| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
intended differences from previous behavior. For drivers,
the main change is that input_port_read() no longer exists.
Instead, the port must be fetched from the appropriate device,
and then read() is called.
For member functions, this is actually simpler/cleaner:
value = ioport("tag")->read()
For legacy functions which have a driver_data state, it goes:
value = state->ioport("tag")->read()
For other legacy functions, they need to fetch the root device:
value = machine.root_device().ioport("tag")->read()
The other big change for drivers is that IPT_VBLANK is gone.
Instead, it has been replaced by a device line callback on the
screen device. There's a new macro PORT_VBLANK("tag") which
automatically points things to the right spot.
Here's a set of imperfect search & replace strings to convert
the input_port_read calls and fix up IPT_VBLANK:
input_port_read( *\( *)(machine\(\)) *, *([^)]+ *\))
ioport\1\3->read\(\)
input_port_read( *\( *)(.*machine[()]*) *, *([^)]+ *\))
\2\.root_device\(\)\.ioport\1\3->read\(\)
(state = .*driver_data[^}]+)space->machine\(\)\.root_device\(\)\.
\1state->
(state = .*driver_data[^}]+)device->machine\(\)\.root_device\(\)\.
\1state->
input_port_read_safe( *\( *)(machine\(\)) *, *([^,]+), *([^)]+\))
ioport\1\3->read_safe\(\4\)
IPT_VBLANK( *\))
IPT_CUSTOM\1 PORT_VBLANK("screen")
|
|
|
|
|
|
| |
- enforced short names for slot card devices
- updated validation, romverify and listxml output accordingly
- slotoptions now also contain shortnames so it's possible to link
slot option and device
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
from 4 to 5. This means any diff CHDs will no longer work. If you
absolutely need to keep the data for any existing ones you have,
find both the diff CHD and the original CHD for the game in question
and upgrade using these commands:
rename diff\game.dif diff\game-old.dif
chdman copy -i diff\game-old.dif -ip roms\game.chd -o diff\game.dif -op roms\game.chd -c none
Specifics regarding this change:
Defined a new CHD version 5. New features/behaviors of this version:
- support for up to 4 codecs; each block can use 1 of the 4
- new LZMA codec, which tends to do better than zlib overall
- new FLAC codec, primarily used for CDs (but can be applied anywhere)
- upgraded AVHuff codec now uses FLAC for encoding audio
- new Huffman codec, used to catch more nearly-uncompressable blocks
- compressed CHDs now use a compressed map for significant savings
- CHDs now are aware of a "unit" size; each hunk holds 1 or more units
(in general units map to sectors for hard disks/CDs)
- diff'ing against a parent now diffs at the unit level, greatly
improving compression
Rewrote and modernized chd.c. CHD versions prior to 3 are unsupported,
and version 3/4 CHDs are only supported for reading. Creating a new
CHD now leaves the file open. Added methods to read and write at the
unit and byte level, removing the need to handle this manually. Added
metadata access methods that pass astrings and dynamic_buffers to
simplify the interfaces. A companion class chd_compressor now
implements full multithreaded compression, analyzing and compressing
multiple hunks independently in parallel. Split the codec
implementations out into a separate file chdcodec.*
Updated harddisk.c and cdrom.c to rely on the caching/byte-level read/
write capabilities of the chd_file class. cdrom.c (and chdman) now also
pad CDs to 4-frame boundaries instead of hunk boundaries, ensuring that
the same SHA1 hashes are produced regardless of the hunk size.
Rewrote chdman.exe entirely, switching from positional parameters to
proper options. Use "chdman help" to get a list of commands, and
"chdman help <command>" to get help for any particular command. Many
redundant commands were removed now that additional flexibility is
available. Some basic mappings:
Old: chdman -createblankhd <out.chd> <cyls> <heads> <secs>
New: chdman createhd -o <out.chd> -chs <cyls>,<heads>,<secs>
Old: chdman -createuncomphd <in.raw> <out.chd> ....
New: chdman createhd -i <in.raw> -o <out.chd> -c none ....
Old: chdman -verifyfix <in.chd>
New: chdman verify -i <in.chd> -f
Old: chdman -merge <parent.chd> <diff.chd> <out.chd>
New: chdman copy -i <diff.chd> -ip <parent.chd> -o <out.chd>
Old: chdman -diff <parent.chd> <compare.chd> <diff.chd>
New: chdman copy -i <compare.chd> -o <diff.chd> -op <parent.chd>
Old: chdman -update <in.chd> <out.chd>
New: chdman copy -i <in.chd> -o <out.chd>
Added new core file coretmpl.h to hold core template classes. For now
just one class, dynamic_array<> is defined, which acts like an array
of a given object but which can be appended to and/or resized. Also
defines dynamic_buffer as dynamic_array<UINT8> for holding an
arbitrary buffer of bytes. Expect to see these used a lot.
Added new core helper hashing.c/.h which defines classes for each of
the common hashing methods and creator classes to wrap the
computation of these hashes. A future work item is to reimplement
the core emulator hashing code using these.
Split bit buffer helpers out into C++ classes and into their own
public header in bitstream.h.
Updated huffman.c/.h to C++, and changed the interface to make it
more flexible to use in nonstandard ways. Also added huffman compression
of the static tree for slightly better compression rates.
Created flac.c/.h as simplified C++ wrappers around the FLAC interface.
