| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
| |
cirrus is not moved since it's not made as proper pci device
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
| |
cases, we can get rid of the postload function entirely and just
call directly to the target function. Drivers eventually should
just override device_postload() instead of registering for callbacks.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
existing modern devices and the legacy wrappers to work in this
environment. This in general greatly simplifies writing a modern
device. [Aaron Giles]
General notes:
* some more cleanup probably needs to happen behind this change,
but I needed to get it in before the next device modernization
or import from MESS :)
* new template function device_creator which automatically defines
the static function that creates the device; use this instead of
creating a static_alloc_device_config function
* added device_stop() method which is called at around the time
the previous device_t's destructor was called; if you auto_free
anything, do it here because the machine is gone when the
destructor is called
* changed the static_set_* calls to pass a device_t & instead of
a device_config *
* for many devices, the static config structure member names over-
lapped the device's names for devcb_* functions; in these cases
the members in the interface were renamed to have a _cb suffix
* changed the driver_enumerator to only cache 100 machine_configs
because caching them all took a ton of memory; fortunately this
implementation detail is completely hidden behind the
driver_enumerator interface
* got rid of the macros for creating derived classes; doing it
manually is now clean enough that it isn't worth hiding the
details in a macro
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Remove redundant machine items from address_space and device_t.
Neither machine nor m_machine are directly accessible anymore.
Instead a new getter machine() is available which returns a
machine reference. So:
space->machine->xxx ==> space->machine().xxx
device->machine->yyy ==> device->machine().yyy
Globally changed all running_machine pointers to running_machine
references. Any function/method that takes a running_machine takes
it as a required parameter (1 or 2 exceptions). Being consistent
here gets rid of a lot of odd &machine or *machine, but it does
mean a very large bulk change across the project.
Structs which have a running_machine * now have that variable
renamed to m_machine, and now have a shiny new machine() method
that works like the space and device methods above. Since most of
these are things that should eventually be devices anyway, consider
this a step in that direction.
98% of the update was done with regex searches. The changes are
architected such that the compiler will catch the remaining
errors:
// find things that use an embedded machine directly and replace
// with a machine() getter call
S: ->machine->
R: ->machine\(\)\.
// do the same if via a reference
S: \.machine->
R: \.machine\(\)\.
// convert function parameters to running_machine &
S: running_machine \*machine([^;])
R: running_machine \&machine\1
// replace machine-> with machine.
S: machine->
R: machine\.
// replace &machine() with machine()
S: \&([()->a-z0-9_]+machine\(\))
R: \1
// sanity check: look for this used as a cast
(running_machine &)
// and change to this:
*(running_machine *)
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
to private member variables with accessors:
machine->m_respool ==> machine->respool()
machine->config ==> machine->config()
machine->gamedrv ==> machine->system()
machine->m_regionlist ==> machine->first_region()
machine->sample_rate ==> machine->sample_rate()
Also converted internal lists to use simple_list.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
calls on the device object.
Regex used:
state_save_register_device_item( *)\(( *)([^,]+), *([^,]+),( *)([^ )]+)( *)\)
\3->save_item\1\(\2NAME\(\6\),\5\4\7\)
state_save_register_device_item_array( *)\(( *)([^,]+), *([^,]+),( *)([^ )]+)( *)\)
\3->save_item\1\(\2NAME\(\6\),\5\4\7\)
state_save_register_device_item_2d_array( *)\(( *)([^,]+), *([^,]+),( *)([^ )]+)( *)\)
\3->save_item\1\(\2NAME\(\6\),\5\4\7\)
state_save_register_device_item_bitmap( *)\(( *)([^,]+), *([^,]+),( *)([^ )]+)( *)\)
\3->save_item\1\(\2NAME\(\*\6\),\5\4\7\)
state_save_register_device_item_pointer( *)\(( *)([^,]+), *([^,]+),( *)([^,]+), *([^ )]+)( *)\)
\3->save_pointer\1\(\2NAME\(\6\),\5\7,\5\4\8\)
this->save_
save_
(save_item[^;]+), *0( *)\);
\1\2\);
(save_pointer[^;]+), *0( *)\);
\1\2\);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
are still intact. The new state_manager class has templatized methods
for saving the various types, and through template specialization can
save more complex system types cleanly (like bitmaps and attotimes).
