summaryrefslogtreecommitdiffstatshomepage
path: root/src/lib/util/sha1.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/util/sha1.cpp')
-rw-r--r--src/lib/util/sha1.cpp443
1 files changed, 0 insertions, 443 deletions
diff --git a/src/lib/util/sha1.cpp b/src/lib/util/sha1.cpp
deleted file mode 100644
index abc073cb6e8..00000000000
--- a/src/lib/util/sha1.cpp
+++ /dev/null
@@ -1,443 +0,0 @@
-// license:LGPL-2.1+
-// copyright-holders:Peter Gutmann, Andrew Kuchling, Niels Moeller
-/* sha1.h
- *
- * The sha1 hash function.
- */
-
-/* nettle, low-level cryptographics library
- *
- * Copyright 2001 Peter Gutmann, Andrew Kuchling, Niels Moeller
- *
- * The nettle library is free software; you can redistribute it and/or modify
- * it under the terms of the GNU Lesser General Public License as published by
- * the Free Software Foundation; either version 2.1 of the License, or (at your
- * option) any later version.
- *
- * The nettle library is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
- * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
- * License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public License
- * along with the nettle library; see the file COPYING.LIB. If not, write to
- * the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
- * MA 02111-1307, USA.
- */
-
-#include "sha1.h"
-
-#include <cassert>
-#include <cstdlib>
-#include <cstring>
-
-static unsigned int READ_UINT32(const uint8_t* data)
-{
- return ((uint32_t)data[0] << 24) |
- ((uint32_t)data[1] << 16) |
- ((uint32_t)data[2] << 8) |
- ((uint32_t)data[3]);
-}
-
-static void WRITE_UINT32(unsigned char* data, uint32_t val)
-{
- data[0] = (val >> 24) & 0xFF;
- data[1] = (val >> 16) & 0xFF;
- data[2] = (val >> 8) & 0xFF;
- data[3] = (val >> 0) & 0xFF;
-}
-
-
-/* A block, treated as a sequence of 32-bit words. */
-#define SHA1_DATA_LENGTH 16
-
-/* The SHA f()-functions. The f1 and f3 functions can be optimized to
- save one boolean operation each - thanks to Rich Schroeppel,
- rcs@cs.arizona.edu for discovering this */
-
-/* #define f1(x,y,z) ( ( x & y ) | ( ~x & z ) ) Rounds 0-19 */
-#define f1(x,y,z) ( z ^ ( x & ( y ^ z ) ) ) /* Rounds 0-19 */
-#define f2(x,y,z) ( x ^ y ^ z ) /* Rounds 20-39 */
-/* #define f3(x,y,z) ( ( x & y ) | ( x & z ) | ( y & z ) ) Rounds 40-59 */
-#define f3(x,y,z) ( ( x & y ) | ( z & ( x | y ) ) ) /* Rounds 40-59 */
-#define f4(x,y,z) ( x ^ y ^ z ) /* Rounds 60-79 */
-
-/* The SHA Mysterious Constants */
-
-#define K1 0x5A827999L /* Rounds 0-19 */
-#define K2 0x6ED9EBA1L /* Rounds 20-39 */
-#define K3 0x8F1BBCDCL /* Rounds 40-59 */
-#define K4 0xCA62C1D6L /* Rounds 60-79 */
-
-/* SHA initial values */
-
-#define h0init 0x67452301L
-#define h1init 0xEFCDAB89L
-#define h2init 0x98BADCFEL
-#define h3init 0x10325476L
-#define h4init 0xC3D2E1F0L
-
-/* 32-bit rotate left - kludged with shifts */
-#ifdef _MSC_VER
-#define ROTL(n,X) _lrotl(X, n)
-#else
-#define ROTL(n,X) ( ( (X) << (n) ) | ( (X) >> ( 32 - (n) ) ) )
-#endif
-
-/* The initial expanding function. The hash function is defined over an
- 80-word expanded input array W, where the first 16 are copies of the input
- data, and the remaining 64 are defined by
-
- W[ i ] = W[ i - 16 ] ^ W[ i - 14 ] ^ W[ i - 8 ] ^ W[ i - 3 ]
-
- This implementation generates these values on the fly in a circular
- buffer - thanks to Colin Plumb, colin@nyx10.cs.du.edu for this
- optimization.
