| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
| |
to new license tagged form.
|
|
|
|
| |
location [Miodrag Milanovic]
|
| |
|
|
|
|
|
|
| |
Convert all cpu_get_pc() to safe_pc() and
cpu_getpreviouspc() to safe_basepc(). Removed the
old macros.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
almost certainly some regressions lurking. Let me know if
something seems busted.
Bitmaps are now strongly typed based on format. bitmap_t still
exists as an abstract base class, but it is almost never used.
Instead, format-specific bitmap classes are provided:
bitmap_ind8 == 8bpp indexed
bitmap_ind16 == 16bpp indexed
bitmap_ind32 == 32bpp indexed
bitmap_ind64 == 64bpp indexed
bitmap_rgb32 == 32bpp RGB
bitmap_argb32 == 32bpp ARGB
bitmap_yuy16 == 16bpp YUY
For each format, a generic pix() method is provided which
references pixels of the correct type. The old pix8/pix16/pix32/
pix64 methods still exist in the short term, but the only one
available is the one that matches the bitmap's pixel size. Note
also that the old RGB15 format bitmaps are no longer supported
at all.
Converted model1, megadriv, and stv drivers away from the RGB15
format bitmaps.
New auto_bitmap_<type>_alloc() macros are provided for allocating
the appropriate type of bitmap.
Screen update functions now must specify the correct bitmap type
as their input parameters. For static update functions the
SCREEN_UPDATE macro is now replaced with SCREEN_UPDATE_RGB32 and
SCREEN_UPDATE_IND16 macros. All existing drivers have been
updated to use the correct macros.
Screen update functions are now required for all screens; there
is no longer any default behavior of copying a "default" bitmap
to the screen (in fact the default bitmap has been deprecated).
Use one of the following to specify your screen_update callback:
MCFG_SCREEN_UPDATE_STATIC(name) - static functions
MCFG_SCREEN_UPDATE_DRIVER(class, func) - driver members
MCFG_SCREEN_UPDATE_DEVICE(tag, class, func) - device members
Because the target bitmap format can now be deduced from the
screen update function itself, the MCFG_SCREEN_FORMAT macro is
no longer necessary, and has been removed. If you specify a
screen update callback that takes a bitmap_ind16, then the screen
will be configured to use a 16bpp indexed bitmap, and if you
specify a callback that takes a bitmap_rgb32, then a 32bpp RGB
bitmap will be provided.
Extended the bitmap classes to support wrapping a subregion of
another bitmap, and cleaner allocation/resetting. The preferred
use of bitmaps now is to define them directly in drivers/devices
and use allocate() or wrap() to set them up, rather than
allocating them via auto_bitmap_*_alloc().
Several common devices needed overhauls or changes as a result
of the above changes:
* Reorganized the laserdisc base driver and all the laserdisc
drivers as modern C++ devices, cleaning the code up
considerably. Merged ldsound device into the laserdsc
device since modern devices are flexible enough to handle
it.
* Reorganized the v9938 device as a modern C++ device. Removed
v9938mod.c in favor of template functions in v9938.c directly.
* Added independent ind16 and rgb32 callbacks for TMS340x0 devices.
* All video devices are now hard-coded to either ind16 or rgb32
bitmaps. The most notable is the mc6845 which is rgb32, and
required changes to a number of consumers.
* Added screen_update methods to most video devices so they can be
directly called via MCFG_SCREEN_UPDATE_DEVICE instead of creating
tons of stub functions.
|
|
|
|
|
|
|
|
| |
- Removed LOADBYNAME, since it is deprecated by using per device rom load_software_part_region
- Created makedev tool to generate array of devices, and created lst file according to current devices usage.
- Changed listxml command to output device roms too
|
|
|
|
|
|
|
|
|
|
|
| |
space->device().
S: space->cpu->
R: space->device\(\)\.
S: space->cpu
R: \&space->device\(\)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Remove redundant machine items from address_space and device_t.
Neither machine nor m_machine are directly accessible anymore.
Instead a new getter machine() is available which returns a
machine reference. So:
space->machine->xxx ==> space->machine().xxx
device->machine->yyy ==> device->machine().yyy
Globally changed all running_machine pointers to running_machine
references. Any function/method that takes a running_machine takes
it as a required parameter (1 or 2 exceptions). Being consistent
here gets rid of a lot of odd &machine or *machine, but it does
mean a very large bulk change across the project.
Structs which have a running_machine * now have that variable
renamed to m_machine, and now have a shiny new machine() method
that works like the space and device methods above. Since most of
these are things that should eventually be devices anyway, consider
this a step in that direction.
