| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Fixed an annoying inconsistency between memory_share and memory_region:
the width() method of the former returned the width in bits (8, 16, 32 or 64)
while the width() method of the latter returned the width in bytes
(1, 2, 4 or 8). Now both classes have a bitwidth() method and a bytewidth()
method. Updated all callers to use whichever one was more appropriate.
Removed the implicit-cast-to-any-integer-pointer ability of memory_regions,
which was rather unsafe (if you weren't careful with your * operators and
casts it was easy to accidentally get a pointer to the memory_region object
itself instead of to the data, with no warning from the compiler... or at
least I kept doing it) Updated all devices and drivers that were accessing
regions that way to use a region_ptr_finder when possible, and otherwise to
call base() explicitly.
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
|
| |
enable/disable in drivers
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
|
| |
we can allocate objects of the real type.
|
|
|
| |
note: hoarded dump removed too from coco_cart.xml, this will not be tolerated
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
existing modern devices and the legacy wrappers to work in this
environment. This in general greatly simplifies writing a modern
device. [Aaron Giles]
General notes:
* some more cleanup probably needs to happen behind this change,
but I needed to get it in before the next device modernization
or import from MESS :)
* new template function device_creator which automatically defines
the static function that creates the device; use this instead of
creating a static_alloc_device_config function
* added device_stop() method which is called at around the time
the previous device_t's destructor was called; if you auto_free
anything, do it here because the machine is gone when the
destructor is called
* changed the static_set_* calls to pass a device_t & instead of
a device_config *
* for many devices, the static config structure member names over-
lapped the device's names for devcb_* functions; in these cases
the members in the interface were renamed to have a _cb suffix
* changed the driver_enumerator to only cache 100 machine_configs
because caching them all took a ton of memory; fortunately this
implementation detail is completely hidden behind the
driver_enumerator interface
* got rid of the macros for creating derived classes; doing it
manually is now clean enough that it isn't worth hiding the
details in a macro
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
calls on the device object.
Regex used:
state_save_register_device_item( *)\(( *)([^,]+), *([^,]+),( *)([^ )]+)( *)\)
\3->save_item\1\(\2NAME\(\6\),\5\4\7\)
state_save_register_device_item_array( *)\(( *)([^,]+), *([^,]+),( *)([^ )]+)( *)\)
\3->save_item\1\(\2NAME\(\6\),\5\4\7\)
state_save_register_device_item_2d_array( *)\(( *)([^,]+), *([^,]+),( *)([^ )]+)( *)\)
\3->save_item\1\(\2NAME\(\6\),\5\4\7\)
state_save_register_device_item_bitmap( *)\(( *)([^,]+), *([^,]+),( *)([^ )]+)( *)\)
\3->save_item\1\(\2NAME\(\*\6\),\5\4\7\)
state_save_register_device_item_pointer( *)\(( *)([^,]+), *([^,]+),( *)([^,]+), *([^ )]+)( *)\)
\3->save_pointer\1\(\2NAME\(\6\),\5\7,\5\4\8\)
this->save_
save_
(save_item[^;]+), *0( *)\);
\1\2\);
(save_pointer[^;]+), *0( *)\);
\1\2\);
|
|
|
|
|
| |
They both already existed. No sense in having two names for the
same object type.
|
|
|
|
|
|
|
|
| |
devices to use this macro in their .c file. This greatly reduces the amount
of work the linker has to do to combine all the instances, and reduces the
final binary size when building with symbols. Unfortunately, in order to do
it I had to switch back to macros from templates, but I can live with that
for legacy devices.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
performance as a result of this change. Do not panic; report issues to the
list in the short term and I will look into them. There are probably also
some details I forgot to mention. Please ask questions if anything is not
clear.