-
- The updated SHA changes the expanding function by adding a rotate of 1
- bit. Thanks to Jim Gillogly, jim@rand.org, and an anonymous contributor
- for this information */
-
-#define expand(W,i) ( W[ i & 15 ] = \
- ROTL( 1, ( W[ i & 15 ] ^ W[ (i - 14) & 15 ] ^ \
- W[ (i - 8) & 15 ] ^ W[ (i - 3) & 15 ] ) ) )
-
-
-/* The prototype SHA sub-round. The fundamental sub-round is:
-
- a' = e + ROTL( 5, a ) + f( b, c, d ) + k + data;
- b' = a;
- c' = ROTL( 30, b );
- d' = c;
- e' = d;
-
- but this is implemented by unrolling the loop 5 times and renaming the
- variables ( e, a, b, c, d ) = ( a', b', c', d', e' ) each iteration.
- This code is then replicated 20 times for each of the 4 functions, using
- the next 20 values from the W[] array each time */
-
-#define subRound(a, b, c, d, e, f, k, data) \
- ( e += ROTL( 5, a ) + f( b, c, d ) + k + data, b = ROTL( 30, b ) )
-
-/* Initialize the SHA values */
-
-/**
- * @fn void sha1_init(struct sha1_ctx *ctx)
- *
- * @brief Sha 1 initialise.
- *
- * @param [in,out] ctx If non-null, the context.
- */
-
-void
-sha1_init(struct sha1_ctx *ctx)
-{
- /* Set the h-vars to their initial values */
- ctx->digest[ 0 ] = h0init;
- ctx->digest[ 1 ] = h1init;
- ctx->digest[ 2 ] = h2init;
- ctx->digest[ 3 ] = h3init;
- ctx->digest[ 4 ] = h4init;
-
- /* Initialize bit count */
- ctx->count_low = ctx->count_high = 0;
-
- /* Initialize buffer */
- ctx->index = 0;
-}
-
-/* Perform the SHA transformation. Note that this code, like MD5, seems to
- break some optimizing compilers due to the complexity of the expressions
- and the size of the basic block. It may be necessary to split it into
- sections, e.g. based on the four subrounds
-
- Note that this function destroys the data area */
-
-/**
- * @fn static void sha1_transform(uint32_t *state, uint32_t *data)
- *
- * @brief Sha 1 transform.
- *
- * @param [in,out] state If non-null, the state.
- * @param [in,out] data If non-null, the data.
- */
-
-static void
-sha1_transform(uint32_t *state, uint32_t *data)
-{
- uint32_t A, B, C, D, E; /* Local vars */
-
- /* Set up first buffer and local data buffer */
- A = state[0];
- B = state[1];
- C = state[2];
- D = state[3];
- E = state[4];
-
- /* Heavy mangling, in 4 sub-rounds of 20 iterations each. */
- subRound( A, B, C, D, E, f1, K1, data[ 0] );
- subRound( E, A, B, C, D, f1, K1, data[ 1] );
- subRound( D, E, A, B, C, f1, K1, data[ 2] );
- subRound( C, D, E, A, B, f1, K1, data[ 3] );
- subRound( B, C, D, E, A, f1, K1, data[ 4] );
- subRound( A, B, C, D, E, f1, K1, data[ 5] );
- subRound( E, A, B, C, D, f1, K1, data[ 6] );
- subRound( D, E, A, B, C, f1, K1, data[ 7] );
- subRound( C, D, E, A, B, f1, K1, data[ 8] );
- subRound( B, C, D, E, A, f1, K1, data[ 9] );
- subRound( A, B, C, D, E, f1, K1, data[10] );
- subRound( E, A, B, C, D, f1, K1, data[11] );
- subRound( D, E, A, B, C, f1, K1, data[12] );
- subRound( C, D, E, A, B, f1, K1, data[13] );
- subRound( B, C, D, E, A, f1, K1, data[14] );
- subRound( A, B, C, D, E, f1, K1, data[15] );
- subRound( E, A, B, C, D, f1, K1, expand( data, 16 ) );
- subRound( D, E, A, B, C, f1, K1, expand( data, 17 ) );
- subRound( C, D, E, A, B, f1, K1, expand( data, 18 ) );
- subRound( B, C, D, E, A, f1, K1, expand( data, 19 ) );
-
- subRound( A, B, C, D, E, f2, K2, expand( data, 20 ) );
- subRound( E, A, B, C, D, f2, K2, expand( data, 21 ) );
- subRound( D, E, A, B, C, f2, K2, expand( data, 22 ) );
- subRound( C, D, E, A, B, f2, K2, expand( data, 23 ) );