98% of the update was done with regex searches. The changes are
architected such that the compiler will catch the remaining
errors:
// find things that use an embedded machine directly and replace
// with a machine() getter call
S: ->machine->
R: ->machine\(\)\.
// do the same if via a reference
S: \.machine->
R: \.machine\(\)\.
// convert function parameters to running_machine &
S: running_machine \*machine([^;])
R: running_machine \&machine\1
// replace machine-> with machine.
S: machine->
R: machine\.
// replace &machine() with machine()
S: \&([()->a-z0-9_]+machine\(\))
R: \1
// sanity check: look for this used as a cast
(running_machine &)
// and change to this:
*(running_machine *)
|
|
|
|
|
|
|
|
|
|
|
|
| |
space by index. Update functions and methods that accepted an
address space index to take an address_spacenum instead. Note that
this means you can't use a raw integer in ADDRESS_SPACE macros, so
instead of 0 use the enumerated AS_0.
Standardized the project on the shortened constants AS_* over the
older ADDRESS_SPACE_*. Removed the latter to prevent confusion.
Also centralized the location of these definitions to memory.h.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
or assert if not present.
Split address_space::install_[legacy_]handler into
install_[legacy_]read_handler, install_[legacy_]write_handler,
and install_[legacy_]readwrite_handler.
Added variants of address_space handler installers which don't take
mirror or mask parameters, since this is by far the most common case.
Deprecated API cleanup. Simple search & replace:
cpu_suspend ==> device_suspend
cpu_resume ==> device_resume
cpu_yield ==> device_yield
cpu_spin ==> device_spin
cpu_spinuntil_trigger ==> device_spin_until_trigger
cpu_spinuntil_time ==> device_spin_until_time
cpu_spinuntil_int ==> device_spin_until_interrupt
cpu_eat_cycles ==> device_eat_cycles
cpu_adjust_icount ==> device_adjust_icount
cpu_triggerint ==> device_triggerint
cpu_set_input_line ==> device_set_input_line
cpu_set_input_line_vector ==> device_set_input_line_vector
cpu_set_input_line_and_vector ==> device_set_input_line_and_vector
cpu_set_irq_callback ==> device_set_irq_callback
More complex changes:
device_memory(device) ==> device->memory()
device_get_space(device, spacenum) ==> device->memory().space(spacenum)
cpu_get_address_space(cpu, spacenum) ==> cpu->memory().space(spacenum)
cputag_get_address_space(mach, tag, spacenum) ==> mach->device("tag")->memory().space(spacenum)
cputag_get_clock(mach, tag) ==> mach->device("tag")->unscaled_clock()
cputag_set_clock(mach, tag, hz) ==> mach->device("tag")->set_unscaled_clock(hz)
Some regex'es for the more prevalent cases above:
S: cpu_get_address_space( *)\(( *)([^,]+)( *), *
R: \3->memory().space\1\(\2
S: cputag_get_address_space( *)\(( *)([^,]+)( *),( *)([^,]+)( *), *
R: \3->device\1\(\2\6\7\)->memory().space\1\(\2
S: cputag_get_clock( *)\(( *)([^,]+)( *),( *)([^ )]+) *\)
R: \3->device\1\(\2\6\7\)->unscaled_clock\(\)
|
|
|
|
|
|
| |
possible. [Miodrag Milanovic]
- Updated all devices containing ROM regions to have short names and all modern devices too
- Created new validation to check existence of short name if device contain ROM region defined
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
timer_adjust_oneshot(t,...) => t->adjust(...)
timer_adjust_periodic(t,...) => t->adjust(...)
timer_reset(t,...) => t->reset(...)
timer_enable(t,...) => t->enable(...)
timer_enabled(t) => t->enabled()
timer_get_param(t) => t->param()
timer_get_ptr(t) => t->ptr()
timer_set_param(t,...) => t->set_param(...)
timer_set_ptr(t) => t->set_ptr(...)
timer_timeelapsed(t) => t->elapsed()
timer_timeleft(t) => t->remaining()
timer_starttime(t) => t->start()
timer_firetime(t) => t->expire()
Also remove some stray legacy cpuexec* macros that were
lurking in schedule.h):
cpuexec_describe_context(m) => m->describe_context()
cpuexec_boost_interleave(m,...) => m->scheduler().boot_interleave(...)
cpuexec_trigger(m,...) => m->scheduler().trigger(...)
cpuexec_triggertime(m,...) => m->scheduler().trigger(...)