A future work item is to convert the samples sound device to a modern
device and leverage this for reading FLAC files.
Renamed avcomp.* to avhuff.*, updated to C++, and added support for
FLAC as the audio encoding mechanism. The old huffman audio is still
supported for decode only.
Added a variant of core_fload that loads to a dynamic_buffer.
Tweaked winwork.c a bit to not limit the maximum number of processors
unless the work queue was created with the WORK_QUEUE_FLAG_HIGH_FREQ
option. Further adjustments here are likely going to be necessary.
Fixed bug in aviio.c which caused errors when reading some AVI files.
|
|
|
|
| |
use emu.h (nw)
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
almost certainly some regressions lurking. Let me know if
something seems busted.
Bitmaps are now strongly typed based on format. bitmap_t still
exists as an abstract base class, but it is almost never used.
Instead, format-specific bitmap classes are provided:
bitmap_ind8 == 8bpp indexed
bitmap_ind16 == 16bpp indexed
bitmap_ind32 == 32bpp indexed
bitmap_ind64 == 64bpp indexed
bitmap_rgb32 == 32bpp RGB
bitmap_argb32 == 32bpp ARGB
bitmap_yuy16 == 16bpp YUY
For each format, a generic pix() method is provided which
references pixels of the correct type. The old pix8/pix16/pix32/
pix64 methods still exist in the short term, but the only one
available is the one that matches the bitmap's pixel size. Note
also that the old RGB15 format bitmaps are no longer supported
at all.
Converted model1, megadriv, and stv drivers away from the RGB15
format bitmaps.
New auto_bitmap_<type>_alloc() macros are provided for allocating
the appropriate type of bitmap.
Screen update functions now must specify the correct bitmap type
as their input parameters. For static update functions the
SCREEN_UPDATE macro is now replaced with SCREEN_UPDATE_RGB32 and
SCREEN_UPDATE_IND16 macros. All existing drivers have been
updated to use the correct macros.
Screen update functions are now required for all screens; there
is no longer any default behavior of copying a "default" bitmap
to the screen (in fact the default bitmap has been deprecated).
Use one of the following to specify your screen_update callback:
MCFG_SCREEN_UPDATE_STATIC(name) - static functions
MCFG_SCREEN_UPDATE_DRIVER(class, func) - driver members
MCFG_SCREEN_UPDATE_DEVICE(tag, class, func) - device members
Because the target bitmap format can now be deduced from the
screen update function itself, the MCFG_SCREEN_FORMAT macro is
no longer necessary, and has been removed. If you specify a
screen update callback that takes a bitmap_ind16, then the screen
will be configured to use a 16bpp indexed bitmap, and if you
specify a callback that takes a bitmap_rgb32, then a 32bpp RGB
bitmap will be provided.
Extended the bitmap classes to support wrapping a subregion of
another bitmap, and cleaner allocation/resetting. The preferred
use of bitmaps now is to define them directly in drivers/devices
and use allocate() or wrap() to set them up, rather than
allocating them via auto_bitmap_*_alloc().
Several common devices needed overhauls or changes as a result
of the above changes:
* Reorganized the laserdisc base driver and all the laserdisc
drivers as modern C++ devices, cleaning the code up
considerably. Merged ldsound device into the laserdsc
device since modern devices are flexible enough to handle
it.
* Reorganized the v9938 device as a modern C++ device. Removed
v9938mod.c in favor of template functions in v9938.c directly.
* Added independent ind16 and rgb32 callbacks for TMS340x0 devices.
* All video devices are now hard-coded to either ind16 or rgb32
bitmaps. The most notable is the mc6845 which is rgb32, and
required changes to a number of consumers.
* Added screen_update methods to most video devices so they can be
directly called via MCFG_SCREEN_UPDATE_DEVICE instead of creating
tons of stub functions.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
existing modern devices and the legacy wrappers to work in this
environment. This in general greatly simplifies writing a modern
device. [Aaron Giles]
General notes:
* some more cleanup probably needs to happen behind this change,
but I needed to get it in before the next device modernization
or import from MESS :)
* new template function device_creator which automatically defines
the static function that creates the device; use this instead of
creating a static_alloc_device_config function
* added device_stop() method which is called at around the time
the previous device_t's destructor was called; if you auto_free
anything, do it here because the machine is gone when the
destructor is called
* changed the static_set_* calls to pass a device_t & instead of
a device_config *
* for many devices, the static config structure member names over-
lapped the device's names for devcb_* functions; in these cases
the members in the interface were renamed to have a _cb suffix
* changed the driver_enumerator to only cache 100 machine_configs
because caching them all took a ton of memory; fortunately this
implementation detail is completely hidden behind the
driver_enumerator interface
* got rid of the macros for creating derived classes; doing it
manually is now clean enough that it isn't worth hiding the
details in a macro
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Remove redundant machine items from address_space and device_t.
Neither machine nor m_machine are directly accessible anymore.
Instead a new getter machine() is available which returns a
machine reference. So:
space->machine->xxx ==> space->machine().xxx
device->machine->yyy ==> device->machine().yyy
Globally changed all running_machine pointers to running_machine
references. Any function/method that takes a running_machine takes
it as a required parameter (1 or 2 exceptions). Being consistent
here gets rid of a lot of odd &machine or *machine, but it does
mean a very large bulk change across the project.