- subRound( B, C, D, E, A, f2, K2, expand( data, 24 ) );
- subRound( A, B, C, D, E, f2, K2, expand( data, 25 ) );
- subRound( E, A, B, C, D, f2, K2, expand( data, 26 ) );
- subRound( D, E, A, B, C, f2, K2, expand( data, 27 ) );
- subRound( C, D, E, A, B, f2, K2, expand( data, 28 ) );
- subRound( B, C, D, E, A, f2, K2, expand( data, 29 ) );
- subRound( A, B, C, D, E, f2, K2, expand( data, 30 ) );
- subRound( E, A, B, C, D, f2, K2, expand( data, 31 ) );
- subRound( D, E, A, B, C, f2, K2, expand( data, 32 ) );
- subRound( C, D, E, A, B, f2, K2, expand( data, 33 ) );
- subRound( B, C, D, E, A, f2, K2, expand( data, 34 ) );
- subRound( A, B, C, D, E, f2, K2, expand( data, 35 ) );
- subRound( E, A, B, C, D, f2, K2, expand( data, 36 ) );
- subRound( D, E, A, B, C, f2, K2, expand( data, 37 ) );
- subRound( C, D, E, A, B, f2, K2, expand( data, 38 ) );
- subRound( B, C, D, E, A, f2, K2, expand( data, 39 ) );
-
- subRound( A, B, C, D, E, f3, K3, expand( data, 40 ) );
- subRound( E, A, B, C, D, f3, K3, expand( data, 41 ) );
- subRound( D, E, A, B, C, f3, K3, expand( data, 42 ) );
- subRound( C, D, E, A, B, f3, K3, expand( data, 43 ) );
- subRound( B, C, D, E, A, f3, K3, expand( data, 44 ) );
- subRound( A, B, C, D, E, f3, K3, expand( data, 45 ) );
- subRound( E, A, B, C, D, f3, K3, expand( data, 46 ) );
- subRound( D, E, A, B, C, f3, K3, expand( data, 47 ) );
- subRound( C, D, E, A, B, f3, K3, expand( data, 48 ) );
- subRound( B, C, D, E, A, f3, K3, expand( data, 49 ) );
- subRound( A, B, C, D, E, f3, K3, expand( data, 50 ) );
- subRound( E, A, B, C, D, f3, K3, expand( data, 51 ) );
- subRound( D, E, A, B, C, f3, K3, expand( data, 52 ) );
- subRound( C, D, E, A, B, f3, K3, expand( data, 53 ) );
- subRound( B, C, D, E, A, f3, K3, expand( data, 54 ) );
- subRound( A, B, C, D, E, f3, K3, expand( data, 55 ) );
- subRound( E, A, B, C, D, f3, K3, expand( data, 56 ) );
- subRound( D, E, A, B, C, f3, K3, expand( data, 57 ) );
- subRound( C, D, E, A, B, f3, K3, expand( data, 58 ) );
- subRound( B, C, D, E, A, f3, K3, expand( data, 59 ) );
-
- subRound( A, B, C, D, E, f4, K4, expand( data, 60 ) );
- subRound( E, A, B, C, D, f4, K4, expand( data, 61 ) );
- subRound( D, E, A, B, C, f4, K4, expand( data, 62 ) );
- subRound( C, D, E, A, B, f4, K4, expand( data, 63 ) );
- subRound( B, C, D, E, A, f4, K4, expand( data, 64 ) );
- subRound( A, B, C, D, E, f4, K4, expand( data, 65 ) );
- subRound( E, A, B, C, D, f4, K4, expand( data, 66 ) );
- subRound( D, E, A, B, C, f4, K4, expand( data, 67 ) );
- subRound( C, D, E, A, B, f4, K4, expand( data, 68 ) );
- subRound( B, C, D, E, A, f4, K4, expand( data, 69 ) );
- subRound( A, B, C, D, E, f4, K4, expand( data, 70 ) );
- subRound( E, A, B, C, D, f4, K4, expand( data, 71 ) );
- subRound( D, E, A, B, C, f4, K4, expand( data, 72 ) );
- subRound( C, D, E, A, B, f4, K4, expand( data, 73 ) );
- subRound( B, C, D, E, A, f4, K4, expand( data, 74 ) );
- subRound( A, B, C, D, E, f4, K4, expand( data, 75 ) );
- subRound( E, A, B, C, D, f4, K4, expand( data, 76 ) );
- subRound( D, E, A, B, C, f4, K4, expand( data, 77 ) );
- subRound( C, D, E, A, B, f4, K4, expand( data, 78 ) );
- subRound( B, C, D, E, A, f4, K4, expand( data, 79 ) );
-
- /* Build message digest */
- state[0] += A;
- state[1] += B;
- state[2] += C;
- state[3] += D;
- state[4] += E;
-}
-
-/**
- * @fn static void sha1_block(struct sha1_ctx *ctx, const uint8_t *block)
- *
- * @brief Sha 1 block.
- *
- * @param [in,out] ctx If non-null, the context.
- * @param block The block.
