summaryrefslogtreecommitdiffstatshomepage
path: root/trunk/src/lib/util/sha1.c
diff options
context:
space:
mode:
Diffstat (limited to 'trunk/src/lib/util/sha1.c')
-rw-r--r--trunk/src/lib/util/sha1.c387
1 files changed, 387 insertions, 0 deletions
diff --git a/trunk/src/lib/util/sha1.c b/trunk/src/lib/util/sha1.c
new file mode 100644
index 00000000000..edca0192103
--- /dev/null
+++ b/trunk/src/lib/util/sha1.c
@@ -0,0 +1,387 @@
+/* sha1.h
+ *
+ * The sha1 hash function.
+ */
+
+/* nettle, low-level cryptographics library
+ *
+ * Copyright 2001 Peter Gutmann, Andrew Kuchling, Niels Moeller
+ *
+ * The nettle library is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published by
+ * the Free Software Foundation; either version 2.1 of the License, or (at your
+ * option) any later version.
+ *
+ * The nettle library is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+ * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
+ * License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with the nettle library; see the file COPYING.LIB. If not, write to
+ * the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
+ * MA 02111-1307, USA.
+ */
+
+#include "sha1.h"
+
+#include <assert.h>
+#include <stdlib.h>
+#include <string.h>
+
+static unsigned int READ_UINT32(const UINT8* data)
+{
+ return ((UINT32)data[0] << 24) |
+ ((UINT32)data[1] << 16) |
+ ((UINT32)data[2] << 8) |
+ ((UINT32)data[3]);
+}
+
+static void WRITE_UINT32(unsigned char* data, UINT32 val)
+{
+ data[0] = (val >> 24) & 0xFF;
+ data[1] = (val >> 16) & 0xFF;
+ data[2] = (val >> 8) & 0xFF;
+ data[3] = (val >> 0) & 0xFF;
+}
+
+
+/* A block, treated as a sequence of 32-bit words. */
+#define SHA1_DATA_LENGTH 16
+
+/* The SHA f()-functions. The f1 and f3 functions can be optimized to
+ save one boolean operation each - thanks to Rich Schroeppel,
+ rcs@cs.arizona.edu for discovering this */
+
+/* #define f1(x,y,z) ( ( x & y ) | ( ~x & z ) ) Rounds 0-19 */
+#define f1(x,y,z) ( z ^ ( x & ( y ^ z ) ) ) /* Rounds 0-19 */
+#define f2(x,y,z) ( x ^ y ^ z ) /* Rounds 20-39 */
+/* #define f3(x,y,z) ( ( x & y ) | ( x & z ) | ( y & z ) ) Rounds 40-59 */
+#define f3(x,y,z) ( ( x & y ) | ( z & ( x | y ) ) ) /* Rounds 40-59 */
+#define f4(x,y,z) ( x ^ y ^ z ) /* Rounds 60-79 */
+
+/* The SHA Mysterious Constants */
+
+#define K1 0x5A827999L /* Rounds 0-19 */
+#define K2 0x6ED9EBA1L /* Rounds 20-39 */
+#define K3 0x8F1BBCDCL /* Rounds 40-59 */
+#define K4 0xCA62C1D6L /* Rounds 60-79 */
+
+/* SHA initial values */
+
+#define h0init 0x67452301L
+#define h1init 0xEFCDAB89L
+#define h2init 0x98BADCFEL
+#define h3init 0x10325476L
+#define h4init 0xC3D2E1F0L
+
+/* 32-bit rotate left - kludged with shifts */
+#ifdef _MSC_VER
+#define ROTL(n,X) _lrotl(X, n)
+#else
+#define ROTL(n,X) ( ( (X) << (n) ) | ( (X) >> ( 32 - (n) ) ) )
+#endif
+
+/* The initial expanding function. The hash function is defined over an
+ 80-word expanded input array W, where the first 16 are copies of the input
+ data, and the remaining 64 are defined by
+
+ W[ i ] = W[ i - 16 ] ^ W[ i - 14 ] ^ W[ i - 8 ] ^ W[ i - 3 ]
+
+ This implementation generates these values on the fly in a circular
+ buffer - thanks to Colin Plumb, colin@nyx10.cs.du.edu for this
+ optimization.