Structs which have a running_machine * now have that variable
renamed to m_machine, and now have a shiny new machine() method
that works like the space and device methods above. Since most of
these are things that should eventually be devices anyway, consider
this a step in that direction.
98% of the update was done with regex searches. The changes are
architected such that the compiler will catch the remaining
errors:
// find things that use an embedded machine directly and replace
// with a machine() getter call
S: ->machine->
R: ->machine\(\)\.
// do the same if via a reference
S: \.machine->
R: \.machine\(\)\.
// convert function parameters to running_machine &
S: running_machine \*machine([^;])
R: running_machine \&machine\1
// replace machine-> with machine.
S: machine->
R: machine\.
// replace &machine() with machine()
S: \&([()->a-z0-9_]+machine\(\))
R: \1
// sanity check: look for this used as a cast
(running_machine &)
// and change to this:
*(running_machine *)
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
functionality in favor of alternate mechanisms. Errors are
now reported via an astring rather than via callbacks. Every
option must now specify a type (command, integer, float, string,
boolean, etc). Command behavior has changed so that only one
command is permitted. [Aaron Giles]
Changed fileio system to accept just a raw searchpath instead of
an options/option name combination. [Aaron Giles]
Created emu_options class dervied from core_options which wraps
core emulator options. Added mechanisms to cleanly change the
system name and add/remove system-specific options, versus the
old way using callbacks. Also added read accessors for all the
options, to ensure consistency in how parameters are handled.
Changed most core systems to access emu_options instead of
core_options. Also changed machine->options() to return emu_options.
[Aaron Giles]
Created cli_options class derived from emu_options which adds the
command-line specific options. Updated clifront code to leverage
the new class and the new core behaviors. cli_execute() now accepts
a cli_options object when called. [Aaron Giles]
Updated both SDL and Windows to have their own options classes,
derived from cli_options, which add the OSD-specific options on
top of everything else. Added accessors for all the options so
that queries are strongly typed and simplified. [Aaron Giles]
Out of whatsnew: I've surely screwed up some stuff, though I have
smoke tested a bunch of things. Let me know if you hit anything odd.
Also I know this change will impact the WINUI stuff, please let me
know if there are issues. All the functionality necessary should
still be present. If it's not obvious, please talk to me before
adding stuff to the core_options class.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
to pass a core_options object to the constructor, along with
a search path. This required pushing either a running_machine
or a core_options through some code that wasn't previously
ready to handle it. emu_files can be reused over multiple
open/close sessions, and a lot of core code cleaned up
nicely as things were converted to them.
Also created a file_enumerator class for iterating over files
in a searchpath. This replaces the old mame_openpath functions.
Changed machine->options() to return a reference.
Removed public nvram_open() and fixed jchan/kaneko16 to
stop directly saving NVRAM.
Removed most of the mame_options() calls; this will soon go
away entirely, so don't add any more.
Added core_options to device_validity_check() so they can be
used to validate things.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
timer_adjust_oneshot(t,...) => t->adjust(...)
timer_adjust_periodic(t,...) => t->adjust(...)
timer_reset(t,...) => t->reset(...)
timer_enable(t,...) => t->enable(...)
timer_enabled(t) => t->enabled()
timer_get_param(t) => t->param()
timer_get_ptr(t) => t->ptr()
timer_set_param(t,...) => t->set_param(...)
timer_set_ptr(t) => t->set_ptr(...)
timer_timeelapsed(t) => t->elapsed()
timer_timeleft(t) => t->remaining()
timer_starttime(t) => t->start()
timer_firetime(t) => t->expire()
Also remove some stray legacy cpuexec* macros that were
lurking in schedule.h):
cpuexec_describe_context(m) => m->describe_context()
cpuexec_boost_interleave(m,...) => m->scheduler().boot_interleave(...)
cpuexec_trigger(m,...) => m->scheduler().trigger(...)
cpuexec_triggertime(m,...) => m->scheduler().trigger(...)
Specific regex'es used:
timer_adjust_oneshot( *)\(( *)([^,;]+), *
\3->adjust\1\(\2
timer_adjust_periodic( *)\(( *)([^,;]+), *
\3->adjust\1\(\2
(->adjust.*), *0( *)\)
\1\2\)
timer_reset( *)\(( *)([^,;]+), *
\3->reset\1\(\2
(->reset *\(.*)attotime::never
\1
timer_enable( *)\(( *)([^,;]+), *
\3->enable\1\(\2
timer_enabled( *)\(( *)([^,;)]+)\)
\3->enabled\1\(\2\)
timer_get_param( *)\(( *)([^,;)]+)\)
\3->param\1\(\2\)
timer_get_ptr( *)\(( *)([^,;)]+)\)
\3->ptr\1\(\2\)
timer_timeelapsed( *)\(( *)([^,;)]+)\)
\3->elapsed\1\(\2\)
timer_timeleft( *)\(( *)([^,;)]+)\)
\3->remaining\1\(\2\)
timer_starttime( *)\(( *)([^,;)]+)\)
\3->start\1\(\2\)
timer_firetime( *)\(( *)([^,;)]+)\)
\3->expire\1\(\2\)
timer_set_param( *)\(( *)([^,;]+), *
\3->set_param\1\(\2
timer_set_ptr( *)\(( *)([^,;]+), *
\3->set_ptr\1\(\2
cpuexec_describe_context( *)\(( *)([^,;)]+)\)
\3->describe_context\1\(\2\)
\&m_machine->describe_context
m_machine.describe_context
cpuexec_boost_interleave( *)\(( *)([^,;]+), *
\3->scheduler().boost_interleave\1\(\2
cpuexec_trigger( *)\(( *)([^,;]+), *
\3->scheduler().trigger\1\(\2
cpuexec_triggertime( *)\(( *)([^,;]+), *
\3->scheduler().trigger\1\(\2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
timers into the scheduler. Retain TIMER devices as a separate wrapper
in timer.c/.h. Inline wrappers are currently provided for all timer
operations; a future update will bulk clean these up.
