_register & 0x80000000) == 0)) ? CLEAR_LINE : ASSERT_LINE;
	LOG3(("  do_read(%d)\n", result));
	return result;
}


//-------------------------------------------------
//  base_ready_read - read the state of the
//  READY/BUSY line
//-------------------------------------------------

int eeprom_serial_base_device::base_ready_read()
{
	// ready by default, except during long operations
	int result = ready() ? ASSERT_LINE : CLEAR_LINE;
	LOG3(("  ready_read(%d)\n", result));
	return result;
}



//**************************************************************************
//  INTERNAL HELPERS
//**************************************************************************

//-------------------------------------------------
//  set_state - update the state to a new one
//-------------------------------------------------

void eeprom_serial_base_device::set_state(eeprom_state newstate)
{
#if (VERBOSE_PRINTF > 0 || VERBOSE_LOGERROR > 0)
	// for debugging purposes
	static const struct { eeprom_state state; const char *string; } s_state_names[] =
	{
		{ STATE_IN_RESET, "IN_RESET" },
		{ STATE_WAIT_FOR_START_BIT, "WAIT_FOR_START_BIT" },
		{ STATE_WAIT_FOR_COMMAND, "WAIT_FOR_COMMAND" },
		{ STATE_READING_DATA, "READING_DATA" },
		{ STATE_WAIT_FOR_DATA, "WAIT_FOR_DATA" },
		{ STATE_WAIT_FOR_COMPLETION, "WAIT_FOR_COMPLETION" },
	};
	const char *newstate_string = "UNKNOWN";
	for (int index = 0; index < ARRAY_LENGTH(s_state_names); index++)
		if (s_state_names[index].state == newstate)
			newstate_string = s_state_names[index].string;
	LOG2(("New state: %s\n", newstate_string));
#endif

	// switch to the new state
	m_state = newstate;
}


//-------------------------------------------------
//  handle_event - handle an event via the state
//  machine
//-------------------------------------------------

void eeprom_serial_base_device::handle_event(eeprom_event event)
{
#if (VERBOSE_PRINTF > 0 || VERBOSE_LOGERROR > 0)
	// for debugging purposes
	if ((event & EVENT_CS_RISING_EDGE) != 0) LOG2(("Event: CS rising\n"));
	if ((event & EVENT_CS_FALLING_EDGE) != 0) LOG2(("Event: CS falling\n"));
	if ((event & EVENT_CLK_RISING_EDGE) != 0)
	{
		if (m_state == STATE_WAIT_FOR_COMMAND || m_state == STATE_WAIT_FOR_DATA)
			LOG2(("Event: CLK rising (%d, DI=%d)\n", m_bits_accum + 1, m_di_state));
		else if (m_state == STATE_READING_DATA)
			LOG2(("Event: CLK rising (%d, DO=%d)\n", m_bits_accum + 1, (m_shift_register >> 30) & 1));
		else if (m_state == STATE_WAIT_FOR_START_BIT)
			LOG2(("Event: CLK rising (%d)\n", m_di_state));
		else
			LOG2(("Event: CLK rising\n"));
	}
	if ((event & EVENT_CLK_FALLING_EDGE) != 0) LOG4(("Event: CLK falling\n"));
#endif

	// switch off the current state
	switch (m_state)
	{
		// CS is not asserted; wait for a rising CS to move us forward, ignoring all clocks
		case STATE_IN_RESET:
			if (event == EVENT_CS_RISING_EDGE)
				set_state(STATE_WAIT_FOR_START_BIT);
			break;

		// CS is asserted; wait for rising clock with a 1 start bit; falling CS will reset us
		// note that because each bit is written independently, it is possible for us to receive
		// a false rising CLK edge at the exact same time as a rising CS edge; it appears we
		// should ignore these edges (makes sense really)
		case STATE_WAIT_FOR_START_BIT:
			if (event == EVENT_CLK_RISING_EDGE && m_di_state == ASSERT_LINE && ready() && machine().time() > m_last_cs_rising_edge_time)
			{
				m_command_address_accum = m_bits_accum = 0;
				set_state(STATE_WAIT_FOR_COMMAND);
			}
			else if (event == EVENT_CS_FALLING_EDGE)
				set_state(STATE_IN_RESET);
			break;