Specific regex'es used:
timer_adjust_oneshot( *)\(( *)([^,;]+), *
\3->adjust\1\(\2
timer_adjust_periodic( *)\(( *)([^,;]+), *
\3->adjust\1\(\2
(->adjust.*), *0( *)\)
\1\2\)
timer_reset( *)\(( *)([^,;]+), *
\3->reset\1\(\2
(->reset *\(.*)attotime::never
\1
timer_enable( *)\(( *)([^,;]+), *
\3->enable\1\(\2
timer_enabled( *)\(( *)([^,;)]+)\)
\3->enabled\1\(\2\)
timer_get_param( *)\(( *)([^,;)]+)\)
\3->param\1\(\2\)
timer_get_ptr( *)\(( *)([^,;)]+)\)
\3->ptr\1\(\2\)
timer_timeelapsed( *)\(( *)([^,;)]+)\)
\3->elapsed\1\(\2\)
timer_timeleft( *)\(( *)([^,;)]+)\)
\3->remaining\1\(\2\)
timer_starttime( *)\(( *)([^,;)]+)\)
\3->start\1\(\2\)
timer_firetime( *)\(( *)([^,;)]+)\)
\3->expire\1\(\2\)
timer_set_param( *)\(( *)([^,;]+), *
\3->set_param\1\(\2
timer_set_ptr( *)\(( *)([^,;]+), *
\3->set_ptr\1\(\2
cpuexec_describe_context( *)\(( *)([^,;)]+)\)
\3->describe_context\1\(\2\)
\&m_machine->describe_context
m_machine.describe_context
cpuexec_boost_interleave( *)\(( *)([^,;]+), *
\3->scheduler().boost_interleave\1\(\2
cpuexec_trigger( *)\(( *)([^,;]+), *
\3->scheduler().trigger\1\(\2
cpuexec_triggertime( *)\(( *)([^,;]+), *
\3->scheduler().trigger\1\(\2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
timers into the scheduler. Retain TIMER devices as a separate wrapper
in timer.c/.h. Inline wrappers are currently provided for all timer
operations; a future update will bulk clean these up.
Rather than using macros which hide generation of a string-ified name
for callback functions, the new methods require passing both a function
pointer plus a name string. A new macro FUNC() can be used to output
both, and another macro MFUNC() can be used to output a stub-wrapped
class member as a callback.
Also added a time() method on the machine, so that machine->time() gives
the current emulated time. A wrapper for timer_get_time is currently
provided but will be bulk replaced in the future.
For this update, convert all classic timer_alloc, timer_set,
timer_pulse, and timer_call_after_resynch calls into method calls on
the scheduler.
For new device timers, added methods to the device_t class that make
creating and managing these much simpler. Modern devices were updated
to use these.
Here are the regexes used; some manual cleanup (compiler-caught) will
be needed since regex doesn't handle nested parentheses cleanly
1. Convert timer_call_after_resynch calls
timer_call_after_resynch( *)\(( *)([^,;]+), *([^,;]+), *([^,;]+), *([^);]+)\)
\3->scheduler().synchronize\1\(\2FUNC(\6), \5, \4\)
2. Clean up trailing 0, NULL parameters
(synchronize[^;]+), 0, NULL\)
\1)
3. Clean up trailing NULL parameters
(synchronize[^;]+), NULL\)
\1)
4. Clean up completely empty parameter lists
synchronize\(FUNC\(NULL\)\)
synchronize()
5. Convert timer_set calls
timer_set( *)\(( *)([^,;]+), *([^,;]+), *([^,;]+), *([^,;]+), *([^);]+)\)
\3->scheduler().timer_set\1\(\2\4, FUNC(\7), \6, \5\)
6. Clean up trailing 0, NULL parameters
(timer_set[^;]+), 0, NULL\)
\1)
7. Clean up trailing NULL parameters
(timer_set[^;]+), NULL\)
\1)
8. Convert timer_set calls
timer_pulse( *)\(( *)([^,;]+), *([^,;]+), *([^,;]+), *([^,;]+), *([^);]+)\)
\3->scheduler().timer_pulse\1\(\2\4, FUNC(\7), \6, \5\)
9. Clean up trailing 0, NULL parameters
(timer_pulse[^;]+), 0, NULL\)
\1)
10. Clean up trailing NULL parameters
(timer_pulse[^;]+), NULL\)
\1)
11. Convert timer_alloc calls
timer_alloc( *)\(( *)([^,;]+), *([^,;]+), *([^);]+)\)
\3->scheduler().timer_alloc\1\(\2FUNC(\4), \5\)
12. Clean up trailing NULL parameters
(timer_alloc[^;]+), NULL\)
\1)
13. Clean up trailing 0 parameters
(timer_alloc[^;]+), 0\)
\1)
14. Fix oddities introduced
\&m_machine->scheduler()
m_machine.scheduler()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
attotime_zero => attotime::zero
attotime_never => attotime::never
ATTOTIME_IN_SEC(s) => attotime::from_seconds(s)