NOTE: This is a major internal change to the way devices are handled in
MAME. There is a small impact on drivers, but the bulk of the changes are
to the devices themselves. Full documentation on the new device handling
is in progress at http://mamedev.org/devwiki/index.php/MAME_Device_Basics
Defined two new casting helpers: [Aaron Giles]
downcast<type>(value) should be used for safe and efficient downcasting
from a base class to a derived class. It wraps static_cast<> by adding
an assert that a matching dynamic_cast<> returns the same result in
debug builds.
crosscast<type>(value) should be used for safe casting from one type to
another in multiple inheritance scenarios. It compiles to a
dynamic_cast<> plus an assert on the result. Since it does not optimize
down to static_cast<>, you should prefer downcast<> over crosscast<>
when you can.
Redefined running_device to be a proper C++ class (now called device_t).
Same for device_config (still called device_config). All devices and
device_configs must now be derived from these base classes. This means
each device type now has a pair of its own unique classes that describe
the device. Drivers are encouraged to use the specific device types
instead of the generic running_device or device_t classes. Drivers that
have a state class defined in their header file are encouraged to use
initializers off the constructor to locate devices. [Aaron Giles]
Removed the following fields from the device and device configuration
classes as they never were necessary or provided any use: device class,
device family, source file, version, credits. [Aaron Giles]
Added templatized variant of machine->device() which performs a downcast
as part of the device fetch. Thus machine->device<timer_device>("timer")
will locate a device named "timer", downcast it to a timer_device, and
assert if the downcast fails. [Aaron Giles]
Removed most publically accessible members of running_device/device_t in
favor of inline accessor functions. The only remaining public member is
machine. Thus all references to device->type are now device->type(), etc.
[Aaron Giles]
Created a number of device interface classes which are designed to be mix-
ins for the device classes, providing specific extended functionality and
information. There are standard interface classes for sound, execution,
state, nvram, memory, and disassembly. Devices can opt into 0 or more of
these classes. [Aaron Giles]
Converted the classic CPU device to a standard device that uses the
execution, state, memory, and disassembly interfaces. Used this new class
(cpu_device) to implement the existing CPU device interface. In the future
it will be possible to convert each CPU core to its own device type, but
for now they are still all CPU devices with a cpu_type() that specifies
exactly which kind of CPU. [Aaron Giles]
Created a new header devlegcy.h which wraps the old device interface using
some special template classes. To use these with an existing device,
simply remove from the device header the DEVICE_GET_INFO() declaration and
the #define mapping the ALL_CAPS name to the DEVICE_GET_INFO. In their
place #include "devlegcy.h" and use the DECLARE_LEGACY_DEVICE() macro.
In addition, there is a DECLARE_LEGACY_SOUND_DEVICE() macro for wrapping
existing sound devices into new-style devices, and a
DECLARE_LEGACY_NVRAM_DEVICE() for wrapping NVRAM devices. Also moved the
token and inline_config members to the legacy device class, as these are
not used in modern devices. [Aaron Giles]
Converted the standard base devices (VIDEO_SCREEN, SPEAKER, and TIMER)
from legacy devices to the new C++ style. Also renamed VIDEO_SCREEN to
simply SCREEN. The various global functions that were previously used to
access information or modify the state of these devices are now replaced
by methods on the device classes. Specifically:
video_screen_configure() == screen->configure()
video_screen_set_visarea() == screen->set_visible_area()
video_screen_update_partial() == screen->update_partial()
video_screen_update_now() == screen->update_now()
video_screen_get_vpos() == screen->vpos()
video_screen_get_hpos() == screen->hpos()
video_screen_get_vblank() == screen->vblank()
video_screen_get_hblank() == screen->hblank()
video_screen_get_width() == screen->width()
video_screen_get_height() == screen->height()
video_screen_get_visible_area() == screen->visible_area()
video_screen_get_time_until_pos() == screen->time_until_pos()
video_screen_get_time_until_vblank_start() ==
screen->time_until_vblank_start()
video_screen_get_time_until_vblank_end() ==
screen->time_until_vblank_end()
video_screen_get_time_until_update() == screen->time_until_update()
video_screen_get_scan_period() == screen->scan_period()
video_screen_get_frame_period() == screen->frame_period()
video_screen_get_frame_number() == screen->frame_number()
timer_device_adjust_oneshot() == timer->adjust()
timer_device_adjust_periodic() == timer->adjust()
timer_device_reset() == timer->reset()
timer_device_enable() == timer->enable()
timer_device_enabled() == timer->enabled()
timer_device_get_param() == timer->param()
timer_device_set_param() == timer->set_param()
timer_device_get_ptr() == timer->get_ptr()
timer_device_set_ptr() == timer->set_ptr()
timer_device_timeelapsed() == timer->time_elapsed()
timer_device_timeleft() == timer->time_left()
timer_device_starttime() == timer->start_time()
timer_device_firetime() == timer->fire_time()
Updated all drivers that use the above functions to fetch the specific
device type (timer_device or screen_device) and call the appropriate
method. [Aaron Giles]
Changed machine->primary_screen and the 'screen' parameter to VIDEO_UPDATE
to specifically pass in a screen_device object. [Aaron Giles]
Defined a new custom interface for the Z80 daisy chain. This interface
behaves like the standard interfaces, and can be added to any device that
implements the Z80 daisy chain behavior. Converted all existing Z80 daisy
chain devices to new-style devices that inherit this interface.
