diff options
Diffstat (limited to 'src/lib/util/sha1.cpp')
-rw-r--r-- | src/lib/util/sha1.cpp | 443 |
1 files changed, 0 insertions, 443 deletions
diff --git a/src/lib/util/sha1.cpp b/src/lib/util/sha1.cpp deleted file mode 100644 index abc073cb6e8..00000000000 --- a/src/lib/util/sha1.cpp +++ /dev/null @@ -1,443 +0,0 @@ -// license:LGPL-2.1+ -// copyright-holders:Peter Gutmann, Andrew Kuchling, Niels Moeller -/* sha1.h - * - * The sha1 hash function. - */ - -/* nettle, low-level cryptographics library - * - * Copyright 2001 Peter Gutmann, Andrew Kuchling, Niels Moeller - * - * The nettle library is free software; you can redistribute it and/or modify - * it under the terms of the GNU Lesser General Public License as published by - * the Free Software Foundation; either version 2.1 of the License, or (at your - * option) any later version. - * - * The nettle library is distributed in the hope that it will be useful, but - * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY - * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public - * License for more details. - * - * You should have received a copy of the GNU Lesser General Public License - * along with the nettle library; see the file COPYING.LIB. If not, write to - * the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, - * MA 02111-1307, USA. - */ - -#include "sha1.h" - -#include <cassert> -#include <cstdlib> -#include <cstring> - -static unsigned int READ_UINT32(const uint8_t* data) -{ - return ((uint32_t)data[0] << 24) | - ((uint32_t)data[1] << 16) | - ((uint32_t)data[2] << 8) | - ((uint32_t)data[3]); -} - -static void WRITE_UINT32(unsigned char* data, uint32_t val) -{ - data[0] = (val >> 24) & 0xFF; - data[1] = (val >> 16) & 0xFF; - data[2] = (val >> 8) & 0xFF; - data[3] = (val >> 0) & 0xFF; -} - - -/* A block, treated as a sequence of 32-bit words. */ -#define SHA1_DATA_LENGTH 16 - -/* The SHA f()-functions. The f1 and f3 functions can be optimized to - save one boolean operation each - thanks to Rich Schroeppel, - rcs@cs.arizona.edu for discovering this */ - -/* #define f1(x,y,z) ( ( x & y ) | ( ~x & z ) ) Rounds 0-19 */ -#define f1(x,y,z) ( z ^ ( x & ( y ^ z ) ) ) /* Rounds 0-19 */ -#define f2(x,y,z) ( x ^ y ^ z ) /* Rounds 20-39 */ -/* #define f3(x,y,z) ( ( x & y ) | ( x & z ) | ( y & z ) ) Rounds 40-59 */ -#define f3(x,y,z) ( ( x & y ) | ( z & ( x | y ) ) ) /* Rounds 40-59 */ -#define f4(x,y,z) ( x ^ y ^ z ) /* Rounds 60-79 */ - -/* The SHA Mysterious Constants */ - -#define K1 0x5A827999L /* Rounds 0-19 */ -#define K2 0x6ED9EBA1L /* Rounds 20-39 */ -#define K3 0x8F1BBCDCL /* Rounds 40-59 */ -#define K4 0xCA62C1D6L /* Rounds 60-79 */ - -/* SHA initial values */ - -#define h0init 0x67452301L -#define h1init 0xEFCDAB89L -#define h2init 0x98BADCFEL -#define h3init 0x10325476L -#define h4init 0xC3D2E1F0L - -/* 32-bit rotate left - kludged with shifts */ -#ifdef _MSC_VER -#define ROTL(n,X) _lrotl(X, n) -#else -#define ROTL(n,X) ( ( (X) << (n) ) | ( (X) >> ( 32 - (n) ) ) ) -#endif - -/* The initial expanding function. The hash function is defined over an - 80-word