		// CS is asserted; wait for a command to come through; falling CS will reset us
		case STATE_WAIT_FOR_COMMAND:
			if (event == EVENT_CLK_RISING_EDGE)
			{
				// if we have enough bits for a command + address, check it out
				m_command_address_accum = (m_command_address_accum << 1) | m_di_state;
				if (++m_bits_accum == 2 + m_command_address_bits)
					execute_command();
			}
			else if (event == EVENT_CS_FALLING_EDGE)
				set_state(STATE_IN_RESET);
			break;

		// CS is asserted; reading data, clock the shift register; falling CS will reset us
		case STATE_READING_DATA:
			if (event == (m_output_on_falling_clock_enabled ? EVENT_CLK_FALLING_EDGE : EVENT_CLK_RISING_EDGE))
			{
				int bit_index = m_bits_accum++;

				// wrapping the address on multi-read is required by pacslot(cave.c)
				if (bit_index % m_data_bits == 0 && (bit_index == 0 || m_streaming_enabled))
					m_shift_register = read((m_address + m_bits_accum / m_data_bits) & ((1 << m_address_bits) - 1)) << (32 - m_data_bits);
				else
					m_shift_register = (m_shift_register << 1) | 1;
			}
			else if (event == EVENT_CS_FALLING_EDGE)
			{
				set_state(STATE_IN_RESET);
				if (m_streaming_enabled)
					LOG1(("  (%d cells read)\n", m_bits_accum / m_data_bits));
				if (!m_streaming_enabled && m_bits_accum > m_data_bits + 1)
					LOG0(("EEPROM: Overclocked read by %d bits\n", m_bits_accum - m_data_bits));
				else if (m_streaming_enabled && m_bits_accum > m_data_bits + 1 && m_bits_accum % m_data_bits > 2)
					LOG0(("EEPROM: Overclocked read by %d bits\n", m_bits_accum % m_data_bits));
				else if (m_bits_accum < m_data_bits)
					LOG0(("EEPROM: CS deasserted in READING_DATA after %d bits\n", m_bits_accum));
			}
			break;

		// CS is asserted; waiting for data; clock data through until we accumulate enough; falling CS will reset us
		case STATE_WAIT_FOR_DATA:
			if (event == EVENT_CLK_RISING_EDGE)
			{
				m_shift_register = (m_shift_register << 1) | m_di_state;
				if (++m_bits_accum == m_data_bits)
					execute_write_command();
			}
			else if (event == EVENT_CS_FALLING_EDGE)
			{
				set_state(STATE_IN_RESET);
				LOG0(("EEPROM: CS deasserted in STATE_WAIT_FOR_DATA after %d bits\n", m_bits_accum));
			}
			break;

		// CS is asserted; waiting for completion; watch for CS falling
		case STATE_WAIT_FOR_COMPLETION:
			if (event == EVENT_CS_FALLING_EDGE)
				set_state(STATE_IN_RESET);
			break;
	}
}


//-------------------------------------------------
//  execute_command - execute a command once we
//  have enough bits for one
//-------------------------------------------------

void eeprom_serial_base_device::execute_command()
{
	// parse into a generic command and reset the accumulator count
	parse_command_and_address();
	m_bits_accum = 0;

#if (VERBOSE_PRINTF > 0 || VERBOSE_LOGERROR > 0)
	// for debugging purposes
	static const struct { eeprom_command command; const char *string; } s_command_names[] =
	{
		{ COMMAND_INVALID, "Execute command: INVALID\n" },
		{ COMMAND_READ, "Execute command:READ 0x%X\n" },
		{ COMMAND_WRITE, "Execute command:WRITE 0x%X\n" },
		{ COMMAND_ERASE, "Execute command:ERASE 0x%X\n" },
		{ COMMAND_LOCK, "Execute command:LOCK\n" },
		{ COMMAND_UNLOCK, "Execute command:UNLOCK\n" },
		{ COMMAND_WRITEALL, "Execute command:WRITEALL\n" },
		{ COMMAND_ERASEALL, "Execute command:ERASEALL\n" },
	};
	const char *command_string = s_command_names[0].string;
	for (int index = 0; index < ARRAY_LENGTH(s_command_names); index++)
		if (s_command_names[index].command == m_command)
			command_string = s_command_names[index].string;
	LOG1((command_string, m_address));
#endif

	// each command advances differently
	switch (m_command)
	{
		// advance to the READING_DATA state; data is fetched after first CLK
		// reset the shift register to 0 to simulate the dummy 0 bit that happens prior
		// to the first clock
		case COMMAND_READ:
			m_shift_register = 0;
			set_state(STATE_READING_DATA);
			break;