[Aaron Giles]
Changed the way CPU state tables are built up. Previously, these were data
structures defined by a CPU core which described all the registers and how
to output them. This functionality is now part of the state interface and
is implemented via the device_state_entry class. Updated all CPU cores
which were using the old data structure to use the new form. The syntax is
currently awkward, but will be cleaner for CPUs that are native new
devices. [Aaron Giles]
Converted the okim6295 and eeprom devices to the new model. These were
necessary because they both require multiple interfaces to operate and it
didn't make sense to create legacy device templates for these single cases.
(okim6295 needs the sound interface and the memory interface, while eeprom
requires both the nvram and memory interfaces). [Aaron Giles]
Changed parameters in a few callback functions from pointers to references
in situations where they are guaranteed to never be NULL. [Aaron Giles]
Removed MDRV_CPU_FLAGS() which was only used for disabling a CPU. Changed
it to MDRV_DEVICE_DISABLE() instead. Updated drivers. [Aaron Giles]
Reorganized the token parsing for machine configurations. The core parsing
code knows how to create/replace/remove devices, but all device token
parsing is now handled in the device_config class, which in turn will make
use of any interface classes or device-specific token handling for custom
token processing. [Aaron Giles]
Moved many validity checks out of validity.c and into the device interface
classes. For example, address space validation is now part of the memory
interface class. [Aaron Giles]
Consolidated address space parameters (bus width, endianness, etc.) into
a single address_space_config class. Updated all code that queried for
address space parameters to use the new mechanism. [Aaron Giles]
|
|
|
|
| |
device. Update playch10 driver. [Couriersud]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
is now separate from runtime device state. I have larger plans
for devices, so there is some temporary scaffolding to hold
everything together, but this first step does separate things
out.
There is a new class 'running_device' which represents the
state of a live device. A list of these running_devices sits
in machine->devicelist and is created when a running_machine
is instantiated.
To access the configuration state, use device->baseconfig()
which returns a reference to the configuration.
The list of running_devices in machine->devicelist has a 1:1
correspondance with the list of device configurations in
machine->config->devicelist, and most navigation options work
equally on either (scanning by class, type, etc.)
For the most part, drivers will now deal with running_device
objects instead of const device_config objects. In fact, in
order to do this patch, I did the following global search &
replace:
const device_config -> running_device
device->static_config -> device->baseconfig().static_config
device->inline_config -> device->baseconfig().inline_config
and then fixed up the compiler errors that fell out.
Some specifics:
Removed device_get_info_* functions and replaced them with
methods called get_config_*.
Added methods for get_runtime_* to access runtime state from
the running_device.
DEVICE_GET_INFO callbacks are only passed a device_config *.
This means they have no access to the token or runtime state
at all. For most cases this is fine.
Added new DEVICE_GET_RUNTIME_INFO callback that is passed
the running_device for accessing data that is live at runtime.
In the future this will go away to make room for a cleaner
mechanism.
