| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
| |
drivers were defaulting to the 'HIGH' setting anyway. This also puts the drivers back in charge of setting the screen parameters. (nw)
|
|
|
|
| |
tms911x. Fixes MT05711 on MSX2 machines.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I'm purposefully leaving /src/emu/bus/cbmiec/c1541.c's kernal.bin
as it is, as this particular spelling mistake was originally made
by Robert Russell, therefore is canon. See
http://en.wikipedia.org/wiki/KERNAL for details.
I'm also leaving /src/emu/machine/nscsi_bus.c's RECIEVE as I don't
want to break anything, but it's worth someone looking into.
I renamed some variables in /src/mame/drivers/sfbonus.c,
/src/mame/video/tia.c and /src/mame/video/tia.h, so if anyone wants
to verify I didn't break anything, that would be nice.
|
|
|
|
| |
expert20 msx drivers (nw)
|
| |
|
|
|
|
|
|
|
|
| |
Moved delegates into /src/lib/util to enable usage of delegates in other project parts
Moved mame_printf_* calls into /src/osd/osdcore.c and renamed them to osd_printf_*
Changed mess.mak to display compilation of ymmu100.ppm nicely
|
| |
|
| |
|
|
|
| |
note: Aaron please give more descriptive text for release log I have no more strength :)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
as follows:
MAKE_RGB(r,g,b) == rgb_t(r,g,b)
MAKE_ARGB(a,r,g,b) == rgb_t(a,r,g,b)
RGB_ALPHA(data) == data.a()
RGB_RED(data) == data.r()
RGB_GREEN(data) == data.g()
RGB_BLUE(data) == data.b()
RGB_BLACK == rgb_t::black
RGB_WHITE == rgb_t::white
Implicit conversions to/from UINT32 are built in as well as simple
addition, subtraction, and scaling (with clamping).
As a result of being a class, some stricter typing was needed in
a few places but overall not too much.
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
| |
Puzzle Star / Sexy Boom / some MSX2+ games.
Kludged Puzzle Star (Sang Ho Soft) hang at title screen [Angelo Salese]
new WORKING game
----------------
Puzzle Star (Sang Ho Soft) [Angelo Salese, Wilbert Pol]
|
|
|
|
| |
Boom [Angelo Salese, Wilbert Pol]
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
house a screen tag and to find the screen at startup, providing an m_screen
object that can be used. One nice feature is that if there is only one
screen and no screen has been specified, it will auto configure to that
screen. This removes the need to explicitly specify a screen in the
configuration for a large chunk of drivers (though doing so never hurts).
A new macro MCFG_VIDEO_SET_SCREEN is provided, though devices are
encouraged to define their own that maps there so it is obvious which
device is being targeted. The device_video_interface's validation
function will error if an invalid screen is specified or if no screen
is provided but there are multiple screens present.
Updated all devices that currently had an m_screen in them to use the
device_video_interface instead. This also has the nice benefit of flagging
video-related devices for categorization purposes. It also means all
these devices inherit the same screen-finding behaviors. For devices
that had interfaces that specified a screen tag, those have been removed
and all existing structs updated.
Added an optional_device<screen_device> m_screen to the base driver_device.
If you name your screen "screen" (as most drivers do), you will have free
access to your screen this way.
Future updates include:
* Updating all devices referencing machine.primary_screen to use the
device_video_interface instead
* Updating all drivers referencing machine.primary_screen to use the
m_screen instead
* Removing machine.primary_screen entirely
|
| |
|
| |
|
|
|
|
| |
location [Miodrag Milanovic]
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
device_memory_interface::space() assert against NULL and
return a reference, and pushed references throughout all
address space usage in the system. Added a has_space()
method to check for those rare case when it is ambiguous.
[Aaron Giles]
Also reinstated the generic space and added fatal error
handlers if anyone tries to actually read/write from it.
|
| |
|
|
|
|
| |
appears in memory selection list in debugger. Also cleaned up v9938. [Michael Zapf]
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
allocates a given bitmap to match the screen size and resizes
it as appropriate when the screen size changes. Updated all
the obvious spots in the code where this could be leveraged.
Move allocate/resize methods in the bitmap classes down into
bitmap_t because they no longer have any dependency on the
bitmap format or type.
Ensured that the bitmap's palette remains set across a resize
call (it is lost doing an allocate).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
almost certainly some regressions lurking. Let me know if
something seems busted.
Bitmaps are now strongly typed based on format. bitmap_t still
exists as an abstract base class, but it is almost never used.