		// reset the shift register and wait for enough data to be clocked through
		case COMMAND_WRITE:
		case COMMAND_WRITEALL:
			m_shift_register = 0;
			set_state(STATE_WAIT_FOR_DATA);
			break;

		// erase the parsed address (unless locked) and wait for it to complete
		case COMMAND_ERASE:
			if (m_locked)
			{
				LOG0(("EEPROM: Attempt to erase while locked\n"));
				set_state(STATE_IN_RESET);
				break;
			}
			erase(m_address);
			set_state(STATE_WAIT_FOR_COMPLETION);
			break;

		// lock the chip; return to IN_RESET state
		case COMMAND_LOCK:
			m_locked = true;
			set_state(STATE_IN_RESET);
			break;

		// unlock the chip; return to IN_RESET state
		case COMMAND_UNLOCK:
			m_locked = false;
			set_state(STATE_IN_RESET);
			break;

		// erase the entire chip (unless locked) and wait for it to complete
		case COMMAND_ERASEALL:
			if (m_locked)
			{
				LOG0(("EEPROM: Attempt to erase all while locked\n"));
				set_state(STATE_IN_RESET);
				break;
			}
			erase_all();
			set_state(STATE_WAIT_FOR_COMPLETION);
			break;

		default:
			throw emu_fatalerror("execute_command called with invalid command %d\n", m_command);
	}
}


//-------------------------------------------------
//  execute_write_command - execute a write
//  command after receiving the data bits
//-------------------------------------------------

void eeprom_serial_base_device::execute_write_command()
{
#if (VERBOSE_PRINTF > 0 || VERBOSE_LOGERROR > 0)
	// for debugging purposes
	static const struct { eeprom_command command; const char *string; } s_command_names[] =
	{
		{ COMMAND_WRITE, "Execute write command: WRITE 0x%X = 0x%X\n" },
		{ COMMAND_WRITEALL, "Execute write command: WRITEALL (%X) = 0x%X\n" },
	};
	const char *command_string = "UNKNOWN";
	for (int index = 0; index < ARRAY_LENGTH(s_command_names); index++)
		if (s_command_names[index].command == m_command)
			command_string = s_command_names[index].string;
	LOG1((command_string, m_address, m_shift_register));
#endif

	// each command advances differently
	switch (m_command)
	{
		// reset the shift register and wait for enough data to be clocked through
		case COMMAND_WRITE:
			if (m_locked)
			{
				LOG0(("EEPROM: Attempt to write to address 0x%X while locked\n", m_address));
				set_state(STATE_IN_RESET);
				break;
			}
			write(m_address, m_shift_register);
			set_state(STATE_WAIT_FOR_COMPLETION);
			break;

		// write the entire EEPROM with the same data; ERASEALL is required before so we
		// AND against the already-present data
		case COMMAND_WRITEALL:
			if (m_locked)
			{
				LOG0(("EEPROM: Attempt to write all while locked\n"));
				set_state(STATE_IN_RESET);
				break;
			}
			write_all(m_shift_register);
			set_state(STATE_WAIT_FOR_COMPLETION);
			break;

		default:
			throw emu_fatalerror("execute_write_command called with invalid command %d\n", m_command);
	}
}



//**************************************************************************
//  STANDARD INTERFACE IMPLEMENTATION
//**************************************************************************

//-------------------------------------------------
//  eeprom_serial_93cxx_device - constructor
//-------------------------------------------------

eeprom_serial_93cxx_device::eeprom_serial_93cxx_device(const machine_config &mconfig, device_type devtype, const char *name, const char *tag, device_t *owner, const char *shortname, const char *file)
	: eeprom_serial_base_device(mconfig, devtype, name, tag, owner, shortname, file)
{
}


//-------------------------------------------------
//  parse_command_and_address - extract the
//  command and address from a bitstream
//-------------------------------------------------

void eeprom_serial_93cxx_device::parse_command_and_address()
{
	// set the defaults
	m_command = COMMAND_INVALID;
	m_address = m_command_address_accum & ((1 << m_command_address_bits) - 1);

	// extract the command portion and handle it
	switch (m_command_address_accum >> m_command_address_bits)
	{
		// opcode 0 needs two more bits to decode the operation
		case 0:
			switch (m_address >> (m_command_address_bits - 2))
			{
				case 0: m_command = COMMAND_LOCK;       break;
				case 1: m_command = COMMAND_WRITEALL;   break;
				case 2: m_command = COMMAND_ERASEALL;   break;
				case 3: m_command = COMMAND_UNLOCK;     break;
			}
			m_address = 0;
			break;
		case 1: m_command = COMMAND_WRITE;  break;
		case 2: m_command = COMMAND_READ;   break;
		case 3: m_command = COMMAND_ERASE;  break;
	}