expanded input array W, where the first 16 are copies of the input - data, and the remaining 64 are defined by - - W[ i ] = W[ i - 16 ] ^ W[ i - 14 ] ^ W[ i - 8 ] ^ W[ i - 3 ] - - This implementation generates these values on the fly in a circular - buffer - thanks to Colin Plumb, colin@nyx10.cs.du.edu for this - optimization. - - The updated SHA changes the expanding function by adding a rotate of 1 - bit. Thanks to Jim Gillogly, jim@rand.org, and an anonymous contributor - for this information */ - -#define expand(W,i) ( W[ i & 15 ] = \ - ROTL( 1, ( W[ i & 15 ] ^ W[ (i - 14) & 15 ] ^ \ - W[ (i - 8) & 15 ] ^ W[ (i - 3) & 15 ] ) ) ) - - -/* The prototype SHA sub-round. The fundamental sub-round is: - - a' = e + ROTL( 5, a ) + f( b, c, d ) + k + data; - b' = a; - c' = ROTL( 30, b ); - d' = c; - e' = d; - - but this is implemented by unrolling the loop 5 times and renaming the - variables ( e, a, b, c, d ) = ( a', b', c', d', e' ) each iteration. - This code is then replicated 20 times for each of the 4 functions, using - the next 20 values from the W[] array each time */ - -#define subRound(a, b, c, d, e, f, k, data) \ - ( e += ROTL( 5, a ) + f( b, c, d ) + k + data, b = ROTL( 30, b ) ) - -/* Initialize the SHA values */ - -/** - * @fn void sha1_init(struct sha1_ctx *ctx) - * - * @brief Sha 1 initialise. - * - * @param [in,out] ctx If non-null, the context. - */ - -void -sha1_init(struct sha1_ctx *ctx) -{ - /* Set the h-vars to their initial values */ - ctx->digest[ 0 ] = h0init; - ctx->digest[ 1 ] = h1init; - ctx->digest[ 2 ] = h2init; - ctx->digest[ 3 ] = h3init; - ctx->digest[ 4 ] = h4init; - - /* Initialize bit count */ - ctx->count_low = ctx->count_high = 0; - - /* Initialize buffer */ - ctx->index = 0; -} - -/* Perform the SHA transformation. Note that this code, like MD5, seems to - break some optimizing compilers due to the complexity of the expressions - and the size of the basic block. It may be necessary to split it into - sections, e.g. based on the four subrounds - - Note that this function destroys the data area */ - -/** - * @fn static void sha1_transform(uint32_t *state, uint32_t *data) - * - * @brief Sha 1 transform. - * - * @param [in,out] state If non-null, the state. - * @param [in,out] data If non-null, the data. - */ - -static void -sha1_transform(uint32_t *state, uint32_t *data) -{ - uint32_t A, B, C, D, E; /* Local vars */ - - /* Set up first buffer and local data buffer */ - A = state[0]; - B = state[1]; - C = state[2]; - D = state[3]; - E = state[4]; - - /* Heavy mangling, in 4 sub-rounds of 20 iterations each. */ - subRound( A, B, C, D, E, f1, K1, data[ 0] ); - subRound( E, A, B, C, D, f1, K1, data[ 1] ); - subRound( D, E, A, B, C, f1, K1, data[ 2] ); - subRound( C, D, E, A, B, f1, K1, data[ 3] ); - subRound( B, C, D, E, A, f1, K1, data[ 4] ); - subRound( A, B, C, D, E, f1, K1, data[ 5] ); - subRound( E, A, B, C, D, f1, K1, data[ 6] ); - subRound( D, E, A, B, C, f1, K1, data[ 7] ); - subRound( C, D, E, A, B, f1, K1, data[ 8] ); - subRound( B, C, D, E, A, f1, K1, data[ 