Rather than using macros which hide generation of a string-ified name
for callback functions, the new methods require passing both a function
pointer plus a name string. A new macro FUNC() can be used to output
both, and another macro MFUNC() can be used to output a stub-wrapped
class member as a callback.
Also added a time() method on the machine, so that machine->time() gives
the current emulated time. A wrapper for timer_get_time is currently
provided but will be bulk replaced in the future.
For this update, convert all classic timer_alloc, timer_set,
timer_pulse, and timer_call_after_resynch calls into method calls on
the scheduler.
For new device timers, added methods to the device_t class that make
creating and managing these much simpler. Modern devices were updated
to use these.
Here are the regexes used; some manual cleanup (compiler-caught) will
be needed since regex doesn't handle nested parentheses cleanly
1. Convert timer_call_after_resynch calls
timer_call_after_resynch( *)\(( *)([^,;]+), *([^,;]+), *([^,;]+), *([^);]+)\)
\3->scheduler().synchronize\1\(\2FUNC(\6), \5, \4\)
2. Clean up trailing 0, NULL parameters
(synchronize[^;]+), 0, NULL\)
\1)
3. Clean up trailing NULL parameters
(synchronize[^;]+), NULL\)
\1)
4. Clean up completely empty parameter lists
synchronize\(FUNC\(NULL\)\)
synchronize()
5. Convert timer_set calls
timer_set( *)\(( *)([^,;]+), *([^,;]+), *([^,;]+), *([^,;]+), *([^);]+)\)
\3->scheduler().timer_set\1\(\2\4, FUNC(\7), \6, \5\)
6. Clean up trailing 0, NULL parameters
(timer_set[^;]+), 0, NULL\)
\1)
7. Clean up trailing NULL parameters
(timer_set[^;]+), NULL\)
\1)
8. Convert timer_set calls
timer_pulse( *)\(( *)([^,;]+), *([^,;]+), *([^,;]+), *([^,;]+), *([^);]+)\)
\3->scheduler().timer_pulse\1\(\2\4, FUNC(\7), \6, \5\)
9. Clean up trailing 0, NULL parameters
(timer_pulse[^;]+), 0, NULL\)
\1)
10. Clean up trailing NULL parameters
(timer_pulse[^;]+), NULL\)
\1)
11. Convert timer_alloc calls
timer_alloc( *)\(( *)([^,;]+), *([^,;]+), *([^);]+)\)
\3->scheduler().timer_alloc\1\(\2FUNC(\4), \5\)
12. Clean up trailing NULL parameters
(timer_alloc[^;]+), NULL\)
\1)
13. Clean up trailing 0 parameters
(timer_alloc[^;]+), 0\)
\1)
14. Fix oddities introduced
\&m_machine->scheduler()
m_machine.scheduler()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
attotime_zero => attotime::zero
attotime_never => attotime::never
ATTOTIME_IN_SEC(s) => attotime::from_seconds(s)
ATTOTIME_IN_MSEC(m) => attotime::from_msec(m)
ATTOTIME_IN_USEC(u) => attotime::from_usec(u)
ATTOTIME_IN_NSEC(n) => attotime::from_nsec(n)
ATTOTIME_IN_HZ(h) => attotime::from_hz(h)
Also, changed the following MCFG macros to require a full
attotime specification:
MCFG_TIMER_ADD_PERIODIC
MCFG_QUANTUM_TIME
MCFG_WATCHDOG_TIME_INIT
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
global functions which are now superceded by the operators and
methods on the class. [Aaron Giles]
Required mappings are:
attotime_make(a,b) => attotime(a,b)
attotime_to_double(t) => t.as_double()
double_to_attotime(d) => attotime::from_double(d)
attotime_to_attoseconds(t) => t.as_attoseconds()
attotime_to_ticks(t,f) => t.as_ticks(f)
ticks_to_attotime(t,f) => attotime::from_ticks(t,f)
attotime_add(a,b) => a + b
attotime_add_attoseconds(a,b) => a + attotime(0, b)
attotime_sub(a,b) => a - b
attotime_sub_attoseconds(a,b) => a - attotime(0, b)
attotime_compare(a,b) == 0 => a == b
attotime_compare(a,b) != 0 => a != b
attotime_compare(a,b) < 0 => a < b
attotime_compare(a,b) <= 0 => a <= b
attotime_compare(a,b) > 0 => a > b
attotime_compare(a,b) >= 0 => a >= b
attotime_mul(a,f) => a * f
attotime_div(a,f) => a / f
attotime_min(a,b) => min(a,b)
attotime_max(a,b) => max(a,b)
attotime_is_never(t) => t.is_never()
attotime_string(t,p) => t.as_string(p)
In addition, some existing #defines still exist but will go away:
attotime_zero => attotime::zero
attotime_never => attotime::never
ATTOTIME_IN_SEC(s) => attotime::from_seconds(s)
ATTOTIME_IN_MSEC(m) => attotime::from_msec(m)
ATTOTIME_IN_USEC(u) => attotime::from_usec(u)
ATTOTIME_IN_NSEC(n) => attotime::from_nsec(n)
ATTOTIME_IN_HZ(h) => attotime::from_hz(h)
|
|
|
|
|
| |
They both already existed. No sense in having two names for the
same object type.