	// warn about out-of-range addresses
	if (m_address >= (1 << m_address_bits))
		LOG0(("EEPROM: out-of-range address 0x%X provided (maximum should be 0x%X)\n", m_address, (1 << m_address_bits) - 1));
}


//-------------------------------------------------
//  do_read - read handlers
//-------------------------------------------------

READ_LINE_MEMBER(eeprom_serial_93cxx_device::do_read) { return base_do_read() & ((m_state == STATE_WAIT_FOR_START_BIT) ? base_ready_read() : 1); }


//-------------------------------------------------
//  cs_write/clk_write/di_write - write handlers
//-------------------------------------------------

WRITE_LINE_MEMBER(eeprom_serial_93cxx_device::cs_write) { base_cs_write(state); }
WRITE_LINE_MEMBER(eeprom_serial_93cxx_device::clk_write) { base_clk_write(state); }
WRITE_LINE_MEMBER(eeprom_serial_93cxx_device::di_write) { base_di_write(state); }



//**************************************************************************
//  ER5911 DEVICE IMPLEMENTATION
//**************************************************************************

//-------------------------------------------------
//  eeprom_serial_er5911_device - constructor
//-------------------------------------------------

eeprom_serial_er5911_device::eeprom_serial_er5911_device(const machine_config &mconfig, device_type devtype, const char *name, const char *tag, device_t *owner, const char *shortname, const char *file)
	: eeprom_serial_base_device(mconfig, devtype, name, tag, owner, shortname, file)
{
}


//-------------------------------------------------
//  parse_command_and_address - extract the
//  command and address from a bitstream
//-------------------------------------------------

void eeprom_serial_er5911_device::parse_command_and_address()
{
	// set the defaults
	m_command = COMMAND_INVALID;
	m_address = m_command_address_accum & ((1 << m_command_address_bits) - 1);

	// extract the command portion and handle it
	switch (m_command_address_accum >> m_command_address_bits)
	{
		// opcode 0 needs two more bits to decode the operation
		case 0:
			switch (m_address >> (m_command_address_bits - 2))
			{
				case 0: m_command = COMMAND_LOCK;       break;
				case 1: m_command = COMMAND_INVALID;    break;  // not on ER5911
				case 2: m_command = COMMAND_ERASEALL;   break;
				case 3: m_command = COMMAND_UNLOCK;     break;
			}
			m_address = 0;
			break;
		case 1: m_command = COMMAND_WRITE;  break;
		case 2: m_command = COMMAND_READ;   break;
		case 3: m_command = COMMAND_WRITE;  break;  // WRITE instead of ERASE on ER5911
	}

	// warn about out-of-range addresses
	if (m_address >= (1 << m_address_bits))
		LOG0(("EEPROM: out-of-range address 0x%X provided (maximum should be 0x%X)\n", m_address, (1 << m_address_bits) - 1));
}


//-------------------------------------------------
//  do_read/ready_read - read handlers
//-------------------------------------------------

READ_LINE_MEMBER(eeprom_serial_er5911_device::do_read) { return base_do_read(); }
READ_LINE_MEMBER(eeprom_serial_er5911_device::ready_read) { return base_ready_read(); }


//-------------------------------------------------
//  cs_write/clk_write/di_write - write handlers
//-------------------------------------------------

WRITE_LINE_MEMBER(eeprom_serial_er5911_device::cs_write) { base_cs_write(state); }
WRITE_LINE_MEMBER(eeprom_serial_er5911_device::clk_write) { base_clk_write(state); }
WRITE_LINE_MEMBER(eeprom_serial_er5911_device::di_write) { base_di_write(state); }



//**************************************************************************
//  X24c44 DEVICE IMPLEMENTATION
//**************************************************************************

//-------------------------------------------------
//  eeprom_serial_x24c44_device - constructor
//-------------------------------------------------

eeprom_serial_x24c44_device::eeprom_serial_x24c44_device(const machine_config &mconfig, device_type devtype, const char *name, const char *tag, device_t *owner, const char *shortname, const char *file)
	: eeprom_serial_base_device(mconfig, devtype, name, tag, owner, shortname, file)
{
}