ATTOTIME_IN_MSEC(m) => attotime::from_msec(m)
ATTOTIME_IN_USEC(u) => attotime::from_usec(u)
ATTOTIME_IN_NSEC(n) => attotime::from_nsec(n)
ATTOTIME_IN_HZ(h) => attotime::from_hz(h)
Also, changed the following MCFG macros to require a full
attotime specification:
MCFG_TIMER_ADD_PERIODIC
MCFG_QUANTUM_TIME
MCFG_WATCHDOG_TIME_INIT
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
global functions which are now superceded by the operators and
methods on the class. [Aaron Giles]
Required mappings are:
attotime_make(a,b) => attotime(a,b)
attotime_to_double(t) => t.as_double()
double_to_attotime(d) => attotime::from_double(d)
attotime_to_attoseconds(t) => t.as_attoseconds()
attotime_to_ticks(t,f) => t.as_ticks(f)
ticks_to_attotime(t,f) => attotime::from_ticks(t,f)
attotime_add(a,b) => a + b
attotime_add_attoseconds(a,b) => a + attotime(0, b)
attotime_sub(a,b) => a - b
attotime_sub_attoseconds(a,b) => a - attotime(0, b)
attotime_compare(a,b) == 0 => a == b
attotime_compare(a,b) != 0 => a != b
attotime_compare(a,b) < 0 => a < b
attotime_compare(a,b) <= 0 => a <= b
attotime_compare(a,b) > 0 => a > b
attotime_compare(a,b) >= 0 => a >= b
attotime_mul(a,f) => a * f
attotime_div(a,f) => a / f
attotime_min(a,b) => min(a,b)
attotime_max(a,b) => max(a,b)
attotime_is_never(t) => t.is_never()
attotime_string(t,p) => t.as_string(p)
In addition, some existing #defines still exist but will go away:
attotime_zero => attotime::zero
attotime_never => attotime::never
ATTOTIME_IN_SEC(s) => attotime::from_seconds(s)
ATTOTIME_IN_MSEC(m) => attotime::from_msec(m)
ATTOTIME_IN_USEC(u) => attotime::from_usec(u)
ATTOTIME_IN_NSEC(n) => attotime::from_nsec(n)
ATTOTIME_IN_HZ(h) => attotime::from_hz(h)
|
|
|
|
|
| |
They both already existed. No sense in having two names for the
same object type.
|
|
|
|
|
| |
There hasn't been a machine driver for many years.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
1. Renamed MACHINE_DRIVER_* to MACHINE_CONFIG_* to match the name
of the object it actually describes. The MDRV_* prefix may
eventually be bulk updated at some point, but not now.
2. MACHINE_CONFIG_START() now takes a driver_data_t-derived
class as a required second parameter. This means that
MDRV_DRIVER_DATA() is no longer required, and every "root"
machine config *must* specify a driver data class (or driver_data_t
itself if the driver has not yet been updated to use driver data).
3. New MACHINE_CONFIG_DERIVED() macro defines a machine_config
that is derived from another machine_config. This takes the place
of the very typical MACHINE_DRIVER_START()/MDRV_IMPORT_FROM()
combination.
4. New MACHINE_CONFIG_FRAGMENT() macro defines a partial
machine_config that can only be included in another "root"
machine_config. This is also used for machine_configs that are
specified as part of a device.
5. Changed MDRV_IMPORT_FROM() to MDRV_FRAGMENT_ADD() to more
accurately describe what is happening.
6. Added asserts to the above three macros to ensure they are
properly used.
Updated all machine drivers to use the new macros. Search & replace
lists below cover 99% of the changes, with just a few manual fixups.
S: MACHINE_DRIVER_START\( *([a-zA-Z0-9_]+) *\)[\r\n\t ]*MDRV_DRIVER_DATA\( *([a-zA-Z0-9_]+) *\)
R: MACHINE_CONFIG_START\( \1, \2 \)
S: MACHINE_DRIVER_START\( *([a-zA-Z0-9_]+) *\)[\r\n\t ]*/\* driver data \*/[\r\n\t ]*MDRV_DRIVER_DATA\( *([a-zA-Z0-9_]+) *\)
R: MACHINE_CONFIG_START\( \1, \2 \)
S: MACHINE_DRIVER_START\( *([a-zA-Z0-9_]+) *\)[\r\n\t ]*MDRV_IMPORT_FROM\( *([a-zA-Z0-9_]+) *\)
R: MACHINE_CONFIG_DERIVED\( \1, \2 \)
S: MACHINE_DRIVER_START\( *([a-zA-Z0-9_]+) *\)[\r\n\t ]*/\* basic machine hardware \*/[\r\n\t ]*MDRV_IMPORT_FROM\( *([a-zA-Z0-9_]+) *\)
R: MACHINE_CONFIG_DERIVED\( \1, \2 \)\r\n\r\n\t/\* basic machine hardware \*/
For all files outside of mame/drivers....