|
|
|
|
|
| |
There hasn't been a machine driver for many years.
|
|
|
|
|
|
|
| |
This needs an unfortunate hack with a dummy driver added to seed references to
the devices that are only otherwise referenced by libemu.a.
Also removed SOUNDS += CUSTOM since such a sound device no longer exists.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[Atari Ace]
---------- Forwarded message ----------
From: Atari Ace <atari_ace@frontier.com>
Date: Tue, Aug 31, 2010 at 5:50 AM
Subject: [patch] Despecialize legacy sound devices
To: submit@mamedev.org
Cc: atariace@hotmail.com
Hi mamedev,
While poking around in the MAME source code, I came across the odd
type snes_sound_sound_device, which led me to the fact that legacy
sound devices are named a bit differently than other legacy devices,
probably a kludge intended to be changed later but forgotten. Anyhow,
this patch fixes it. The first patch goes part way, changing all but
the tag (which fixes the weird type issue). It also changes type
names in the scsp and msm5232 cores to avoid a name collision if/when
the second patch is applied. The second patch then touches a lot of
files, mostly removing the SOUND_ prefix from type asserts, but it
also needed to change the tags for the LASERDISC, S2636 and SPEAKER
sound cores to avoid collisions with other devices with the same name.
~aa
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
1. Renamed MACHINE_DRIVER_* to MACHINE_CONFIG_* to match the name
of the object it actually describes. The MDRV_* prefix may
eventually be bulk updated at some point, but not now.
2. MACHINE_CONFIG_START() now takes a driver_data_t-derived
class as a required second parameter. This means that
MDRV_DRIVER_DATA() is no longer required, and every "root"
machine config *must* specify a driver data class (or driver_data_t
itself if the driver has not yet been updated to use driver data).
3. New MACHINE_CONFIG_DERIVED() macro defines a machine_config
that is derived from another machine_config. This takes the place
of the very typical MACHINE_DRIVER_START()/MDRV_IMPORT_FROM()
combination.
4. New MACHINE_CONFIG_FRAGMENT() macro defines a partial
machine_config that can only be included in another "root"
machine_config. This is also used for machine_configs that are
specified as part of a device.
5. Changed MDRV_IMPORT_FROM() to MDRV_FRAGMENT_ADD() to more
accurately describe what is happening.
6. Added asserts to the above three macros to ensure they are
properly used.
Updated all machine drivers to use the new macros. Search & replace
lists below cover 99% of the changes, with just a few manual fixups.
S: MACHINE_DRIVER_START\( *([a-zA-Z0-9_]+) *\)[\r\n\t ]*MDRV_DRIVER_DATA\( *([a-zA-Z0-9_]+) *\)
R: MACHINE_CONFIG_START\( \1, \2 \)
S: MACHINE_DRIVER_START\( *([a-zA-Z0-9_]+) *\)[\r\n\t ]*/\* driver data \*/[\r\n\t ]*MDRV_DRIVER_DATA\( *([a-zA-Z0-9_]+) *\)
R: MACHINE_CONFIG_START\( \1, \2 \)
S: MACHINE_DRIVER_START\( *([a-zA-Z0-9_]+) *\)[\r\n\t ]*MDRV_IMPORT_FROM\( *([a-zA-Z0-9_]+) *\)
R: MACHINE_CONFIG_DERIVED\( \1, \2 \)
S: MACHINE_DRIVER_START\( *([a-zA-Z0-9_]+) *\)[\r\n\t ]*/\* basic machine hardware \*/[\r\n\t ]*MDRV_IMPORT_FROM\( *([a-zA-Z0-9_]+) *\)
R: MACHINE_CONFIG_DERIVED\( \1, \2 \)\r\n\r\n\t/\* basic machine hardware \*/
For all files outside of mame/drivers....
S: MACHINE_DRIVER_START
R: MACHINE_CONFIG_FRAGMENT in all non-drivers
For all files within mame/drivers....
S: MACHINE_DRIVER_START\( *([a-zA-Z0-9_]+) *\)
R: MACHINE_CONFIG_START\( \1, driver_data_t \)
S: MDRV_IMPORT_FROM
R: MDRV_FRAGMENT_ADD
S: MACHINE_DRIVER_END
R: MACHINE_CONFIG_END
S: MACHINE_DRIVER_NAME
R: MACHINE_CONFIG_NAME
S: MACHINE_DRIVER_EXTERN
R: MACHINE_CONFIG_EXTERN
Final step: run mame -valid and fix the incorrect macros at the lines
where the asserts show up.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
running_machine definition and implementation.