+
+ The updated SHA changes the expanding function by adding a rotate of 1
+ bit. Thanks to Jim Gillogly, jim@rand.org, and an anonymous contributor
+ for this information */
+
+#define expand(W,i) ( W[ i & 15 ] = \
+ ROTL( 1, ( W[ i & 15 ] ^ W[ (i - 14) & 15 ] ^ \
+ W[ (i - 8) & 15 ] ^ W[ (i - 3) & 15 ] ) ) )
+
+
+/* The prototype SHA sub-round. The fundamental sub-round is:
+
+ a' = e + ROTL( 5, a ) + f( b, c, d ) + k + data;
+ b' = a;
+ c' = ROTL( 30, b );
+ d' = c;
+ e' = d;
+
+ but this is implemented by unrolling the loop 5 times and renaming the
+ variables ( e, a, b, c, d ) = ( a', b', c', d', e' ) each iteration.
+ This code is then replicated 20 times for each of the 4 functions, using
+ the next 20 values from the W[] array each time */
+
+#define subRound(a, b, c, d, e, f, k, data) \
+ ( e += ROTL( 5, a ) + f( b, c, d ) + k + data, b = ROTL( 30, b ) )
+
+/* Initialize the SHA values */
+
+void
+sha1_init(struct sha1_ctx *ctx)
+{
+ /* Set the h-vars to their initial values */
+ ctx->digest[ 0 ] = h0init;
+ ctx->digest[ 1 ] = h1init;
+ ctx->digest[ 2 ] = h2init;
+ ctx->digest[ 3 ] = h3init;
+ ctx->digest[ 4 ] = h4init;
+
+ /* Initialize bit count */
+ ctx->count_low = ctx->count_high = 0;
+
+ /* Initialize buffer */
+ ctx->index = 0;
+}
+
+/* Perform the SHA transformation. Note that this code, like MD5, seems to
+ break some optimizing compilers due to the complexity of the expressions
+ and the size of the basic block. It may be necessary to split it into
+ sections, e.g. based on the four subrounds
+
+ Note that this function destroys the data area */
+
+static void
+sha1_transform(UINT32 *state, UINT32 *data)
+{
+ UINT32 A, B, C, D, E; /* Local vars */
+
+ /* Set up first buffer and local data buffer */
+ A = state[0];
+ B = state[1];
+ C = state[2];
+ D = state[3];
+ E = state[4];
+
+ /* Heavy mangling, in 4 sub-rounds of 20 interations each. */
+ subRound( A, B, C, D, E, f1, K1, data[ 0] );
+ subRound( E, A, B, C, D, f1, K1, data[ 1] );
+ subRound( D, E, A, B, C, f1, K1, data[ 2] );
+ subRound( C, D, E, A, B, f1, K1, data[ 3] );
+ subRound( B, C, D, E, A, f1, K1, data[ 4] );
+ subRound( A, B, C, D, E, f1, K1, data[ 5] );
+ subRound( E, A, B, C, D, f1, K1, data[ 6] );
+ subRound( D, E, A, B, C, f1, K1, data[ 7] );
+ subRound( C, D, E, A, B, f1, K1, data[ 8] );
+ subRound( B, C, D, E, A, f1, K1, data[ 9] );
+ subRound( A, B, C, D, E, f1, K1, data[10] );
+ subRound( E, A, B, C, D, f1, K1, data[11] );
+ subRound( D, E, A, B, C, f1, K1, data[12] );
+ subRound( C, D, E, A, B, f1, K1, data[13] );
+ subRound( B, C, D, E, A, f1, K1, data[14] );
+ subRound( A, B, C, D, E, f1, K1, data[15] );
+ subRound( E, A, B, C, D, f1, K1, expand( data, 16 ) );
+ subRound( D, E, A, B, C, f1, K1, expand( data, 17 ) );
+ subRound( C, D, E, A, B, f1, K1, expand( data, 18 ) );
+ subRound( B, C, D, E, A, f1, K1, expand( data, 19 ) );
+
+ subRound( A, B, C, D, E, f2, K2, expand( data, 20 ) );
+ subRound( E, A, B, C, D, f2, K2, expand( data, 21 ) );
+ subRound( D, E, A, B, C, f2, K2, expand( data, 22 ) );
+ subRound( C, D, E, A, B, f2, K2, expand( data, 23 ) );
+ subRound( B, C, D, E, A, f2, K2, expand( data, 24 ) );