Added new mechanism to detect proper state save types. This is much
more strict and there will likely be some games/devices that fatalerror
at startup until they are remedied. Spot checking has caught the more
common situations.
The new state_manager is embedded directly in the running_machine,
allowing objects to register state saving in their constructors now.
Added NAME() macro which is a generalization of FUNC() and can be
used to wrap variables that are registered when directly using the
new methods as opposed to the previous macros. For example:
machine->state().save_item(NAME(global_item))
Added methods in the device_t class that implicitly register state
against the current device, making for a cleaner interface.
Just a couple of required regexes for now:
state_save_register_postload( *)\(( *)([^,;]+), *
\3->state().register_postload\1\(\2
state_save_register_presave( *)\(( *)([^,;]+), *
\3->state().register_presave\1\(\2
|
|
|
|
|
| |
They both already existed. No sense in having two names for the
same object type.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
in real hardware [Samuele Zannoli]
Chihiro.c Improvements: [Samuele Zannoli]
- Fixed the mapping of the bios at the top of the cpu addrsss space
- Updated the ram size to 128 megabytes
- Added some SMBus handling, to let the bios run
- Added placeholders for a few devices on the PCI bus
- Added the "jamdis StartAddress,Length" command to the debugger that lets you disassemble the "jam table" instructions used by the bios to do some basic hardware initialization.
This time it works for good ;)
|
|
|
|
|
|
| |
external submission. (no whatsnew)
Comment: R. Belmont, this one is all yours to correct and apply.
|
|
|
|
|
|
|
|
|
|
| |
in real hardware [Samuele Zannoli]
Chihiro.c Improvements: [Samuele Zannoli]
- Fixed the mapping of the bios at the top of the cpu addrsss space
- Updated the ram size to 128 megabytes
- Added some SMBus handling, to let the bios run
- Added placeholders for a few devices on the PCI bus
- Added the "jamdis StartAddress,Length" command to the debugger that lets you disassemble the "jam table" instructions used by the bios to do some basic hardware initialization.
|
|
|
|
|
|
|
|
| |
devices to use this macro in their .c file. This greatly reduces the amount
of work the linker has to do to combine all the instances, and reduces the
final binary size when building with symbols. Unfortunately, in order to do
it I had to switch back to macros from templates, but I can live with that
for legacy devices.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
performance as a result of this change. Do not panic; report issues to the
list in the short term and I will look into them. There are probably also
some details I forgot to mention. Please ask questions if anything is not
clear.
NOTE: This is a major internal change to the way devices are handled in
MAME. There is a small impact on drivers, but the bulk of the changes are
to the devices themselves. Full documentation on the new device handling
is in progress at http://mamedev.org/devwiki/index.php/MAME_Device_Basics
Defined two new casting helpers: [Aaron Giles]
downcast<type>(value) should be used for safe and efficient downcasting
from a base class to a derived class. It wraps static_cast<> by adding
an assert that a matching dynamic_cast<> returns the same result in
debug builds.
crosscast<type>(value) should be used for safe casting from one type to
another in multiple inheritance scenarios. It compiles to a
dynamic_cast<> plus an assert on the result. Since it does not optimize
down to static_cast<>, you should prefer downcast<> over crosscast<>
when you can.
Redefined running_device to be a proper C++ class (now called device_t).
Same for device_config (still called device_config). All devices and
device_configs must now be derived from these base classes. This means
each device type now has a pair of its own unique classes that describe
the device. Drivers are encouraged to use the specific device types
instead of the generic running_device or device_t classes. Drivers that
have a state class defined in their header file are encouraged to use
initializers off the constructor to locate devices. [Aaron Giles]
Removed the following fields from the device and device configuration
classes as they never were necessary or provided any use: device class,
device family, source file, version, credits. [Aaron Giles]
Added templatized variant of machine->device() which performs a downcast
as part of the device fetch. Thus machine->device<timer_device>("timer")
will locate a device named "timer", downcast it to a timer_device, and
assert if the downcast fails. [Aaron Giles]
Removed most publically accessible members of running_device/device_t in
favor of inline accessor functions. The only remaining public member is
machine. Thus all references to device->type are now device->type(), etc.