Instead, format-specific bitmap classes are provided:
bitmap_ind8 == 8bpp indexed
bitmap_ind16 == 16bpp indexed
bitmap_ind32 == 32bpp indexed
bitmap_ind64 == 64bpp indexed
bitmap_rgb32 == 32bpp RGB
bitmap_argb32 == 32bpp ARGB
bitmap_yuy16 == 16bpp YUY
For each format, a generic pix() method is provided which
references pixels of the correct type. The old pix8/pix16/pix32/
pix64 methods still exist in the short term, but the only one
available is the one that matches the bitmap's pixel size. Note
also that the old RGB15 format bitmaps are no longer supported
at all.
Converted model1, megadriv, and stv drivers away from the RGB15
format bitmaps.
New auto_bitmap_<type>_alloc() macros are provided for allocating
the appropriate type of bitmap.
Screen update functions now must specify the correct bitmap type
as their input parameters. For static update functions the
SCREEN_UPDATE macro is now replaced with SCREEN_UPDATE_RGB32 and
SCREEN_UPDATE_IND16 macros. All existing drivers have been
updated to use the correct macros.
Screen update functions are now required for all screens; there
is no longer any default behavior of copying a "default" bitmap
to the screen (in fact the default bitmap has been deprecated).
Use one of the following to specify your screen_update callback:
MCFG_SCREEN_UPDATE_STATIC(name) - static functions
MCFG_SCREEN_UPDATE_DRIVER(class, func) - driver members
MCFG_SCREEN_UPDATE_DEVICE(tag, class, func) - device members
Because the target bitmap format can now be deduced from the
screen update function itself, the MCFG_SCREEN_FORMAT macro is
no longer necessary, and has been removed. If you specify a
screen update callback that takes a bitmap_ind16, then the screen
will be configured to use a 16bpp indexed bitmap, and if you
specify a callback that takes a bitmap_rgb32, then a 32bpp RGB
bitmap will be provided.
Extended the bitmap classes to support wrapping a subregion of
another bitmap, and cleaner allocation/resetting. The preferred
use of bitmaps now is to define them directly in drivers/devices
and use allocate() or wrap() to set them up, rather than
allocating them via auto_bitmap_*_alloc().
Several common devices needed overhauls or changes as a result
of the above changes:
* Reorganized the laserdisc base driver and all the laserdisc
drivers as modern C++ devices, cleaning the code up
considerably. Merged ldsound device into the laserdsc
device since modern devices are flexible enough to handle
it.
* Reorganized the v9938 device as a modern C++ device. Removed
v9938mod.c in favor of template functions in v9938.c directly.
* Added independent ind16 and rgb32 callbacks for TMS340x0 devices.
* All video devices are now hard-coded to either ind16 or rgb32
bitmaps. The most notable is the mc6845 which is rgb32, and
required changes to a number of consumers.
* Added screen_update methods to most video devices so they can be
directly called via MCFG_SCREEN_UPDATE_DEVICE instead of creating
tons of stub functions.
|
|
|
|
|
|
|
|
| |
parameters for the global SCREEN_UPDATE callback match the parameters
for the driver_device version. Added allocate() and deallocate()
methods to bitmap_t to permit cleaner handling of bitmaps in drivers
and modern devices. [Aaron Giles]
|
|
|
|
|
|
|
|
| |
macros with bitmap->pix* functions, and moved bitmap_fill() to bitmap->fill()
among other similar changes. Bitmap fields now only available via accessors.
Replaced sect_rect with &= and union_rect with |= operators for rectangle
classes. Some general cleanup as a result of these changes. [Aaron Giles]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Low-level input upgrade. Classes now exist for input_codes, input_items,
input_devices, and input_seqs. Also created an input_manager class to
hold machine-global state and made it accessible via machine.input().
Expanded the device index range (0-255, up from 0-16), and the OSD can
now specify the device index explicitly if they can better keep the
indexes from varying run-to-run. [Aaron Giles]
Note that I've built and run SDL on Windows, but not all the code paths
were exercised. If you use mice/joysticks extensively double-check them
to be sure it all still works as expected.
This is mainly an OSD and core change. The only thing impacting drivers
is if they query for specific keys for debugging. The following S&Rs
took care of most of that:
S: input_code_pressed( *)\(( *)([^, ]+) *, *
R: \3\.input\(\)\.code_pressed\1\(\2
S: input_code_pressed_once( *)\(( *)([^, ]+) *, *
R: \3\.input\(\)\.code_pressed_once\1\(\2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Remove redundant machine items from address_space and device_t.
Neither machine nor m_machine are directly accessible anymore.
Instead a new getter machine() is available which returns a
machine reference. So:
space->machine->xxx ==> space->machine().xxx
device->machine->yyy ==> device->machine().yyy
Globally changed all running_machine pointers to running_machine
references. Any function/method that takes a running_machine takes
it as a required parameter (1 or 2 exceptions). Being consistent
here gets rid of a lot of odd &machine or *machine, but it does
mean a very large bulk change across the project.