Moved global machine-level operations and accessors into methods on the
running_machine class. For the most part, this doesn't affect drivers
except for a few occasional bits:
mame_get_phase() == machine->phase()
add_reset_callback() == machine->add_notifier(MACHINE_NOTIFY_RESET, ...)
add_exit_callback() == machine->add_notifier(MACHINE_NOTIFY_EXIT, ...)
mame_get_base_datetime() == machine->base_datetime()
mame_get_current_datetime() == machine->current_datetime()
Cleaned up the region_info class, removing most global region accessors
except for memory_region() and memory_region_length(). Again, this doesn't
generally affect drivers.
|
|
|
|
|
|
|
|
|
|
|
|
| |
this object which can be called multiple times to append new devices
after the initial machine configuration is set up. Updated member
variables to match new naming convention.
Changed the running_machine to take a constructed machine_config
object in the constructor, instead of creating one itself, for
consistency. Also added machine->total_colors() as a shortcut to
machine->config->m_total_colors.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
performance as a result of this change. Do not panic; report issues to the
list in the short term and I will look into them. There are probably also
some details I forgot to mention. Please ask questions if anything is not
clear.
NOTE: This is a major internal change to the way devices are handled in
MAME. There is a small impact on drivers, but the bulk of the changes are
to the devices themselves. Full documentation on the new device handling
is in progress at http://mamedev.org/devwiki/index.php/MAME_Device_Basics
Defined two new casting helpers: [Aaron Giles]
downcast<type>(value) should be used for safe and efficient downcasting
from a base class to a derived class. It wraps static_cast<> by adding
an assert that a matching dynamic_cast<> returns the same result in
debug builds.
crosscast<type>(value) should be used for safe casting from one type to
another in multiple inheritance scenarios. It compiles to a
dynamic_cast<> plus an assert on the result. Since it does not optimize
down to static_cast<>, you should prefer downcast<> over crosscast<>
when you can.
Redefined running_device to be a proper C++ class (now called device_t).
Same for device_config (still called device_config). All devices and
device_configs must now be derived from these base classes. This means
each device type now has a pair of its own unique classes that describe
the device. Drivers are encouraged to use the specific device types
instead of the generic running_device or device_t classes. Drivers that
have a state class defined in their header file are encouraged to use
initializers off the constructor to locate devices. [Aaron Giles]
Removed the following fields from the device and device configuration
classes as they never were necessary or provided any use: device class,
device family, source file, version, credits. [Aaron Giles]
Added templatized variant of machine->device() which performs a downcast
as part of the device fetch. Thus machine->device<timer_device>("timer")
will locate a device named "timer", downcast it to a timer_device, and
assert if the downcast fails. [Aaron Giles]
Removed most publically accessible members of running_device/device_t in
favor of inline accessor functions. The only remaining public member is
machine. Thus all references to device->type are now device->type(), etc.
[Aaron Giles]
Created a number of device interface classes which are designed to be mix-
ins for the device classes, providing specific extended functionality and
information. There are standard interface classes for sound, execution,
state, nvram, memory, and disassembly. Devices can opt into 0 or more of
these classes. [Aaron Giles]
Converted the classic CPU device to a standard device that uses the
execution, state, memory, and disassembly interfaces. Used this new class
(cpu_device) to implement the existing CPU device interface. In the future
it will be possible to convert each CPU core to its own device type, but
for now they are still all CPU devices with a cpu_type() that specifies
exactly which kind of CPU. [Aaron Giles]
Created a new header devlegcy.h which wraps the old device interface using
some special template classes. To use these with an existing device,
simply remove from the device header the DEVICE_GET_INFO() declaration and
the #define mapping the ALL_CAPS name to the DEVICE_GET_INFO. In their
place #include "devlegcy.h" and use the DECLARE_LEGACY_DEVICE() macro.
In addition, there is a DECLARE_LEGACY_SOUND_DEVICE() macro for wrapping
existing sound devices into new-style devices, and a
DECLARE_LEGACY_NVRAM_DEVICE() for wrapping NVRAM devices. Also moved the
token and inline_config members to the legacy device class, as these are
not used in modern devices. [Aaron Giles]
Converted the standard base devices (VIDEO_SCREEN, SPEAKER, and TIMER)
from legacy devices to the new C++ style. Also renamed VIDEO_SCREEN to
simply SCREEN. The various global functions that were previously used to
access information or modify the state of these devices are now replaced
by methods on the device classes. Specifically:
video_screen_configure() == screen->configure()
video_screen_set_visarea() == screen->set_visible_area()
video_screen_update_partial() == screen->update_partial()
video_screen_update_now() == screen->update_now()
video_screen_get_vpos() == screen->vpos()
video_screen_get_hpos() == screen->hpos()
video_screen_get_vblank() == screen->vblank()
video_screen_get_hblank() == screen->hblank()
video_screen_get_width() == screen->width()
video_screen_get_height() == screen->height()
video_screen_get_visible_area() == screen->visible_area()
video_screen_get_time_until_pos() == screen->time_until_pos()
video_screen_get_time_until_vblank_start() ==
screen->time_until_vblank_start()
video_screen_get_time_until_vblank_end() ==
screen->time_until_vblank_end()
video_screen_get_time_until_update() == screen->time_until_update()
video_screen_get_scan_period() == screen->scan_period()
video_screen_get_frame_period() == screen->frame_period()
video_screen_get_frame_number() == screen->frame_number()
timer_device_adjust_oneshot() == timer->adjust()
timer_device_adjust_periodic() == timer->adjust()
timer_device_reset() == timer->reset()
timer_device_enable() == timer->enable()
timer_device_enabled() == timer->enabled()
timer_device_get_param() == timer->param()
timer_device_set_param() == timer->set_param()
timer_device_get_ptr() == timer->get_ptr()
timer_device_set_ptr() == timer->set_ptr()
timer_device_timeelapsed() == timer->time_elapsed()
timer_device_timeleft() == timer->time_left()
timer_device_starttime() == timer->start_time()
timer_device_firetime() == timer->fire_time()
Updated all drivers that use the above functions to fetch the specific
device type (timer_device or screen_device) and call the appropriate
method. [Aaron Giles]
Changed machine->primary_screen and the 'screen' parameter to VIDEO_UPDATE
to specifically pass in a screen_device object. [Aaron Giles]
Defined a new custom interface for the Z80 daisy chain. This interface
behaves like the standard interfaces, and can be added to any device that
implements the Z80 daisy chain behavior. Converted all existing Z80 daisy
chain devices to new-style devices that inherit this interface.