[Aaron Giles]
Created a number of device interface classes which are designed to be mix-
ins for the device classes, providing specific extended functionality and
information. There are standard interface classes for sound, execution,
state, nvram, memory, and disassembly. Devices can opt into 0 or more of
these classes. [Aaron Giles]
Converted the classic CPU device to a standard device that uses the
execution, state, memory, and disassembly interfaces. Used this new class
(cpu_device) to implement the existing CPU device interface. In the future
it will be possible to convert each CPU core to its own device type, but
for now they are still all CPU devices with a cpu_type() that specifies
exactly which kind of CPU. [Aaron Giles]
Created a new header devlegcy.h which wraps the old device interface using
some special template classes. To use these with an existing device,
simply remove from the device header the DEVICE_GET_INFO() declaration and
the #define mapping the ALL_CAPS name to the DEVICE_GET_INFO. In their
place #include "devlegcy.h" and use the DECLARE_LEGACY_DEVICE() macro.
In addition, there is a DECLARE_LEGACY_SOUND_DEVICE() macro for wrapping
existing sound devices into new-style devices, and a
DECLARE_LEGACY_NVRAM_DEVICE() for wrapping NVRAM devices. Also moved the
token and inline_config members to the legacy device class, as these are
not used in modern devices. [Aaron Giles]
Converted the standard base devices (VIDEO_SCREEN, SPEAKER, and TIMER)
from legacy devices to the new C++ style. Also renamed VIDEO_SCREEN to
simply SCREEN. The various global functions that were previously used to
access information or modify the state of these devices are now replaced
by methods on the device classes. Specifically:
video_screen_configure() == screen->configure()
video_screen_set_visarea() == screen->set_visible_area()
video_screen_update_partial() == screen->update_partial()
video_screen_update_now() == screen->update_now()
video_screen_get_vpos() == screen->vpos()
video_screen_get_hpos() == screen->hpos()
video_screen_get_vblank() == screen->vblank()
video_screen_get_hblank() == screen->hblank()
video_screen_get_width() == screen->width()
video_screen_get_height() == screen->height()
video_screen_get_visible_area() == screen->visible_area()
video_screen_get_time_until_pos() == screen->time_until_pos()
video_screen_get_time_until_vblank_start() ==
screen->time_until_vblank_start()
video_screen_get_time_until_vblank_end() ==
screen->time_until_vblank_end()
video_screen_get_time_until_update() == screen->time_until_update()
video_screen_get_scan_period() == screen->scan_period()
video_screen_get_frame_period() == screen->frame_period()
video_screen_get_frame_number() == screen->frame_number()
timer_device_adjust_oneshot() == timer->adjust()
timer_device_adjust_periodic() == timer->adjust()
timer_device_reset() == timer->reset()
timer_device_enable() == timer->enable()
timer_device_enabled() == timer->enabled()
timer_device_get_param() == timer->param()
timer_device_set_param() == timer->set_param()
timer_device_get_ptr() == timer->get_ptr()
timer_device_set_ptr() == timer->set_ptr()
timer_device_timeelapsed() == timer->time_elapsed()
timer_device_timeleft() == timer->time_left()
timer_device_starttime() == timer->start_time()
timer_device_firetime() == timer->fire_time()
Updated all drivers that use the above functions to fetch the specific
device type (timer_device or screen_device) and call the appropriate
method. [Aaron Giles]
Changed machine->primary_screen and the 'screen' parameter to VIDEO_UPDATE
to specifically pass in a screen_device object. [Aaron Giles]
Defined a new custom interface for the Z80 daisy chain. This interface
behaves like the standard interfaces, and can be added to any device that
implements the Z80 daisy chain behavior. Converted all existing Z80 daisy
chain devices to new-style devices that inherit this interface.