Cleaned up the handoff of memory regions from the memory
subsystem to the devices.
|
| |
|
|
|
|
|
|
|
|
|
| |
fixes up some header files. In particular, I adjusted const char
*DEVTEMPLATE_SOURCE = __FILE__ to const char DEVTEMPLATE_SOURCE[] =
__FILE__ which makes it actually const and saves a little memory.
[Atari Ace]
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Sent: Wednesday, December 10, 2008 9:27 AM
To: submit@mamedev.org
Cc: atariace@hotmail.com
Subject: [patch] Add machine to some emu/machine init methods
Hi mamedev,
This patch widens some machine init interfaces to pass the machine
parameter, allowing more Machine global references to be eliminated.
Eventually most of these need to be converted to devices, but this
change reduces the deprecation surface in the meantime. I also
attached the script I used to do the initial changes to the drivers,
which handled about 90% of the cases without further editing.
~aa
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
integer value, regions are now referred to by a region class and
a region tag. The class specifies the type of region (one of CPU,
gfx, sound, user, disk, prom, pld) while the tag uniquely specifies
the region. This change required updating all the ROM region
definitions in the project to specify the class/tag instead of
region number.
Updated the core memory_region_* functions to accept a class/tag
pair. Added new memory_region_next() function to allow for iteration
over all memory regions of a given class. Added new function
memory_region_class_name() to return the name for a given CPU
memory region class.
Changed the auto-binding behavior of CPU regions. Previously, the
first CPU would auto-bind to REGION_CPU1 (that is, any ROM references
would automatically assume that they lived in the corresponding
region). Now, each CPU automatically binds to the RGNCLASS_CPU region
with the same tag as the CPU itself. This behavior required ensuring
that all previous REGION_CPU* regions were changed to RGNCLASS_CPU
with the same tag as the CPU.
Introduced a new auto-binding mechanism for sound cores. This works
similarly to the CPU binding. Each sound core that requires a memory
region now auto-binds to the RGNCLASS_SOUND with the same tag as the
sound core. In almost all cases, this allowed for the removal of the
explicit region item in the sound configuration, which in turn
allowed for many sound configurations to removed altogether.
Updated the expression engine's memory reference behavior. A recent
update expanded the scope of memory references to allow for referencing
data in non-active CPU spaces, in memory regions, and in EEPROMs.
However, this previous update required an index, which is no longer
appropriate for regions and will become increasingly less appropriate
for CPUs over time. Instead, a new syntax is supported, of the form:
"[tag.][space]size@addr", where 'tag' is an optional tag for the CPU
or memory region you wish to access, followed by a period as a
separator; 'space' is the memory address space or region class you
wish to access (p/d/i for program/data/I/O spaces; o for opcode space;
r for direct RAM; c/u/g/s for CPU/user/gfx/sound regions; e for
EEPROMs); and 'size' is the usual b/w/d/q for byte/word/dword/qword.
Cleaned up ROM definition flags and removed some ugly hacks that had
existed previously. Expanded to support up to 256 BIOSes. Updated
ROM_COPY to support specifying class/tag for the source region.
Updated the address map AM_REGION macro to support specifying a
class/tag for the region.
Updated debugger windows to display the CPU and region tags where
appropriate.
Updated -listxml to output region class and tag for each ROM entry.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Subject: [patch] memory_region madness reloaded
Hi mamedev,
The memory_region and memory_region_length functions are probably the
two most common functions in MAME that don't take a machine parameter
but should given the syntax of the related apis memory_region_type and
memory_region_flags. Clearly they didn't get the parameter because of
the sheer number of changes needed to change the apis. This pair of
patches makes the change, and deals with the consequences.
The second patch then changes the api for memory_region and
memory_region_length, and fixes the fallout. It generally plumbs
through machine parameters where needed, except for the case of sound
apis which I deferred doing so till later. This increased the number
of deprecat.h includes by ~50. Given it is a massive patch, there are
bound to be a few mistakes in it (I had to make ~20% of the changes by
hand), but I exercised care and reviewed the patch several times to
minimize the problems.
|
| |
|
|
|