//-------------------------------------------------
//  device_start - device-specific startup
//-------------------------------------------------

void eeprom_serial_x24c44_device::device_start()
{
	// if no command address bits set, just inherit from the address bits
	if (m_command_address_bits == 0)
		m_command_address_bits = m_address_bits;

	// start the base class
	eeprom_base_device::device_start();

	int16_t i=0;
	m_ram_length=0xf;

	for (i=0;i<16;i++){
		m_ram_data[i]=read(i);  //autoreload at power up
	}
	m_reading=0;
	m_store_latch=0;
	// save the current state
	save_item(NAME(m_state));
	save_item(NAME(m_cs_state));
	save_item(NAME(m_oe_state));
	save_item(NAME(m_clk_state));
	save_item(NAME(m_di_state));
	save_item(NAME(m_locked));
	save_item(NAME(m_bits_accum));
	save_item(NAME(m_command_address_accum));
	save_item(NAME(m_command));
	save_item(NAME(m_address));
	save_item(NAME(m_shift_register));
	save_item(NAME(m_ram_data));
	save_item(NAME(m_reading));
	save_item(NAME(m_store_latch));
}

void eeprom_serial_x24c44_device::copy_eeprom_to_ram(){
	uint16_t i=0;
	LOG1(("EEPROM TO RAM COPY!!!\n"));
	for (i=0;i<16;i++){
		m_ram_data[i]=read(i);
	}
	m_store_latch=1;
}



void eeprom_serial_x24c44_device::copy_ram_to_eeprom(){
	uint16_t i=0;
	if (m_store_latch){
		LOG1(("RAM TO EEPROM COPY\n"));
		for (i=0;i<16;i++){
			write(i, m_ram_data[i]);
		}
		m_store_latch=0;
	}else{
		LOG0(("Store command with store latch not set!\n"));
	}

}

//-------------------------------------------------
//  execute_command - execute a command once we
//  have enough bits for one
//-------------------------------------------------

void eeprom_serial_x24c44_device::execute_command()
{
	// parse into a generic command and reset the accumulator count
	parse_command_and_address();
	m_bits_accum = 0;

#if (VERBOSE_PRINTF > 0 || VERBOSE_LOGERROR > 0)
	// for debugging purposes
	static const struct { eeprom_command command; const char *string; } s_command_names[] =
	{
		{ COMMAND_INVALID, "Execute command: INVALID\n" },
		{ COMMAND_READ, "Execute command:READ 0x%X\n" },
		{ COMMAND_WRITE, "Execute command:WRITE 0x%X\n" },
		{ COMMAND_ERASE, "Execute command:ERASE 0x%X\n" },
		{ COMMAND_LOCK, "Execute command:LOCK\n" },
		{ COMMAND_UNLOCK, "Execute command:UNLOCK\n" },
		{ COMMAND_WRITEALL, "Execute command:WRITEALL\n" },
		{ COMMAND_ERASEALL, "Execute command:ERASEALL\n" },
		{ COMMAND_COPY_EEPROM_TO_RAM, "Execute command:COPY_EEPROM_TO_RAM\n" },
		{ COMMAND_COPY_RAM_TO_EEPROM, "Execute command:COPY_RAM_TO_EEPROM\n" },
	};
	const char *command_string = s_command_names[0].string;
	for (int index = 0; index < ARRAY_LENGTH(s_command_names); index++)
		if (s_command_names[index].command == m_command)
			command_string = s_command_names[index].string;
	LOG1((command_string, m_address));
#endif

	// each command advances differently
	switch (m_command)
	{
		// advance to the READING_DATA state; data is fetched after first CLK
		// reset the shift register to 0 to simulate the dummy 0 bit that happens prior
		// to the first clock

		// reset the shift register and wait for enough data to be clocked through
		case COMMAND_WRITE:
			m_shift_register = 0;
			set_state(STATE_WAIT_FOR_DATA);
			break;

		// lock the chip; return to IN_RESET state
		case COMMAND_LOCK:
			m_locked = true;
			m_store_latch=0;
			set_state(STATE_IN_RESET);
			break;

		// unlock the chip; return to IN_RESET state
		case COMMAND_UNLOCK:
			m_locked = false;
			m_store_latch=1;
			set_state(STATE_IN_RESET);
			break;

		// copy eeprom to ram
		case COMMAND_COPY_EEPROM_TO_RAM:
			copy_eeprom_to_ram();
			set_state(STATE_IN_RESET);
			break;