+ subRound( A, B, C, D, E, f2, K2, expand( data, 25 ) );
+ subRound( E, A, B, C, D, f2, K2, expand( data, 26 ) );
+ subRound( D, E, A, B, C, f2, K2, expand( data, 27 ) );
+ subRound( C, D, E, A, B, f2, K2, expand( data, 28 ) );
+ subRound( B, C, D, E, A, f2, K2, expand( data, 29 ) );
+ subRound( A, B, C, D, E, f2, K2, expand( data, 30 ) );
+ subRound( E, A, B, C, D, f2, K2, expand( data, 31 ) );
+ subRound( D, E, A, B, C, f2, K2, expand( data, 32 ) );
+ subRound( C, D, E, A, B, f2, K2, expand( data, 33 ) );
+ subRound( B, C, D, E, A, f2, K2, expand( data, 34 ) );
+ subRound( A, B, C, D, E, f2, K2, expand( data, 35 ) );
+ subRound( E, A, B, C, D, f2, K2, expand( data, 36 ) );
+ subRound( D, E, A, B, C, f2, K2, expand( data, 37 ) );
+ subRound( C, D, E, A, B, f2, K2, expand( data, 38 ) );
+ subRound( B, C, D, E, A, f2, K2, expand( data, 39 ) );
+
+ subRound( A, B, C, D, E, f3, K3, expand( data, 40 ) );
+ subRound( E, A, B, C, D, f3, K3, expand( data, 41 ) );
+ subRound( D, E, A, B, C, f3, K3, expand( data, 42 ) );
+ subRound( C, D, E, A, B, f3, K3, expand( data, 43 ) );
+ subRound( B, C, D, E, A, f3, K3, expand( data, 44 ) );
+ subRound( A, B, C, D, E, f3, K3, expand( data, 45 ) );
+ subRound( E, A, B, C, D, f3, K3, expand( data, 46 ) );
+ subRound( D, E, A, B, C, f3, K3, expand( data, 47 ) );
+ subRound( C, D, E, A, B, f3, K3, expand( data, 48 ) );
+ subRound( B, C, D, E, A, f3, K3, expand( data, 49 ) );
+ subRound( A, B, C, D, E, f3, K3, expand( data, 50 ) );
+ subRound( E, A, B, C, D, f3, K3, expand( data, 51 ) );
+ subRound( D, E, A, B, C, f3, K3, expand( data, 52 ) );
+ subRound( C, D, E, A, B, f3, K3, expand( data, 53 ) );
+ subRound( B, C, D, E, A, f3, K3, expand( data, 54 ) );
+ subRound( A, B, C, D, E, f3, K3, expand( data, 55 ) );
+ subRound( E, A, B, C, D, f3, K3, expand( data, 56 ) );
+ subRound( D, E, A, B, C, f3, K3, expand( data, 57 ) );
+ subRound( C, D, E, A, B, f3, K3, expand( data, 58 ) );
+ subRound( B, C, D, E, A, f3, K3, expand( data, 59 ) );
+
+ subRound( A, B, C, D, E, f4, K4, expand( data, 60 ) );
+ subRound( E, A, B, C, D, f4, K4, expand( data, 61 ) );
+ subRound( D, E, A, B, C, f4, K4, expand( data, 62 ) );
+ subRound( C, D, E, A, B, f4, K4, expand( data, 63 ) );
+ subRound( B, C, D, E, A, f4, K4, expand( data, 64 ) );
+ subRound( A, B, C, D, E, f4, K4, expand( data, 65 ) );
+ subRound( E, A, B, C, D, f4, K4, expand( data, 66 ) );
+ subRound( D, E, A, B, C, f4, K4, expand( data, 67 ) );
+ subRound( C, D, E, A, B, f4, K4, expand( data, 68 ) );
+ subRound( B, C, D, E, A, f4, K4, expand( data, 69 ) );
+ subRound( A, B, C, D, E, f4, K4, expand( data, 70 ) );
+ subRound( E, A, B, C, D, f4, K4, expand( data, 71 ) );
+ subRound( D, E, A, B, C, f4, K4, expand( data, 72 ) );
+ subRound( C, D, E, A, B, f4, K4, expand( data, 73 ) );
+ subRound( B, C, D, E, A, f4, K4, expand( data, 74 ) );
+ subRound( A, B, C, D, E, f4, K4, expand( data, 75 ) );
+ subRound( E, A, B, C, D, f4, K4, expand( data, 76 ) );
+ subRound( D, E, A, B, C, f4, K4, expand( data, 77 ) );
+ subRound( C, D, E, A, B, f4, K4, expand( data, 78 ) );
+ subRound( B, C, D, E, A, f4, K4, expand( data, 79 ) );