S: MACHINE_DRIVER_START
R: MACHINE_CONFIG_FRAGMENT in all non-drivers
For all files within mame/drivers....
S: MACHINE_DRIVER_START\( *([a-zA-Z0-9_]+) *\)
R: MACHINE_CONFIG_START\( \1, driver_data_t \)
S: MDRV_IMPORT_FROM
R: MDRV_FRAGMENT_ADD
S: MACHINE_DRIVER_END
R: MACHINE_CONFIG_END
S: MACHINE_DRIVER_NAME
R: MACHINE_CONFIG_NAME
S: MACHINE_DRIVER_EXTERN
R: MACHINE_CONFIG_EXTERN
Final step: run mame -valid and fix the incorrect macros at the lines
where the asserts show up.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
performance as a result of this change. Do not panic; report issues to the
list in the short term and I will look into them. There are probably also
some details I forgot to mention. Please ask questions if anything is not
clear.
NOTE: This is a major internal change to the way devices are handled in
MAME. There is a small impact on drivers, but the bulk of the changes are
to the devices themselves. Full documentation on the new device handling
is in progress at http://mamedev.org/devwiki/index.php/MAME_Device_Basics
Defined two new casting helpers: [Aaron Giles]
downcast<type>(value) should be used for safe and efficient downcasting
from a base class to a derived class. It wraps static_cast<> by adding
an assert that a matching dynamic_cast<> returns the same result in
debug builds.
crosscast<type>(value) should be used for safe casting from one type to
another in multiple inheritance scenarios. It compiles to a
dynamic_cast<> plus an assert on the result. Since it does not optimize
down to static_cast<>, you should prefer downcast<> over crosscast<>
when you can.
Redefined running_device to be a proper C++ class (now called device_t).
Same for device_config (still called device_config). All devices and
device_configs must now be derived from these base classes. This means
each device type now has a pair of its own unique classes that describe
the device. Drivers are encouraged to use the specific device types
instead of the generic running_device or device_t classes. Drivers that
have a state class defined in their header file are encouraged to use
initializers off the constructor to locate devices. [Aaron Giles]
Removed the following fields from the device and device configuration
classes as they never were necessary or provided any use: device class,
device family, source file, version, credits. [Aaron Giles]
Added templatized variant of machine->device() which performs a downcast
as part of the device fetch. Thus machine->device<timer_device>("timer")
will locate a device named "timer", downcast it to a timer_device, and
assert if the downcast fails. [Aaron Giles]
Removed most publically accessible members of running_device/device_t in
favor of inline accessor functions. The only remaining public member is
machine. Thus all references to device->type are now device->type(), etc.
[Aaron Giles]
Created a number of device interface classes which are designed to be mix-
ins for the device classes, providing specific extended functionality and
information. There are standard interface classes for sound, execution,
state, nvram, memory, and disassembly. Devices can opt into 0 or more of
these classes. [Aaron Giles]
Converted the classic CPU device to a standard device that uses the
execution, state, memory, and disassembly interfaces. Used this new class
(cpu_device) to implement the existing CPU device interface. In the future
it will be possible to convert each CPU core to its own device type, but
for now they are still all CPU devices with a cpu_type() that specifies
exactly which kind of CPU. [Aaron Giles]
Created a new header devlegcy.h which wraps the old device interface using
some special template classes. To use these with an existing device,
simply remove from the device header the DEVICE_GET_INFO() declaration and
the #define mapping the ALL_CAPS name to the DEVICE_GET_INFO. In their
place #include "devlegcy.h" and use the DECLARE_LEGACY_DEVICE() macro.