9] ); - subRound( A, B, C, D, E, f1, K1, data[10] ); - subRound( E, A, B, C, D, f1, K1, data[11] ); - subRound( D, E, A, B, C, f1, K1, data[12] ); - subRound( C, D, E, A, B, f1, K1, data[13] ); - subRound( B, C, D, E, A, f1, K1, data[14] ); - subRound( A, B, C, D, E, f1, K1, data[15] ); - subRound( E, A, B, C, D, f1, K1, expand( data, 16 ) ); - subRound( D, E, A, B, C, f1, K1, expand( data, 17 ) ); - subRound( C, D, E, A, B, f1, K1, expand( data, 18 ) ); - subRound( B, C, D, E, A, f1, K1, expand( data, 19 ) ); - - subRound( A, B, C, D, E, f2, K2, expand( data, 20 ) ); - subRound( E, A, B, C, D, f2, K2, expand( data, 21 ) ); - subRound( D, E, A, B, C, f2, K2, expand( data, 22 ) ); - subRound( C, D, E, A, B, f2, K2, expand( data, 23 ) ); - subRound( B, C, D, E, A, f2, K2, expand( data, 24 ) ); - subRound( A, B, C, D, E, f2, K2, expand( data, 25 ) ); - subRound( E, A, B, C, D, f2, K2, expand( data, 26 ) ); - subRound( D, E, A, B, C, f2, K2, expand( data, 27 ) ); - subRound( C, D, E, A, B, f2, K2, expand( data, 28 ) ); - subRound( B, C, D, E, A, f2, K2, expand( data, 29 ) ); - subRound( A, B, C, D, E, f2, K2, expand( data, 30 ) ); - subRound( E, A, B, C, D, f2, K2, expand( data, 31 ) ); - subRound( D, E, A, B, C, f2, K2, expand( data, 32 ) ); - subRound( C, D, E, A, B, f2, K2, expand( data, 33 ) ); - subRound( B, C, D, E, A, f2, K2, expand( data, 34 ) ); - subRound( A, B, C, D, E, f2, K2, expand( data, 35 ) ); - subRound( E, A, B, C, D, f2, K2, expand( data, 36 ) ); - subRound( D, E, A, B, C, f2, K2, expand( data, 37 ) ); - subRound( C, D, E, A, B, f2, K2, expand( data, 38 ) ); - subRound( B, C, D, E, A, f2, K2, expand( data, 39 ) ); - - subRound( A, B, C, D, E, f3, K3, expand( data, 40 ) ); - subRound( E, A, B, C, D, f3, K3, expand( data, 41 ) ); - subRound( D, E, A, B, C, f3, K3, expand( data, 42 ) ); - subRound( C, D, E, A, B, f3, K3, expand( data, 43 ) ); - subRound( B, C, D, E, A, f3, K3, expand( data, 44 ) ); - subRound( A, B, C, D, E, f3, K3, expand( data, 45 ) ); - subRound( E, A, B, C, D, f3, K3, expand( data, 46 ) ); - subRound( D, E, A, B, C, f3, K3, expand( data, 47 ) ); - subRound( C, D, E, A, B, f3, K3, expand( data, 48 ) ); - subRound( B, C, D, E, A, f3, K3, expand( data, 49 ) ); - subRound( A, B, C, D, E, f3, K3, expand( data, 50 ) ); - subRound( E, A, B, C, D, f3, K3, expand( data, 51 ) ); - subRound( D, E, A, B, C, f3, K3, expand( data, 52 ) ); - subRound( C, D, E, A, B, f3, K3, expand( data, 53 ) ); - subRound( B, C, D, E, A, f3, K3, expand( data, 54 ) ); - subRound( A, B, C, D, E, f3, K3, expand( data, 55 ) ); - subRound( E, A, B, C, D, f3, K3, expand( data, 56 ) ); - subRound( D, E, A, B, C, f3, K3, expand( data, 57 ) ); - subRound( C, D, E, A, B, f3, K3, expand( data, 58 ) ); - subRound( B, C, D, E, A, f3, K3, expand( data, 59 ) ); - - subRound( A, B, C, D, E, f4, K4, expand( data, 60 ) ); - subRound( E, A, B, C, D, f4, K4, expand( data, 61 ) ); - subRound( D, E, A, B, C, f4, K4, expand( data, 62 ) ); - subRound( C, D, E, A, B, f4, K4, expand( data, 63 ) ); - subRound( B, C, D, E, A, f4, K4, expand( data, 64 ) ); - subRound( A, B, C, D, E, f4, K4, expand( data, 