[Aaron Giles]
Changed the way CPU state tables are built up. Previously, these were data
structures defined by a CPU core which described all the registers and how
to output them. This functionality is now part of the state interface and
is implemented via the device_state_entry class. Updated all CPU cores
which were using the old data structure to use the new form. The syntax is
currently awkward, but will be cleaner for CPUs that are native new
devices. [Aaron Giles]
Converted the okim6295 and eeprom devices to the new model. These were
necessary because they both require multiple interfaces to operate and it
didn't make sense to create legacy device templates for these single cases.
(okim6295 needs the sound interface and the memory interface, while eeprom
requires both the nvram and memory interfaces). [Aaron Giles]
Changed parameters in a few callback functions from pointers to references
in situations where they are guaranteed to never be NULL. [Aaron Giles]
Removed MDRV_CPU_FLAGS() which was only used for disabling a CPU. Changed
it to MDRV_DEVICE_DISABLE() instead. Updated drivers. [Aaron Giles]
Reorganized the token parsing for machine configurations. The core parsing
code knows how to create/replace/remove devices, but all device token
parsing is now handled in the device_config class, which in turn will make
use of any interface classes or device-specific token handling for custom
token processing. [Aaron Giles]
Moved many validity checks out of validity.c and into the device interface
classes. For example, address space validation is now part of the memory
interface class. [Aaron Giles]
Consolidated address space parameters (bus width, endianness, etc.) into
a single address_space_config class. Updated all code that queried for
address space parameters to use the new mechanism. [Aaron Giles]
|
|
|
|
|
|
| |
Added inline tag() function to return a const char * version. Updated
callers to use this instead of directly accessing tag.cstr() which
was awkward.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
is now separate from runtime device state. I have larger plans
for devices, so there is some temporary scaffolding to hold
everything together, but this first step does separate things
out.
There is a new class 'running_device' which represents the
state of a live device. A list of these running_devices sits
in machine->devicelist and is created when a running_machine
is instantiated.
To access the configuration state, use device->baseconfig()
which returns a reference to the configuration.
The list of running_devices in machine->devicelist has a 1:1
correspondance with the list of device configurations in
machine->config->devicelist, and most navigation options work
equally on either (scanning by class, type, etc.)
For the most part, drivers will now deal with running_device
objects instead of const device_config objects. In fact, in
order to do this patch, I did the following global search &
replace:
const device_config -> running_device
device->static_config -> device->baseconfig().static_config
device->inline_config -> device->baseconfig().inline_config
and then fixed up the compiler errors that fell out.
Some specifics:
Removed device_get_info_* functions and replaced them with
methods called get_config_*.
Added methods for get_runtime_* to access runtime state from
the running_device.
DEVICE_GET_INFO callbacks are only passed a device_config *.
This means they have no access to the token or runtime state
at all. For most cases this is fine.
Added new DEVICE_GET_RUNTIME_INFO callback that is passed
the running_device for accessing data that is live at runtime.
In the future this will go away to make room for a cleaner
mechanism.
Cleaned up the handoff of memory regions from the memory
subsystem to the devices.
|
|
|
|
|
|
| |
devtag_get_device ... machine->device()
memory_find_address_space ... device->space()
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Created new central header "emu.h"; this should be included
by pretty much any driver or device as the first include. This
file in turn includes pretty much everything a driver or device
will need, minus any other devices it references. Note that
emu.h should *never* be included by another header file.
- Updated all files in the core (src/emu) to use emu.h.
- Removed a ton of redundant and poorly-tracked header includes
from within other header files.
- Temporarily changed driver.h to map to emu.h until we update
files outside of the core.
Added class wrapper around tagmap so it can be directly included
and accessed within objects that need it. Updated all users to
embed tagmap objects and changed them to call through the class.
Added nicer functions for finding devices, ports, and regions in
a machine:
machine->device("tag") -- return the named device, or NULL
machine->port("tag") -- return the named port, or NULL
machine->region("tag"[, &length[, &flags]]) -- return the
named region and optionally its length and flags
Made the device tag an astring. This required touching a lot of
code that printed the device to explicitly fetch the C-string
from it. (Thank you gcc for flagging that issue!)
|
|
|
|
|
|
|
|
|
| |
function here. Remaining devices have been converted to have
device-specific functions to do the same thing with proper type
checking.