+
+ /* Build message digest */
+ state[0] += A;
+ state[1] += B;
+ state[2] += C;
+ state[3] += D;
+ state[4] += E;
+}
+
+static void
+sha1_block(struct sha1_ctx *ctx, const UINT8 *block)
+{
+ UINT32 data[SHA1_DATA_LENGTH];
+ int i;
+
+ /* Update block count */
+ if (!++ctx->count_low)
+ ++ctx->count_high;
+
+ /* Endian independent conversion */
+ for (i = 0; i<SHA1_DATA_LENGTH; i++, block += 4)
+ data[i] = READ_UINT32(block);
+
+ sha1_transform(ctx->digest, data);
+}
+
+void
+sha1_update(struct sha1_ctx *ctx,
+ unsigned length, const UINT8 *buffer)
+{
+ if (ctx->index)
+ { /* Try to fill partial block */
+ unsigned left = SHA1_DATA_SIZE - ctx->index;
+ if (length < left)
+ {
+ memcpy(ctx->block + ctx->index, buffer, length);
+ ctx->index += length;
+ return; /* Finished */
+ }
+ else
+ {
+ memcpy(ctx->block + ctx->index, buffer, left);
+ sha1_block(ctx, ctx->block);
+ buffer += left;
+ length -= left;
+ }
+ }
+ while (length >= SHA1_DATA_SIZE)
+ {
+ sha1_block(ctx, buffer);
+ buffer += SHA1_DATA_SIZE;
+ length -= SHA1_DATA_SIZE;
+ }
+ ctx->index = length;
+ if (length)
+ /* Buffer leftovers */
+ memcpy(ctx->block, buffer, length);
+}
+
+/* Final wrapup - pad to SHA1_DATA_SIZE-byte boundary with the bit pattern
+ 1 0* (64-bit count of bits processed, MSB-first) */
+
+void
+sha1_final(struct sha1_ctx *ctx)
+{
+ UINT32 data[SHA1_DATA_LENGTH];
+ int i;
+ int words;
+
+ i = ctx->index;
+
+ /* Set the first char of padding to 0x80. This is safe since there is
+ always at least one byte free */
+
+ assert(i < SHA1_DATA_SIZE);
+ ctx->block[i++] = 0x80;
+
+ /* Fill rest of word */
+ for( ; i & 3; i++)
+ ctx->block[i] = 0;
+
+ /* i is now a multiple of the word size 4 */
+ words = i >> 2;
+ for (i = 0; i < words; i++)
+ data[i] = READ_UINT32(ctx->block + 4*i);
+
+ if (words > (SHA1_DATA_LENGTH-2))
+ { /* No room for length in this block. Process it and
+ * pad with another one */
+ for (i = words ; i < SHA1_DATA_LENGTH; i++)
+ data[i] = 0;
+ sha1_transform(ctx->digest, data);
+ for (i = 0; i < (SHA1_DATA_LENGTH-2); i++)
+ data[i] = 0;
+ }
+ else
+ for (i = words ; i < SHA1_DATA_LENGTH - 2; i++)
+ data[i] = 0;
+
+ /* There are 512 = 2^9 bits in one block */
+ data[SHA1_DATA_LENGTH-2] = (ctx->count_high << 9) | (ctx->count_low >> 23);
+ data[SHA1_DATA_LENGTH-1] = (ctx->count_low << 9) | (ctx->index << 3);
+ sha1_transform(ctx->digest, data);
+}
+
+void
+sha1_digest(const struct sha1_ctx *ctx,
+ unsigned length,
+ UINT8 *digest)
+{
+ unsigned i;
+ unsigned words;
+ unsigned leftover;
+
+ assert(length <= SHA1_DIGEST_SIZE);
+
+ words = length / 4;
+ leftover = length % 4;
+
+ for (i = 0; i < words; i++, digest += 4)
+ WRITE_UINT32(digest, ctx->digest[i]);
+
+ if (leftover)
+ {
+ UINT32 word;
+ unsigned j = leftover;
+
+ assert(i < _SHA1_DIGEST_LENGTH);
+
+ word = ctx->digest[i];
+
+ switch (leftover)
+ {
+ default:
+ /* this is just here to keep the compiler happy; it can never happen */
+ case 3:
+ digest[--j] = (word >> 8) & 0xff;
+ /* Fall through */
+ case 2:
+ digest[--j] = (word >> 16) & 0xff;
+ /* Fall through */
+ case 1:
+ digest[--j] = (word >> 24) & 0xff;
+ }
+ }
+}