In addition, there is a DECLARE_LEGACY_SOUND_DEVICE() macro for wrapping
existing sound devices into new-style devices, and a
DECLARE_LEGACY_NVRAM_DEVICE() for wrapping NVRAM devices. Also moved the
token and inline_config members to the legacy device class, as these are
not used in modern devices. [Aaron Giles]
Converted the standard base devices (VIDEO_SCREEN, SPEAKER, and TIMER)
from legacy devices to the new C++ style. Also renamed VIDEO_SCREEN to
simply SCREEN. The various global functions that were previously used to
access information or modify the state of these devices are now replaced
by methods on the device classes. Specifically:
video_screen_configure() == screen->configure()
video_screen_set_visarea() == screen->set_visible_area()
video_screen_update_partial() == screen->update_partial()
video_screen_update_now() == screen->update_now()
video_screen_get_vpos() == screen->vpos()
video_screen_get_hpos() == screen->hpos()
video_screen_get_vblank() == screen->vblank()
video_screen_get_hblank() == screen->hblank()
video_screen_get_width() == screen->width()
video_screen_get_height() == screen->height()
video_screen_get_visible_area() == screen->visible_area()
video_screen_get_time_until_pos() == screen->time_until_pos()
video_screen_get_time_until_vblank_start() ==
screen->time_until_vblank_start()
video_screen_get_time_until_vblank_end() ==
screen->time_until_vblank_end()
video_screen_get_time_until_update() == screen->time_until_update()
video_screen_get_scan_period() == screen->scan_period()
video_screen_get_frame_period() == screen->frame_period()
video_screen_get_frame_number() == screen->frame_number()
timer_device_adjust_oneshot() == timer->adjust()
timer_device_adjust_periodic() == timer->adjust()
timer_device_reset() == timer->reset()
timer_device_enable() == timer->enable()
timer_device_enabled() == timer->enabled()
timer_device_get_param() == timer->param()
timer_device_set_param() == timer->set_param()
timer_device_get_ptr() == timer->get_ptr()
timer_device_set_ptr() == timer->set_ptr()
timer_device_timeelapsed() == timer->time_elapsed()
timer_device_timeleft() == timer->time_left()
timer_device_starttime() == timer->start_time()
timer_device_firetime() == timer->fire_time()
Updated all drivers that use the above functions to fetch the specific
device type (timer_device or screen_device) and call the appropriate
method. [Aaron Giles]
Changed machine->primary_screen and the 'screen' parameter to VIDEO_UPDATE
to specifically pass in a screen_device object. [Aaron Giles]
Defined a new custom interface for the Z80 daisy chain. This interface
behaves like the standard interfaces, and can be added to any device that
implements the Z80 daisy chain behavior. Converted all existing Z80 daisy
chain devices to new-style devices that inherit this interface.
[Aaron Giles]
Changed the way CPU state tables are built up. Previously, these were data
structures defined by a CPU core which described all the registers and how
to output them. This functionality is now part of the state interface and
is implemented via the device_state_entry class. Updated all CPU cores
which were using the old data structure to use the new form. The syntax is
currently awkward, but will be cleaner for CPUs that are native new
devices. [Aaron Giles]
Converted the okim6295 and eeprom devices to the new model. These were
necessary because they both require multiple interfaces to operate and it
didn't make sense to create legacy device templates for these single cases.
(okim6295 needs the sound interface and the memory interface, while eeprom
requires both the nvram and memory interfaces). [Aaron Giles]
Changed parameters in a few callback functions from pointers to references
in situations where they are guaranteed to never be NULL. [Aaron Giles]
Removed MDRV_CPU_FLAGS() which was only used for disabling a CPU. Changed
it to MDRV_DEVICE_DISABLE() instead. Updated drivers. [Aaron Giles]
Reorganized the token parsing for machine configurations. The core parsing
code knows how to create/replace/remove devices, but all device token
parsing is now handled in the device_config class, which in turn will make
use of any interface classes or device-specific token handling for custom
token processing. [Aaron Giles]
Moved many validity checks out of validity.c and into the device interface
classes. For example, address space validation is now part of the memory
interface class. [Aaron Giles]
Consolidated address space parameters (bus width, endianness, etc.) into
a single address_space_config class. Updated all code that queried for
address space parameters to use the new mechanism. [Aaron Giles]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
is now separate from runtime device state. I have larger plans
for devices, so there is some temporary scaffolding to hold
everything together, but this first step does separate things
out.
There is a new class 'running_device' which represents the
state of a live device. A list of these running_devices sits
in machine->devicelist and is created when a running_machine
is instantiated.
To access the configuration state, use device->baseconfig()
which returns a reference to the configuration.
The list of running_devices in machine->devicelist has a 1:1
correspondance with the list of device configurations in
machine->config->devicelist, and most navigation options work
equally on either (scanning by class, type, etc.)
For the most part, drivers will now deal with running_device
objects instead of const device_config objects. In fact, in
order to do this patch, I did the following global search &
replace:
const device_config -> running_device
device->static_config -> device->baseconfig().static_config
device->inline_config -> device->baseconfig().inline_config
and then fixed up the compiler errors that fell out.