- */
-
-static void
-sha1_block(struct sha1_ctx *ctx, const uint8_t *block)
-{
- uint32_t data[SHA1_DATA_LENGTH];
- int i;
-
- /* Update block count */
- if (!++ctx->count_low)
- ++ctx->count_high;
-
- /* Endian independent conversion */
- for (i = 0; i<SHA1_DATA_LENGTH; i++, block += 4)
- data[i] = READ_UINT32(block);
-
- sha1_transform(ctx->digest, data);
-}
-
-/**
- * @fn void sha1_update(struct sha1_ctx *ctx, unsigned length, const uint8_t *buffer)
- *
- * @brief Sha 1 update.
- *
- * @param [in,out] ctx If non-null, the context.
- * @param length The length.
- * @param buffer The buffer.
- */
-
-void
-sha1_update(struct sha1_ctx *ctx,
- unsigned length, const uint8_t *buffer)
-{
- if (ctx->index)
- { /* Try to fill partial block */
- unsigned left = SHA1_DATA_SIZE - ctx->index;
- if (length < left)
- {
- memcpy(ctx->block + ctx->index, buffer, length);
- ctx->index += length;
- return; /* Finished */
- }
- else
- {
- memcpy(ctx->block + ctx->index, buffer, left);
- sha1_block(ctx, ctx->block);
- buffer += left;
- length -= left;
- }
- }
- while (length >= SHA1_DATA_SIZE)
- {
- sha1_block(ctx, buffer);
- buffer += SHA1_DATA_SIZE;
- length -= SHA1_DATA_SIZE;
- }
- ctx->index = length;
- if (length)
- /* Buffer leftovers */
- memcpy(ctx->block, buffer, length);
-}
-
-/* Final wrapup - pad to SHA1_DATA_SIZE-byte boundary with the bit pattern
- 1 0* (64-bit count of bits processed, MSB-first) */
-
-/**
- * @fn void sha1_final(struct sha1_ctx *ctx)
- *
- * @brief Sha 1 final.
- *
- * @param [in,out] ctx If non-null, the context.
- */
-
-void
-sha1_final(struct sha1_ctx *ctx)
-{
- uint32_t data[SHA1_DATA_LENGTH];
- int i;
- int words;
-
- i = ctx->index;
-
- /* Set the first char of padding to 0x80. This is safe since there is
- always at least one byte free */
-
- assert(i < SHA1_DATA_SIZE);
- ctx->block[i++] = 0x80;
-
- /* Fill rest of word */
- for( ; i & 3; i++)
- ctx->block[i] = 0;
-
- /* i is now a multiple of the word size 4 */
- words = i >> 2;
- for (i = 0; i < words; i++)
- data[i] = READ_UINT32(ctx->block + 4*i);
-
- if (words > (SHA1_DATA_LENGTH-2))
- { /* No room for length in this block. Process it and
- * pad with another one */
- for (i = words ; i < SHA1_DATA_LENGTH; i++)
- data[i] = 0;
- sha1_transform(ctx->digest, data);
- for (i = 0; i < (SHA1_DATA_LENGTH-2); i++)
- data[i] = 0;
- }
- else
- for (i = words ; i < SHA1_DATA_LENGTH - 2; i++)
- data[i] = 0;
-
- /* There are 512 = 2^9 bits in one block */
- data[SHA1_DATA_LENGTH-2] = (ctx->count_high << 9) | (ctx->count_low >> 23);
- data[SHA1_DATA_LENGTH-1] = (ctx->count_low << 9) | (ctx->index << 3);
- sha1_transform(ctx->digest, data);
-}
-
-/**
- * @fn void sha1_digest(const struct sha1_ctx *ctx, unsigned length, uint8_t *digest)
- *
- * @brief Sha 1 digest.
- *
- * @param ctx The context.
- * @param length The length.
- * @param [in,out] digest If non-null, the digest.
- */
-
-void
-sha1_digest(const struct sha1_ctx *ctx,
- unsigned length,
- uint8_t *digest)
-{
- unsigned i;
- unsigned words;
- unsigned leftover;
-
- assert(length <= SHA1_DIGEST_SIZE);
-
- words = length / 4;
- leftover = length % 4;
-
- for (i = 0; i < words; i++, digest += 4)
- WRITE_UINT32(digest, ctx->digest[i]);
-
- if (leftover)
- {
- uint32_t word;
- unsigned j = leftover;
-
- assert(i < _SHA1_DIGEST_LENGTH);
-
- word = ctx->digest[i];
-
- switch (leftover)
- {
- default:
- /* this is just here to keep the compiler happy; it can never happen */
- case 3:
- digest[--j] = (word >> 8) & 0xff;
- /* Fall through */
- case 2:
- digest[--j] = (word >> 16) & 0xff;
- /* Fall through */
- case 1:
- digest[--j] = (word >> 24) & 0xff;
- }
- }
-}