Structs which have a running_machine * now have that variable
renamed to m_machine, and now have a shiny new machine() method
that works like the space and device methods above. Since most of
these are things that should eventually be devices anyway, consider
this a step in that direction.
98% of the update was done with regex searches. The changes are
architected such that the compiler will catch the remaining
errors:
// find things that use an embedded machine directly and replace
// with a machine() getter call
S: ->machine->
R: ->machine\(\)\.
// do the same if via a reference
S: \.machine->
R: \.machine\(\)\.
// convert function parameters to running_machine &
S: running_machine \*machine([^;])
R: running_machine \&machine\1
// replace machine-> with machine.
S: machine->
R: machine\.
// replace &machine() with machine()
S: \&([()->a-z0-9_]+machine\(\))
R: \1
// sanity check: look for this used as a cast
(running_machine &)
// and change to this:
*(running_machine *)
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
performance as a result of this change. Do not panic; report issues to the
list in the short term and I will look into them. There are probably also
some details I forgot to mention. Please ask questions if anything is not
clear.
NOTE: This is a major internal change to the way devices are handled in
MAME. There is a small impact on drivers, but the bulk of the changes are
to the devices themselves. Full documentation on the new device handling
is in progress at http://mamedev.org/devwiki/index.php/MAME_Device_Basics
Defined two new casting helpers: [Aaron Giles]
downcast<type>(value) should be used for safe and efficient downcasting
from a base class to a derived class. It wraps static_cast<> by adding
an assert that a matching dynamic_cast<> returns the same result in
debug builds.
crosscast<type>(value) should be used for safe casting from one type to
another in multiple inheritance scenarios. It compiles to a
dynamic_cast<> plus an assert on the result. Since it does not optimize
down to static_cast<>, you should prefer downcast<> over crosscast<>
when you can.
Redefined running_device to be a proper C++ class (now called device_t).
Same for device_config (still called device_config). All devices and
device_configs must now be derived from these base classes. This means
each device type now has a pair of its own unique classes that describe
the device. Drivers are encouraged to use the specific device types
instead of the generic running_device or device_t classes. Drivers that
have a state class defined in their header file are encouraged to use
initializers off the constructor to locate devices. [Aaron Giles]
Removed the following fields from the device and device configuration
classes as they never were necessary or provided any use: device class,
device family, source file, version, credits. [Aaron Giles]
Added templatized variant of machine->device() which performs a downcast
as part of the device fetch. Thus machine->device<timer_device>("timer")
will locate a device named "timer", downcast it to a timer_device, and
assert if the downcast fails. [Aaron Giles]
Removed most publically accessible members of running_device/device_t in
favor of inline accessor functions. The only remaining public member is
machine. Thus all references to device->type are now device->type(), etc.
[Aaron Giles]
Created a number of device interface classes which are designed to be mix-
ins for the device classes, providing specific extended functionality and
information. There are standard interface classes for sound, execution,
state, nvram, memory, and disassembly. Devices can opt into 0 or more of
these classes. [Aaron Giles]
Converted the classic CPU device to a standard device that uses the
execution, state, memory, and disassembly interfaces. Used this new class
(cpu_device) to implement the existing CPU device interface. In the future
it will be possible to convert each CPU core to its own device type, but
for now they are still all CPU devices with a cpu_type() that specifies
exactly which kind of CPU. [Aaron Giles]
Created a new header devlegcy.h which wraps the old device interface using
some special template classes. To use these with an existing device,
simply remove from the device header the DEVICE_GET_INFO() declaration and
the #define mapping the ALL_CAPS name to the DEVICE_GET_INFO. In their
place #include "devlegcy.h" and use the DECLARE_LEGACY_DEVICE() macro.