		// copy ram into eeprom
		case COMMAND_COPY_RAM_TO_EEPROM:
			copy_ram_to_eeprom();
			set_state(STATE_IN_RESET);
			break;

		default:
			throw emu_fatalerror("execute_command called with invalid command %d\n", m_command);
	}
}


void eeprom_serial_x24c44_device::handle_event(eeprom_event event)
{
//uint32_t tmp=0;
#if (VERBOSE_PRINTF > 0 || VERBOSE_LOGERROR > 0)
	// for debugging purposes
	if ((event & EVENT_CS_RISING_EDGE) != 0) LOG2(("Event: CS rising\n"));
	if ((event & EVENT_CS_FALLING_EDGE) != 0) LOG2(("Event: CS falling\n"));
	if ((event & EVENT_CLK_RISING_EDGE) != 0)
	{
		if (m_state == STATE_WAIT_FOR_COMMAND || m_state == STATE_WAIT_FOR_DATA)
			LOG2(("Event: CLK rising (%d, DI=%d)\n", m_bits_accum + 1, m_di_state));
		else if (m_state == STATE_READING_DATA)
			LOG2(("Event: CLK rising (%d, DO=%d)\n", m_bits_accum + 1, (m_shift_register >> 30) & 1));
		else if (m_state == STATE_WAIT_FOR_START_BIT)
			LOG2(("Event: CLK rising (%d)\n", m_di_state));
		else
			LOG2(("Event: CLK rising\n"));
	}
	if ((event & EVENT_CLK_FALLING_EDGE) != 0) LOG4(("Event: CLK falling\n"));
#endif

	// switch off the current state
	switch (m_state)
	{
		// CS is not asserted; wait for a rising CS to move us forward, ignoring all clocks
		case STATE_IN_RESET:
			if (event == EVENT_CS_RISING_EDGE)
				set_state(STATE_WAIT_FOR_START_BIT);
			break;

		// CS is asserted; wait for rising clock with a 1 start bit; falling CS will reset us
		// note that because each bit is written independently, it is possible for us to receive
		// a false rising CLK edge at the exact same time as a rising CS edge; it appears we
		// should ignore these edges (makes sense really)
		case STATE_WAIT_FOR_START_BIT:
			if (event == EVENT_CLK_RISING_EDGE && m_di_state == ASSERT_LINE && ready() && machine().time() > m_last_cs_rising_edge_time)
			{
				m_command_address_accum = m_bits_accum = 0;
				set_state(STATE_WAIT_FOR_COMMAND);
			}
			else if (event == EVENT_CS_FALLING_EDGE)
				set_state(STATE_IN_RESET);
			break;

		// CS is asserted; wait for a command to come through; falling CS will reset us
		case STATE_WAIT_FOR_COMMAND:
			if (event == EVENT_CLK_RISING_EDGE)
			{
				// if we have enough bits for a command + address, check it out
				m_command_address_accum = (m_command_address_accum << 1) | m_di_state;

				m_bits_accum=m_bits_accum+1;

				if (m_bits_accum == 2 + m_command_address_bits){
					//read command is only 2 bits all other are 3 bits!!!

						parse_command_and_address_2_bit();

				}

				if (!m_reading){
				if (m_bits_accum == 3 + m_command_address_bits){
					execute_command();
				}
				}
			}
			else if (event == EVENT_CS_FALLING_EDGE)
				set_state(STATE_IN_RESET);
			break;

		// CS is asserted; reading data, clock the shift register; falling CS will reset us
		case STATE_READING_DATA:
			if (event == EVENT_CLK_RISING_EDGE)
			{
				int bit_index = m_bits_accum++;

				if (bit_index % m_data_bits == 0 && (bit_index == 0 || m_streaming_enabled)){
					m_shift_register=m_ram_data[m_address];

					//m_shift_register=BITSWAP16(m_shift_register,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15);
					//m_shift_register=BITSWAP16(m_shift_register,7,6,5,4,3,2,1,0,15,14,13,12,11,10,9,8);
					m_shift_register= BITSWAP16(m_shift_register,8,9,10,11,12,13,14,15,0,1,2,3,4,5,6,7);

					m_shift_register=m_shift_register<<16;

					LOG1(("read from RAM addr %02X data(from ram) %04X ,m_shift_register vale %04X \n",m_address,m_ram_data[m_address],m_shift_register));
					}
				else{
					m_shift_register = (m_shift_register << 1) | 1;