[Aaron Giles]
Changed the way CPU state tables are built up. Previously, these were data
structures defined by a CPU core which described all the registers and how
to output them. This functionality is now part of the state interface and
is implemented via the device_state_entry class. Updated all CPU cores
which were using the old data structure to use the new form. The syntax is
currently awkward, but will be cleaner for CPUs that are native new
devices. [Aaron Giles]
Converted the okim6295 and eeprom devices to the new model. These were
necessary because they both require multiple interfaces to operate and it
didn't make sense to create legacy device templates for these single cases.
(okim6295 needs the sound interface and the memory interface, while eeprom
requires both the nvram and memory interfaces). [Aaron Giles]
Changed parameters in a few callback functions from pointers to references
in situations where they are guaranteed to never be NULL. [Aaron Giles]
Removed MDRV_CPU_FLAGS() which was only used for disabling a CPU. Changed
it to MDRV_DEVICE_DISABLE() instead. Updated drivers. [Aaron Giles]
Reorganized the token parsing for machine configurations. The core parsing
code knows how to create/replace/remove devices, but all device token
parsing is now handled in the device_config class, which in turn will make
use of any interface classes or device-specific token handling for custom
token processing. [Aaron Giles]
Moved many validity checks out of validity.c and into the device interface
classes. For example, address space validation is now part of the memory
interface class. [Aaron Giles]
Consolidated address space parameters (bus width, endianness, etc.) into
a single address_space_config class. Updated all code that queried for
address space parameters to use the new mechanism. [Aaron Giles]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
is now separate from runtime device state. I have larger plans
for devices, so there is some temporary scaffolding to hold
everything together, but this first step does separate things
out.
There is a new class 'running_device' which represents the
state of a live device. A list of these running_devices sits
in machine->devicelist and is created when a running_machine
is instantiated.
To access the configuration state, use device->baseconfig()
which returns a reference to the configuration.
The list of running_devices in machine->devicelist has a 1:1
correspondance with the list of device configurations in
machine->config->devicelist, and most navigation options work
equally on either (scanning by class, type, etc.)
For the most part, drivers will now deal with running_device
objects instead of const device_config objects. In fact, in
order to do this patch, I did the following global search &
replace:
const device_config -> running_device
device->static_config -> device->baseconfig().static_config
device->inline_config -> device->baseconfig().inline_config
and then fixed up the compiler errors that fell out.
Some specifics:
Removed device_get_info_* functions and replaced them with
methods called get_config_*.
Added methods for get_runtime_* to access runtime state from
the running_device.
DEVICE_GET_INFO callbacks are only passed a device_config *.
This means they have no access to the token or runtime state
at all. For most cases this is fine.
Added new DEVICE_GET_RUNTIME_INFO callback that is passed
the running_device for accessing data that is live at runtime.
In the future this will go away to make room for a cleaner
mechanism.
Cleaned up the handoff of memory regions from the memory
subsystem to the devices.
|
| |
|
|
|
|
|
|
|
|
| |
along with a tagmap. Changed memory regions, input ports, and devices
to use this class. For devices, converted typenext and classnext
fields into methods which dynamically search for the next item.
Changed a number of macros to use the features of the class, removing
the need for a bunch of helper functions.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
useable as a stack object. Also designed the interfaces to allow
for chaining operations. And added a casting operator to const
char * for seamless use in most functions that take plain old C
strings.
Changed all uses of astring to use the object directly on the
stack or embedded in objects instead of explicitly allocating
and deallocating it. Removed a lot of annoying memory management
code as a result.
Changed interfaces that accepted/returned an astring * to
use an astring & instead.
Removed auto_alloc_astring(machine). Use
auto_alloc(machine, astring) instead.
|
| |
|
| |
|
|
|
|
|
|
| |
Updated device and input port lists to use the tagmap for
tag searches. Also removed the whole "quark" thing from the
validity checker in favor of using the tagmaps.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
> From: Atari Ace [mailto:atari_ace@verizon.net]
> Sent: Monday, August 03, 2009 10:52 PM
> To: submit@mamedev.org
> Cc: atariace@hotmail.com
> Subject: [patch] De-globalize romload.c/validity.c
>
> Hi mamedev,
>
> Static and global variables in the core of MAME have slowly been
> replaced with opaque structures latched onto the running machine. This
> patch extends this idiom to two more files, romload.c and validity.c.