Some specifics:
Removed device_get_info_* functions and replaced them with
methods called get_config_*.
Added methods for get_runtime_* to access runtime state from
the running_device.
DEVICE_GET_INFO callbacks are only passed a device_config *.
This means they have no access to the token or runtime state
at all. For most cases this is fine.
Added new DEVICE_GET_RUNTIME_INFO callback that is passed
the running_device for accessing data that is live at runtime.
In the future this will go away to make room for a cleaner
mechanism.
Cleaned up the handoff of memory regions from the memory
subsystem to the devices.
|
|
|
|
|
|
| |
devtag_get_device ... machine->device()
memory_find_address_space ... device->space()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Created new central header "emu.h"; this should be included
by pretty much any driver or device as the first include. This
file in turn includes pretty much everything a driver or device
will need, minus any other devices it references. Note that
emu.h should *never* be included by another header file.
- Updated all files in the core (src/emu) to use emu.h.
- Removed a ton of redundant and poorly-tracked header includes
from within other header files.
- Temporarily changed driver.h to map to emu.h until we update
files outside of the core.
Added class wrapper around tagmap so it can be directly included
and accessed within objects that need it. Updated all users to
embed tagmap objects and changed them to call through the class.
Added nicer functions for finding devices, ports, and regions in
a machine:
machine->device("tag") -- return the named device, or NULL
machine->port("tag") -- return the named port, or NULL
machine->region("tag"[, &length[, &flags]]) -- return the
named region and optionally its length and flags
Made the device tag an astring. This required touching a lot of
code that printed the device to explicitly fetch the C-string
from it. (Thank you gcc for flagging that issue!)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
useable as a stack object. Also designed the interfaces to allow
for chaining operations. And added a casting operator to const
char * for seamless use in most functions that take plain old C
strings.
Changed all uses of astring to use the object directly on the
stack or embedded in objects instead of explicitly allocating
and deallocating it. Removed a lot of annoying memory management
code as a result.
Changed interfaces that accepted/returned an astring * to
use an astring & instead.
Removed auto_alloc_astring(machine). Use
auto_alloc(machine, astring) instead.
|
|
|
|
|
| |
former function was just an alias and now cpus are no different from other devices
Removed cputag_get_cpu and cputag_reset (another alias, not even used in the source) from cpuexec.h
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
philips codes if video is squelched. Updated the Gottlieb
and Cliff Hanger drivers to request it this way, since they
decode externally.
Made a couple of minor tweaks to the Cliff Hanger driver.
Fixed interrupt timing (was not taking into account
interlacing) to fix up glitches in playback and ensure the
disk test passes. Added SHA1 and marked the game as working.
New games marked working:
Cliff Hanger [Aaron Giles, Warren Ondras, Ernesto Corvi]
|
|
|
|
|
|
|
|
|
|
|
|
| |
Extended the Namco 60xx and namcoio_init() interfaces to accept
a device name string in addition to an interface struct, until
all the interfaces are replaced with devices.
Added DERIVED_CLOCK() macro which can be used by sub-devices to
derive their clock from the parent device.
Tweaked some of the laserdisc interfaces to use ROM_NAME() and
MACHINE_DRIVER_NAME() macros.
|
|
|
|
|
|
| |
and MDRV_CPU_IO_MAP. For the remaining drivers that used multiple
address maps, converted them to use AM_IMPORT_FROM to import the base
map.
|
|
|
|
| |
to make them compile as either C or C++.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
assumption that all device tags are unique. Specifically, the
following no longer need to provide a device type:
AM_DEVREAD/WRITE
DEVCB_DEVICE_HANDLER
devtag_get_device
devtag_reset
device_list_find_by_tag
as well as several device interfaces that referenced other devices.
Also fixed assertion due to overflow in the recent sound fix.
|
|
|
|
|
|
| |
Modified laserdisc players to walk back to their global device state
via the owner, rather than brute-force searching for the first instance
and hoping that is the right one.
|
|
|
|
|
| |
Updated all drivers calling this to the newer function, and
generally simplified their code as a result.
|
|
|
|
|
| |
and timer_get_time to pass the machine parameter. Moved timer globals
to hang off of the running_machine.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
are broken.
Changed READ/WRITE handlers to accept an address_space * instead of a
machine *. The address_space object was enhanced to contain a machine
and a pointer to the relevant CPU object.
Fixed a number of errors found by the compiler, mostly in the core and
CPU/sound handlers, but there is a lot remaining to fix.