				}
			}
			else if (event == EVENT_CS_FALLING_EDGE)
			{
				set_state(STATE_IN_RESET);
				m_reading=0;
				if (m_streaming_enabled)
					LOG1(("  (%d cells read)\n", m_bits_accum / m_data_bits));
				if (!m_streaming_enabled && m_bits_accum > m_data_bits + 1)
					LOG1(("EEPROM: Overclocked read by %d bits\n", m_bits_accum - m_data_bits));
				else if (m_streaming_enabled && m_bits_accum > m_data_bits + 1 && m_bits_accum % m_data_bits > 2)
					LOG1(("EEPROM: Overclocked read by %d bits\n", m_bits_accum % m_data_bits));
				else if (m_bits_accum < m_data_bits)
					LOG1(("EEPROM: CS deasserted in READING_DATA after %d bits\n", m_bits_accum));
			}
			break;

		// CS is asserted; waiting for data; clock data through until we accumulate enough; falling CS will reset us
		case STATE_WAIT_FOR_DATA:
			if (event == EVENT_CLK_RISING_EDGE)
			{
				m_shift_register = (m_shift_register << 1) | m_di_state;
				if (++m_bits_accum == m_data_bits){
				//m_shift_register=BITSWAP16(m_shift_register, 0, 1, 2, 3, 4, 5,6,7, 8, 9,10,11,12,13,14,15);
				//m_shift_register=BITSWAP16(m_shift_register, 7, 6, 5, 4, 3, 2,1,0,15,14,13,12,11,10, 9, 8);
				m_shift_register=BITSWAP16(m_shift_register,8,9,10,11,12,13,14,15,0,1,2,3,4,5,6,7);
				m_ram_data[m_address]=m_shift_register;

				LOG1(("write to RAM addr=%02X data=%04X\n",m_address,m_shift_register));
				}
			}
			else if (event == EVENT_CS_FALLING_EDGE)
			{
				set_state(STATE_IN_RESET);
				LOG1(("EEPROM: CS deasserted in STATE_WAIT_FOR_DATA after %d bits\n", m_bits_accum));
			}
			break;


		// CS is asserted; waiting for completion; watch for CS falling
		case STATE_WAIT_FOR_COMPLETION:
			if (event == EVENT_CS_FALLING_EDGE)
				set_state(STATE_IN_RESET);
			break;
	}
}


//-------------------------------------------------
//  parse_command_and_address - extract the
//  command and address from a bitstream
//-------------------------------------------------

void eeprom_serial_x24c44_device::parse_command_and_address()
{
	//command is start_bit - 4bit_address - 3bit_command

	// set the defaults
	m_command = COMMAND_INVALID;

	m_address = (m_command_address_accum >> 3) & 0x0f;

	LOG1(("EEPROM: command= %04X, address %02X\n", m_command_address_accum& 0x07, m_address));

	switch (m_command_address_accum & 0x07)
	{
		case 0: //reset write enable latch
				LOG0(("Lock eeprom\n"));
				m_command = COMMAND_LOCK;   break;
		case 3: //write data into ram
				LOG0(("Write to ram\n"));
				m_command = COMMAND_WRITE;  break;
		case 4: //set write enable latch
				LOG0(("Unlock eeprom\n"));
				m_command = COMMAND_UNLOCK; break;
		case 1: //store ram data in eeprom
				LOG0(("copy ram to eeprom\n"));
				m_command = COMMAND_COPY_RAM_TO_EEPROM;   break;
		case 5: //reload eeprom data into ram
				LOG0(("copy eeprom to ram\n"));
				m_command = COMMAND_COPY_EEPROM_TO_RAM; break;
		case 2: //reserved (Sleep on x2444)
			m_command = COMMAND_INVALID;
				break;

	}

}

void eeprom_serial_x24c44_device::parse_command_and_address_2_bit()
{
	if ((m_command_address_accum & 0x03) == 0x03){
		m_command = COMMAND_READ;
		m_address = ((m_command_address_accum >> 2) & 0x0f);
		m_shift_register = 0;
		set_state(STATE_READING_DATA);
		LOG1(("parse command_and_address_2_bit found a read command\n"));
		m_reading=1;
		m_bits_accum=0;
	}

	// warn about out-of-range addresses
	if (m_address >= (1 << m_address_bits))
		LOG1(("EEPROM: out-of-range address 0x%X provided (maximum should be 0x%X)\n", m_address, (1 << m_address_bits) - 1));
}


//-------------------------------------------------
//  do_read/ready_read - read handlers
//-------------------------------------------------

READ_LINE_MEMBER(eeprom_serial_x24c44_device::do_read) { return base_do_read(); }


