| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
| |
CPC applications) (no whatsnew)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
memory_region management into the memory manager instead
of directly in the machine. Hid the global region method;
now all regions must be looked up relative to a device.
If you're a member function, you can just use memregion("tag")
directly. If you're a global function or a device referencing
global regions, use machine().root_device().memregion("tag")
to look up regions relative to the root.
S&R to convert all references:
machine([()]*)\.region
machine\1\.root_device\(\).subregion
Then remove redundant machine().root_device() within src/mame:
([ \t])machine\(\)\.root_device\(\)\.
\1
And use state->memregion() if we have a state variable present:
(state *= *[^;]+driver_data[^}]+)([^ \t]*)machine[()]*\.root_device\(\)\.
\1state->
Finally some cleanup:
screen.state->
state->
device->state->
state->
space->state->
state->
And a few hand-tweaks.
|
|
|
|
| |
Move game_driver definition and constants to new header gamedrv.h.
|
| |
|
| |
|
| |
|
|
|
|
| |
open_image_file call (no whatsnew)
|
| |
|
|
|
|
|
|
| |
Remove overabstraction in hash.h; it's ok to hard code the
two types of hashes we have. Even adding another one would
not be very difficult. ;)
|
|
|
|
| |
use emu.h (nw)
|
| |
|
|
|
|
|
| |
problems with nvram and snap handling in softlist. no whatsnew.
I'm not sure if the change from "m_image_name = softlist:gamename" to "m_image_name = softlist:gamename:partname" was done on purpose, but given how close we are to the release, I think it's safer to fix it here than to modify the softlist code.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
and paths consistently for devices, I/O ports, memory
regions, memory banks, and memory shares. [Aaron Giles]
NOTE: there are likely regressions lurking here, mostly
due to devices not being properly found. I have temporarily
added more logging to -verbose to help understand what's
going on. Please let me know ASAP if anything that is being
actively worked on got broken.
As before, the driver device is the root device and all
other devices are owned by it. Previously all devices
were kept in a single master list, and the hierarchy was
purely logical. With this change, each device owns its
own list of subdevices, and the hierarchy is explicitly
manifest. This means when a device is removed, all of its
subdevices are automatically removed as well.
A side effect of this is that walking the device list is
no longer simple. To address this, a new set of iterator
classes is provided, which walks the device tree in a depth
first manner. There is a general device_iterator class for
walking all devices, plus templates for a device_type_iterator
and a device_interface_iterator which are used to build
iterators for identifying only devices of a given type or
with a given interface. Typedefs for commonly-used cases
(e.g., screen_device_iterator, memory_interface_iterator)
are provided. Iterators can also provide counts, and can
perform indexed lookups.
All device name lookups are now done relative to another
device. The maching_config and running_machine classes now
have a root_device() method to get the root of the hierarchy.
The existing machine->device("name") is now equivalent to
machine->root_device().subdevice("name").
A proper and normalized device path structure is now
supported. Device names that start with a colon are
treated as absolute paths from the root device. Device
names can also use a caret (^) to refer to the owning
device. Querying the device's tag() returns the device's
full path from the root. A new method basetag() returns
just the final tag.
The new pathing system is built on top of the
device_t::subtag() method, so anyone using that will
automatically support the new pathing rules. Each device
has its own internal map to cache successful lookups so
that subsequent lookups should be very fast.
Updated every place I could find that referenced devices,
memory regions, I/O ports, memory banks and memory shares
to leverage subtag/subdevice (or siblingtag/siblingdevice
which are built on top).
Removed the device_list class, as it doesn't apply any
more. Moved some of its methods into running_machine
instead.
Simplified the device callback system since the new
pathing can describe all of the special-case devices that
were previously handled manually.
Changed the core output function callbacks to be delegates.
Completely rewrote the validity checking mechanism. The
validity checker is now a proper C++ class, and temporarily
takes over the error and warning outputs. All errors and
warnings are collected during a session, and then output in
a consistent manner, with an explicit driver and source file
listed for each one, as well as additional device and/or
I/O port contexts where appropriate. Validity checkers
should no longer explicitly output this information, just
the error, assuming that the context is provided.
Rewrote the software_list_device as a modern device, getting
rid of the software_list_config abstraction and simplifying
things.
Changed the way FLAC compiles so that it works like other
external libraries, and also compiles successfully for MSVC
builds.
|
| |
|
| |
|
| |
|
|
|
|
|
|
| |
a class now. Updated all stragglers (mostly tools) to use the class
form. [Aaron Giles]
|
| |
|
| |
|
|
|
|
| |
- Various core and tools memory leaks fixes [Oliver Stoneberg]
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
|
| |
class (no whatsnew)
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
existing modern devices and the legacy wrappers to work in this
environment. This in general greatly simplifies writing a modern
device. [Aaron Giles]
General notes:
* some more cleanup probably needs to happen behind this change,
but I needed to get it in before the next device modernization
or import from MESS :)
* new template function device_creator which automatically defines
the static function that creates the device; use this instead of
creating a static_alloc_device_config function
* added device_stop() method which is called at around the time
the previous device_t's destructor was called; if you auto_free
anything, do it here because the machine is gone when the
destructor is called
* changed the static_set_* calls to pass a device_t & instead of
a device_config *
* for many devices, the static config structure member names over-
lapped the device's names for devcb_* functions; in these cases
the members in the interface were renamed to have a _cb suffix
* changed the driver_enumerator to only cache 100 machine_configs
because caching them all took a ton of memory; fortunately this
implementation detail is completely hidden behind the
driver_enumerator interface
* got rid of the macros for creating derived classes; doing it
manually is now clean enough that it isn't worth hiding the
details in a macro
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
loader rewrite, which is still in progress....)