CPUs still have a set_info function but it is CPU-specific now and
no longer piggybacks on the general device function.
|
|
|
|
| |
to make them compile as either C or C++.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
assumption that all device tags are unique. Specifically, the
following no longer need to provide a device type:
AM_DEVREAD/WRITE
DEVCB_DEVICE_HANDLER
devtag_get_device
devtag_reset
device_list_find_by_tag
as well as several device interfaces that referenced other devices.
Also fixed assertion due to overflow in the recent sound fix.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
> On Mon, Jan 19, 2009 at 05:37:35AM -0800, R. Belmont wrote:
> > My mistake. I thought you were suggesting that we should actually
> > somehow handle malloc failures. Given that aborting is an OK way to
> > express failure, I'd suggest the return values be changed to DEFER
> > and DONT_DEFER to eliminate the conceptual imbalance of OK/DEFER.
>
> That's where comes the fact that we have 130 OK/DONT_DEFER and 1
> DEFER. It makes me think that the exceptional DEFER case should be
> handled by an exceptional function call.
>
> I know, code talks, but I'm at work right now :-)
Here we go.
OG.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
interfaces when handling strings. Namely, the generic
get_info functions allocate a temporary string and the
device in question copies its string to the target,
instead of assigning a const char *. Updated all device
and sound cores to operate this way.
Added the concept of a cpu_state_table, which is
supplied by the CPU cores and which describes all the
register state accessible to the debugger and other
subsystems. The format of the table is such that most
data can be simply fetched from memory without the
further involvement of the CPU core, including the
display of common formats. Extensibility points are
available for custom display and for importing/exporting
the data to intermediate variables for more complicated
scenarios. Updated the ADSP21xx, TMS340x0, and i86 cores
to use this.
Removed the old debugger register list, which was never
used. Replaced it with using ordering from the
cpu_state_table.
Renamed REG_PC -> REG_GENPC, REG_SP -> REG_GENSP, and
REG_PREVIOUSPC -> REG_GENPCBASE. Updated a few spots
that were using these directly. Moved these definitions
into the end of the register area rather than leaving
them outside which put them in a weird range.
|
| |
|
|
|
|
|
|
|
|
|
|
| |
config, and the devices attached to it are enumerated there.
Eventually, the PCI config read/write functions should be moved
to well-known functions within the device, but for now they are
kept separate.
activecpu -= 138
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
are broken.
Changed READ/WRITE handlers to accept an address_space * instead of a
machine *. The address_space object was enhanced to contain a machine
and a pointer to the relevant CPU object.
Fixed a number of errors found by the compiler, mostly in the core and
CPU/sound handlers, but there is a lot remaining to fix.
Added new function cpu_get_address_space() to fetch the address space
for calling in manually to these functions. In some instances, code
which should eventually be converted to a device is hard-coding fetching
the program space of CPU #0 in order to have something valid to pass.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* added a set of cpu_* calls which accept a CPU device object;
these are now the preferred means of manipulating a CPU
* removed the cpunum_* calls; added an array of cpu[] to the
running_machine object; converted all existing cpunum_* calls
to cpu_* calls, pulling the CPU device object from the new
array in the running_machine
* removed the activecpu_* calls; added an activecpu member to
the running_machine object; converted all existing activecpu_*
calls to cpu_* calls, pulling the active CPU device object
from the running_machine
* changed cpuintrf_push_context() to cpu_push_context(), taking
a CPU object pointer; changed cpuintrf_pop_context() to
cpu_pop_context(); eventually these will go away
* many other similar changes moving toward a model where all CPU
references are done by the CPU object and not by index
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Updated all call-through handlers appropriately. Renamed read8_handler to
read8_machine_func, replicating this pattern throughout.
Defined new set of memory handler functions which are similar but which
pass a const device_config * in place of the running_machine *. These are
called read8_device_func, etc. Added macros READ8_DEVICE_HANDLER() for
specifying functions of this type. Note that some plumbing still needs to
happen in memory.c before this will work.
This check-in should remove the need for the global Machine and in turn
"deprecat.h" for a lot of drivers, but that work has not been done. On
the flip side, some new accesses to the global Machine were added in the
emu/ files. These should be addressed over time, but are smaller in
number than the references in the driver.
|