//-------------------------------------------------
//  cs_write/clk_write/di_write - write handlers
//-------------------------------------------------

WRITE_LINE_MEMBER(eeprom_serial_x24c44_device::cs_write) { base_cs_write(state); }
WRITE_LINE_MEMBER(eeprom_serial_x24c44_device::clk_write) { base_clk_write(state); }
WRITE_LINE_MEMBER(eeprom_serial_x24c44_device::di_write) { base_di_write(state); }


//**************************************************************************
//  DERIVED TYPES
//**************************************************************************

// macro for defining a new device class
#define DEFINE_SERIAL_EEPROM_DEVICE(_baseclass, _lowercase, _uppercase, _bits, _cells, _addrbits) \
eeprom_serial_##_lowercase##_##_bits##bit_device::eeprom_serial_##_lowercase##_##_bits##bit_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock) \
	: eeprom_serial_##_baseclass##_device(mconfig, EEPROM_SERIAL_##_uppercase##_##_bits##BIT, "Serial EEPROM " #_uppercase " (" #_cells "x" #_bits ")", tag, owner, #_lowercase "_" #_bits, __FILE__) \
{ \
	static_set_size(*this, _cells, _bits); \
	static_set_address_bits(*this, _addrbits); \
} \
const device_type EEPROM_SERIAL_##_uppercase##_##_bits##BIT = device_creator<eeprom_serial_##_lowercase##_##_bits##bit_device>;
// standard 93CX6 class of 16-bit EEPROMs
DEFINE_SERIAL_EEPROM_DEVICE(93cxx, 93c06, 93C06, 16, 16, 6)
DEFINE_SERIAL_EEPROM_DEVICE(93cxx, 93c46, 93C46, 16, 64, 6)
DEFINE_SERIAL_EEPROM_DEVICE(93cxx, 93c56, 93C56, 16, 128, 8)
DEFINE_SERIAL_EEPROM_DEVICE(93cxx, 93c57, 93C57, 16, 128, 7)
DEFINE_SERIAL_EEPROM_DEVICE(93cxx, 93c66, 93C66, 16, 256, 8)
DEFINE_SERIAL_EEPROM_DEVICE(93cxx, 93c76, 93C76, 16, 512, 10)
DEFINE_SERIAL_EEPROM_DEVICE(93cxx, 93c86, 93C86, 16, 1024, 10)

// Seiko S-29X90 class of 16-bit EEPROMs. They always use 13 address bits, despite needing only 6-8.
// The output is updated on the falling edge of the clock. Streaming is enabled
DEFINE_SERIAL_EEPROM_DEVICE(93cxx, s29190, S29190, 16, 64, 13)
DEFINE_SERIAL_EEPROM_DEVICE(93cxx, s29290, S29290, 16, 128, 13)
DEFINE_SERIAL_EEPROM_DEVICE(93cxx, s29390, S29390, 16, 256, 13)

// some manufacturers use pin 6 as an "ORG" pin which, when pulled low, configures memory for 8-bit accesses
DEFINE_SERIAL_EEPROM_DEVICE(93cxx, 93c46, 93C46, 8, 128, 7)
DEFINE_SERIAL_EEPROM_DEVICE(93cxx, 93c56, 93C56, 8, 256, 9)
DEFINE_SERIAL_EEPROM_DEVICE(93cxx, 93c57, 93C57, 8, 256, 8)
DEFINE_SERIAL_EEPROM_DEVICE(93cxx, 93c66, 93C66, 8, 512, 9)
DEFINE_SERIAL_EEPROM_DEVICE(93cxx, 93c76, 93C76, 8, 1024, 11)
DEFINE_SERIAL_EEPROM_DEVICE(93cxx, 93c86, 93C86, 8, 2048, 11)

// ER5911 has a separate ready pin, a reduced command set, and supports 8/16 bit out of the box
DEFINE_SERIAL_EEPROM_DEVICE(er5911, er5911, ER5911, 8, 128, 9)
DEFINE_SERIAL_EEPROM_DEVICE(er5911, er5911, ER5911, 16, 64, 8)
DEFINE_SERIAL_EEPROM_DEVICE(er5911, msm16911, MSM16911, 8, 128, 9)
DEFINE_SERIAL_EEPROM_DEVICE(er5911, msm16911, MSM16911, 16, 64, 8)

// X24c44 8 bit 32byte ram/eeprom combo
DEFINE_SERIAL_EEPROM_DEVICE(x24c44, x24c44, X24C44, 16, 16, 4)