In addition, there is a DECLARE_LEGACY_SOUND_DEVICE() macro for wrapping
existing sound devices into new-style devices, and a
DECLARE_LEGACY_NVRAM_DEVICE() for wrapping NVRAM devices. Also moved the
token and inline_config members to the legacy device class, as these are
not used in modern devices. [Aaron Giles]
Converted the standard base devices (VIDEO_SCREEN, SPEAKER, and TIMER)
from legacy devices to the new C++ style. Also renamed VIDEO_SCREEN to
simply SCREEN. The various global functions that were previously used to
access information or modify the state of these devices are now replaced
by methods on the device classes. Specifically:
video_screen_configure() == screen->configure()
video_screen_set_visarea() == screen->set_visible_area()
video_screen_update_partial() == screen->update_partial()
video_screen_update_now() == screen->update_now()
video_screen_get_vpos() == screen->vpos()
video_screen_get_hpos() == screen->hpos()
video_screen_get_vblank() == screen->vblank()
video_screen_get_hblank() == screen->hblank()
video_screen_get_width() == screen->width()
video_screen_get_height() == screen->height()
video_screen_get_visible_area() == screen->visible_area()
video_screen_get_time_until_pos() == screen->time_until_pos()
video_screen_get_time_until_vblank_start() ==
screen->time_until_vblank_start()
video_screen_get_time_until_vblank_end() ==
screen->time_until_vblank_end()
video_screen_get_time_until_update() == screen->time_until_update()
video_screen_get_scan_period() == screen->scan_period()
video_screen_get_frame_period() == screen->frame_period()
video_screen_get_frame_number() == screen->frame_number()
timer_device_adjust_oneshot() == timer->adjust()
timer_device_adjust_periodic() == timer->adjust()
timer_device_reset() == timer->reset()
timer_device_enable() == timer->enable()
timer_device_enabled() == timer->enabled()
timer_device_get_param() == timer->param()
timer_device_set_param() == timer->set_param()
timer_device_get_ptr() == timer->get_ptr()
timer_device_set_ptr() == timer->set_ptr()
timer_device_timeelapsed() == timer->time_elapsed()
timer_device_timeleft() == timer->time_left()
timer_device_starttime() == timer->start_time()
timer_device_firetime() == timer->fire_time()
Updated all drivers that use the above functions to fetch the specific
device type (timer_device or screen_device) and call the appropriate
method. [Aaron Giles]
Changed machine->primary_screen and the 'screen' parameter to VIDEO_UPDATE
to specifically pass in a screen_device object. [Aaron Giles]
Defined a new custom interface for the Z80 daisy chain. This interface
behaves like the standard interfaces, and can be added to any device that
implements the Z80 daisy chain behavior. Converted all existing Z80 daisy
chain devices to new-style devices that inherit this interface.
[Aaron Giles]
Changed the way CPU state tables are built up. Previously, these were data
structures defined by a CPU core which described all the registers and how
to output them. This functionality is now part of the state interface and
is implemented via the device_state_entry class. Updated all CPU cores
which were using the old data structure to use the new form. The syntax is
currently awkward, but will be cleaner for CPUs that are native new
devices. [Aaron Giles]
Converted the okim6295 and eeprom devices to the new model. These were
necessary because they both require multiple interfaces to operate and it
didn't make sense to create legacy device templates for these single cases.
(okim6295 needs the sound interface and the memory interface, while eeprom
requires both the nvram and memory interfaces). [Aaron Giles]
Changed parameters in a few callback functions from pointers to references
in situations where they are guaranteed to never be NULL. [Aaron Giles]
Removed MDRV_CPU_FLAGS() which was only used for disabling a CPU. Changed
it to MDRV_DEVICE_DISABLE() instead. Updated drivers. [Aaron Giles]
Reorganized the token parsing for machine configurations. The core parsing
code knows how to create/replace/remove devices, but all device token
parsing is now handled in the device_config class, which in turn will make
use of any interface classes or device-specific token handling for custom
token processing. [Aaron Giles]
Moved many validity checks out of validity.c and into the device interface
classes. For example, address space validation is now part of the memory
interface class. [Aaron Giles]
Consolidated address space parameters (bus width, endianness, etc.) into
a single address_space_config class. Updated all code that queried for
address space parameters to use the new mechanism. [Aaron Giles]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
is now separate from runtime device state. I have larger plans
for devices, so there is some temporary scaffolding to hold
everything together, but this first step does separate things
out.
There is a new class 'running_device' which represents the
state of a live device. A list of these running_devices sits
in machine->devicelist and is created when a running_machine
is instantiated.
To access the configuration state, use device->baseconfig()
which returns a reference to the configuration.
The list of running_devices in machine->devicelist has a 1:1
correspondance with the list of device configurations in
machine->config->devicelist, and most navigation options work
equally on either (scanning by class, type, etc.)
For the most part, drivers will now deal with running_device
objects instead of const device_config objects. In fact, in
order to do this patch, I did the following global search &
replace:
const device_config -> running_device
device->static_config -> device->baseconfig().static_config
device->inline_config -> device->baseconfig().inline_config
and then fixed up the compiler errors that fell out.
Some specifics:
Removed device_get_info_* functions and replaced them with
methods called get_config_*.
Added methods for get_runtime_* to access runtime state from
the running_device.
DEVICE_GET_INFO callbacks are only passed a device_config *.
This means they have no access to the token or runtime state
at all. For most cases this is fine.
Added new DEVICE_GET_RUNTIME_INFO callback that is passed
the running_device for accessing data that is live at runtime.
In the future this will go away to make room for a cleaner
mechanism.
Cleaned up the handoff of memory regions from the memory
subsystem to the devices.
|
| |
|
| |
|
| |
|