Added new function cpu_get_address_space() to fetch the address space
for calling in manually to these functions. In some instances, code
which should eventually be converted to a device is hard-coding fetching
the program space of CPU #0 in order to have something valid to pass.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
related APIs now take a device pointer instead of an index.
All functions that take a CPU device are prefixed with cpu_*
All functions that are globally related to cpu execution
are prefixed with cpuexec_*. Below is a list of some of the
mappings:
cpu_boost_interleave -> cpuexec_boost_interleave
cpunum_suspend -> cpu_suspend
cpunum_resume -> cpu_resume
cpunum_is_suspended -> cpu_is_suspended
cpunum_get_clock -> cpu_get_clock
cpunum_set_clock -> cpu_set_clock
cpunum_get_clockscale -> cpu_get_clockscale
cpunum_set_clockscale -> cpu_set_clockscale
cpunum_get_localtime -> cpu_get_local_time
cpunum_gettotalcycles -> cpu_get_total_cycles
activecpu_eat_cycles -> cpu_eat_cycles
activecpu_adjust_icount -> cpu_adjust_icount
cpu_trigger -> cpuexec_trigger
cpu_triggertime -> cpuexec_triggertime
cpunum_set_input_line -> cpu_set_input_line
cpunum_set_irq_callback -> cpu_set_irq_callback
In addition, a number of functions retain the same name but
now require a specific CPU parameter to be passed in:
cpu_yield
cpu_spin
cpu_spinuntil_time
cpu_spinuntil_int
cpu_spinuntil_trigger
cpu_triggerint
Merged cpuint.c into cpuexec.c. One side-effect of this
change is that driver reset callbacks are called AFTER the
CPUs and devices are reset. This means that if you make
changes to the CPU state and expect the reset vectors to
recognize the changes in your reset routine, you will need
to manually reset the CPU after making the change (since it
has already been reset).
Added a number of inline helper functions to cpuintrf.h for
managing addresses
Removed cpu_gettotalcpu(). This information is rarely needed
outside of the core and can be obtained by looking at the
machine->cpu[] array.
Changed CPU interrupt acknowledge callbacks to pass a CPU
device instead of machine/cpunum pair.
Changed VBLANK and periodic timer callbacks to pass a CPU
device instead of machine/cpunum pair.
Renamed all information getters from cpu_* to cpu_get_* and
from cputype_* to cputype_get_*.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* added a set of cpu_* calls which accept a CPU device object;
these are now the preferred means of manipulating a CPU
* removed the cpunum_* calls; added an array of cpu[] to the
running_machine object; converted all existing cpunum_* calls
to cpu_* calls, pulling the CPU device object from the new
array in the running_machine
* removed the activecpu_* calls; added an activecpu member to
the running_machine object; converted all existing activecpu_*
calls to cpu_* calls, pulling the active CPU device object
from the running_machine
* changed cpuintrf_push_context() to cpu_push_context(), taking
a CPU object pointer; changed cpuintrf_pop_context() to
cpu_pop_context(); eventually these will go away
* many other similar changes moving toward a model where all CPU
references are done by the CPU object and not by index
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
means of setting the minimum useful scheduling quantum, and clamping
all quanta to that value.
Changed interleave/boost handling to use scheduling quanta instead
of timers.
Added machine parameter to cpu_boost_interleave.
Updated cpuexec to compute the "perfect" interleave value taking into
account the minimum number of cycles per instruction specified by the
CPU core. Updated Z80 core to indicate that the minimum cpi is 2. Fixed
incorrect minimum cpi in the 68020+ cores.
Simplified a bit of logic in cpuexec_timeslice.
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
| |
Added preliminary LD-V1000 emulation. Not fully working yet, but mostly
there.
Cleaned up and normalized the three existing laserdisc emulations.
Removed obsolete code from the laserdisc core.
|
|
|
|
|
|
|
|
|
| |
configuration builder to use these functions. Also changed the laserdisc
player devices to use them. Updated Z80 CTC/SIO code to assume that the
CPU provided for the clock is relative to the device that the CTC/SIO
belong to. Updated memory code to assume that regions and devices
referenced by the memory map are relative to the device the associated
CPU belongs to.
|
| |
|
|
fine and basic searching/playback/skipping is functional. Still a bit
glitchy.
Firefox improvements:
- removed need for deprecat.h
- memory map is complete from schematics
- gutted laserdisc hacks in favor of actual laserdisc implementation
- fixed all CPU and sound clocks
Removed old laserdsc.c implementation.
Added generic timer devices, which simply allocate a timer but don't
prime it. This is the preferred method for allocating timers, and may
eventually be the only mechanism for doing so in the future.
|