> validity.c in fact didn't need any global state (it was used only to
> pass data between function calls), and romload.c already had a struct
> that largely served that purpose.
>
> ~aa
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This update changes the way we handle memory allocation. Rather
than allocating in terms of bytes, allocations are now done in
terms of objects. This is done via new set of macros that replace
the malloc_or_die() macro:
alloc_or_die(t) - allocate memory for an object of type 't'
alloc_array_or_die(t,c) - allocate memory for an array of 'c' objects of type 't'
alloc_clear_or_die(t) - same as alloc_or_die but memset's the memory to 0
alloc_array_clear_or_die(t,c) - same as alloc_array_or_die but memset's the memory to 0
All original callers of malloc_or_die have been updated to call these
new macros. If you just need an array of bytes, you can use
alloc_array_or_die(UINT8, numbytes).
Made a similar change to the auto_* allocation macros. In addition,
added 'machine' as a required parameter to the auto-allocation macros,
as the resource pools will eventually be owned by the machine object.
The new macros are:
auto_alloc(m,t) - allocate memory for an object of type 't'
auto_alloc_array(m,t,c) - allocate memory for an array of 'c' objects of type 't'
auto_alloc_clear(m,t) - allocate and memset
auto_alloc_array_clear(m,t,c) - allocate and memset
All original calls or auto_malloc have been updated to use the new
macros. In addition, auto_realloc(), auto_strdup(), auto_astring_alloc(),
and auto_bitmap_alloc() have been updated to take a machine parameter.
Changed validity check allocations to not rely on auto_alloc* anymore
because they are not done in the context of a machine.
One final change that is included is the removal of SMH_BANKn macros.
Just use SMH_BANK(n) instead, which is what the previous macros mapped
to anyhow.
|
|
|
| |
Fixed misplaced brackets, allowing upper/lower case extensions for crosshair graphics and ldplayer chd files.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* Fix build of ldplayer on OS X. Since the CUSTOM sound module no longer exists, I
arbitrarily changed it to WAVE, as ar gets upset if it has no input files. I also
removed the -all_load flag for ldplayer from the main makefile as it upsets the linker
on OS X.
* Fix build for PPC64 Linux. (This slightly messes up static branch prediction hints
on OS X and AIX, but OS X for PPC64 is dead, and no- one builds MAME for AIX, and
it will still build, anyway.)
* Paramaterise the arguments to check for NULL in the ATTR_NONNULL macro rather than
just checking the first argument. This requires compiler support for C99 variadic
macros (MSVC2005 and GCC4 have this AFAIK).
Vas
|
|
|
|
|
|
|
|
|
|
|
| |
SPEAKER/"left" -> "lspeaker"
SPEAKER/"right" -> "rspeaker"
SCREEN/"left" -> "lscreen"
SCREEN/"right" -> "rscreen"
SCREEN/"middle" -> "mscreen"
SCREEN/"center" -> "cscreen"
Added "left" and "right" to the validity check.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
to names that capture the device type as well. Added validity
checks for the short-term to prevent the continuance of this
pattern (which I started :)
Changes:
CPU/"main" -> "maincpu"
CPU/"audio" -> "audiocpu"
CPU/"sound" -> "soundcpu"
SCREEN/main -> "screen" (since it's the only one)
Eventually, devices will be required to have unique tags within
a machine, regardless of type.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Please note: regression testing is in progress, but the first round
of glaring regressions have already been taken care of. That said,
there is likely to be a host of regressions as a result of this
change.
Also note: There are still a few rough edges in the interfaces. I
will try to clean them up systematically once the basic system is
working.
All sound chips are now proper devices.
Merged the sound chip interface into the device interface,
removing any differences (such as the whole ALIASing concept).
Modified every sound chip in the following ways:
* updated to match the device interface
* reduced read/write handlers down to the minimal number
* added the use of get_safe_token() for ensuring correctness
* other minor cleanup
Removed the custom sound device. The additional work to just make
custom sound cases into full devices is minimal, so I just converted
them all over to be actual devices.
Vastly simplified the sound interfaces, removing the ghastly
sndti_* business and moving everyone over to using tags for
sound identity. sndintrf, like cpuintrf, is now just a header
file with no implementation.
Modified each and every driver that references a sound chip:
* all memory maps explicitly reference the targeted device via
AM_DEVREAD/AM_DEVWRITE/AM_DEVREADWRITE
* 16-bit and 32-bit accesses to 8-bit chips no longer use
trampoline functions but instead use the 8-bit AM_DEVREAD/WRITE
macros
* all references to sound chips are now done via tags
* note that these changes are brute force, not optimal; in many
cases drivers should grab pointers to devices in MACHINE_START
and stash them away
|
| |
|
|
|
|
|
| |
which allows for dynamically finding the CHD, rather than relying
on the DRIVER_INIT hackery that was there before.
|
|
|
|
|
|
| |
Cleaned up mcs48 to be dependent on a single makefile define, rather than
separate defines for each CPU which didn't really buy us anything in terms
of code size or performance.
|
|
|
|
|
| |
and timer_get_time to pass the machine parameter. Moved timer globals
to hang off of the running_machine.
|