Replaced mamedriv.c with a new driver list mechanism that is generated
by the build tools. The emulator core now expects the presence of a
file called src/$(TARGET)/$(SUBTARGET).lst which is just a raw list of
driver names, one per line. C and C++ comments are still permitted.
This file is parsed by a new build tool makelist which extracts the
driver names, sorts them, and generates a file called drivlist.c, which
is consumed by the core. [Aaron Giles]
Added new osdcore function osd_malloc_array() which is identical to
osd_malloc() but obviously hints that the underlying allocation is for
an array. Updated all callers to use the appropriate form. Modified the
Windows allocator to only use guard pages for array-style allocations,
allowing us to enable them once again in debug builds. [Aaron Giles]
Created new static class driver_list to wrap accesses to the list of
available drivers. Improved speed of driver lookups by relying on the
presorting done by makelist. [Aaron Giles]
Created helper class driver_enumerator as a helper for iterating through
the list of drivers. This class supports basic filtering and iteration,
and also serves as a temporary cache of machine_configs. [Aaron Giles]
Created cli_frontend object to wrap all the CLI handling code in
clifront.c. Updated/simplified all the code to take advantage of the
driver_enumerator. [Aaron Giles]
Created media_auditor object to wrap all the auditing functions in
audit.c. Updated all users to the new interface. Note that the new
auditing mechanism is slightly out of sync with the romload code in
terms of finding ROMs owned by devices, so it may mis-report some
issues until the new ROM loading code is in. [Aaron Giles]
Added concept of a per-device searchpath. For most devices, their
searchpath is just the short name of the device. For driver_devices, the
searchpath is driver[;parent[;bios]]. This searchpath will eventually be
used by the rom loader to find ROMs. For now it is used by the media
auditor only. [Aaron Giles]
Created info_xml_creator object to wrap all the info generation functions
in info.c. Converted the file to C++ and cleaned up the input processing
code. [Aaron Giles]
(not for whatsnew ... Known issues: auditing of CHDs appears busted, and
debug builds report unfreed memory if you use the built-in game picker)
|
|
|
|
|
| |
sharedfeat (e.g. 'compatibility') and display a warning message accordingly. updated cdi.c as an example [Fabio Priuli]
support for floppy and tapes is in progress, but I have to discuss with Micko first :)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Remove redundant machine items from address_space and device_t.
Neither machine nor m_machine are directly accessible anymore.
Instead a new getter machine() is available which returns a
machine reference. So:
space->machine->xxx ==> space->machine().xxx
device->machine->yyy ==> device->machine().yyy
Globally changed all running_machine pointers to running_machine
references. Any function/method that takes a running_machine takes
it as a required parameter (1 or 2 exceptions). Being consistent
here gets rid of a lot of odd &machine or *machine, but it does
mean a very large bulk change across the project.
Structs which have a running_machine * now have that variable
renamed to m_machine, and now have a shiny new machine() method
that works like the space and device methods above. Since most of
these are things that should eventually be devices anyway, consider
this a step in that direction.
98% of the update was done with regex searches. The changes are
architected such that the compiler will catch the remaining
errors:
// find things that use an embedded machine directly and replace
// with a machine() getter call
S: ->machine->
R: ->machine\(\)\.
// do the same if via a reference
S: \.machine->
R: \.machine\(\)\.
// convert function parameters to running_machine &
S: running_machine \*machine([^;])
R: running_machine \&machine\1
// replace machine-> with machine.
S: machine->
R: machine\.
// replace &machine() with machine()
S: \&([()->a-z0-9_]+machine\(\))
R: \1
// sanity check: look for this used as a cast
(running_machine &)
// and change to this:
*(running_machine *)
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
to private member variables with accessors:
machine->m_respool ==> machine->respool()
machine->config ==> machine->config()
machine->gamedrv ==> machine->system()
machine->m_regionlist ==> machine->first_region()
machine->sample_rate ==> machine->sample_rate()
Also converted internal lists to use simple_list.
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
and manages a collection of hashes, and can be built from an internal
format string which is stored with each ROM. All core instances are
cleaned up to use the new interfaces, but it's likely that hashfile
code in MESS will need an update.
Also compacted the form of the hash strings used for ROMs, and fixed
verification/hashing of non-ZIPped files.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
to pass a core_options object to the constructor, along with
a search path. This required pushing either a running_machine
or a core_options through some code that wasn't previously
ready to handle it. emu_files can be reused over multiple
open/close sessions, and a lot of core code cleaned up
nicely as things were converted to them.
Also created a file_enumerator class for iterating over files
in a searchpath. This replaces the old mame_openpath functions.
Changed machine->options() to return a reference.
Removed public nvram_open() and fixed jchan/kaneko16 to
stop directly saving NVRAM.
Removed most of the mame_options() calls; this will soon go
away entirely, so don't add any more.
Added core_options to device_validity_check() so they can be
used to validate things.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
memory_region() == machine->region()->base()
memory_region_length() == machine->region()->bytes()
region_info -> memory_region
Regex searches:
S: memory_region( *)\(( *)([^,&]+), *([^)]+)\)
R: \3->region\1\(\2\4\)->base\(\)
S: memory_region_length( *)\(( *)([^,&]+), *([^)]+)\)
R: \3->region\1\(\2\4\)->bytes\(\)
|
|
|
|
| |
Swap: (astring.len() == 0) -> !astring
|
| |
|
| |
|
| |
|
|
|
|
| |
cassettes, cd-roms are now possible to be used [Miodrag Milanovic]
|
| |
|
|
|
|
| |
image device (no whatsnew)
|
| |
|
|
|
| |
- Implemented more image device calls, and did some cleanup (no whatsnew)
|
|
|
|
|
| |
- Moved image related UI from MESS to emu core
- Reimplemented filename related image device calls
|
| |
|