65 ) ); - subRound( E, A, B, C, D, f4, K4, expand( data, 66 ) ); - subRound( D, E, A, B, C, f4, K4, expand( data, 67 ) ); - subRound( C, D, E, A, B, f4, K4, expand( data, 68 ) ); - subRound( B, C, D, E, A, f4, K4, expand( data, 69 ) ); - subRound( A, B, C, D, E, f4, K4, expand( data, 70 ) ); - subRound( E, A, B, C, D, f4, K4, expand( data, 71 ) ); - subRound( D, E, A, B, C, f4, K4, expand( data, 72 ) ); - subRound( C, D, E, A, B, f4, K4, expand( data, 73 ) ); - subRound( B, C, D, E, A, f4, K4, expand( data, 74 ) ); - subRound( A, B, C, D, E, f4, K4, expand( data, 75 ) ); - subRound( E, A, B, C, D, f4, K4, expand( data, 76 ) ); - subRound( D, E, A, B, C, f4, K4, expand( data, 77 ) ); - subRound( C, D, E, A, B, f4, K4, expand( data, 78 ) ); - subRound( B, C, D, E, A, f4, K4, expand( data, 79 ) ); - - /* Build message digest */ - state[0] += A; - state[1] += B; - state[2] += C; - state[3] += D; - state[4] += E; -} - -/** - * @fn static void sha1_block(struct sha1_ctx *ctx, const uint8_t *block) - * - * @brief Sha 1 block. - * - * @param [in,out] ctx If non-null, the context. - * @param block The block. - */ - -static void -sha1_block(struct sha1_ctx *ctx, const uint8_t *block) -{ - uint32_t data[SHA1_DATA_LENGTH]; - int i; - - /* Update block count */ - if (!++ctx->count_low) - ++ctx->count_high; - - /* Endian independent conversion */ - for (i = 0; i<SHA1_DATA_LENGTH; i++, block += 4) - data[i] = READ_UINT32(block); - - sha1_transform(ctx->digest, data); -} - -/** - * @fn void sha1_update(struct sha1_ctx *ctx, unsigned length, const uint8_t *buffer) - * - * @brief Sha 1 update. - * - * @param [in,out] ctx If non-null, the context. - * @param length The length. - * @param buffer The buffer. - */ - -void -sha1_update(struct sha1_ctx *ctx, - unsigned length, const uint8_t *buffer) -{ - if (ctx->index) - { /* Try to fill partial block */ - unsigned left = SHA1_DATA_SIZE - ctx->index; - if (length < left) - { - memcpy(ctx->block + ctx->index, buffer, length); - ctx->index += length; - return; /* Finished */ - } - else - { - memcpy(ctx->block + ctx->index, buffer, left); - sha1_block(ctx, ctx->block); - buffer += left; - length -= left; - } - } - while (length >= SHA1_DATA_SIZE) - { - sha1_block(ctx, buffer); - buffer += SHA1_DATA_SIZE; - length -= SHA1_DATA_SIZE; - } - ctx->index = length; - if (length) - /* Buffer leftovers */ - memcpy(ctx->block, buffer, length); -} - -/* Final wrapup - pad to SHA1_DATA_SIZE-byte boundary with the bit pattern - 1 0* (64-bit count of bits processed, MSB-first) */ - -/** - * @fn void sha1_final(struct sha1_ctx *ctx) - * - * @brief Sha 1 final. - * - * @param [in,out] ctx If non-null, the context. - */ - -void -sha1_final(struct sha1_ctx *ctx) -{ - uint32_t data[SHA1_DATA_LENGTH]; - int i; - int words; - - i = ctx->index; - - /* Set the first char of padding to 0x80. This is safe since there is - always at least one byte free */ - - assert(i < SHA1_DATA_SIZE); - ctx->block[i++] = 0x80; - - /* Fill rest of word */ - for( ; i & 3; i++) - ctx->block[i] = 0; - - /* i is now a multiple of the word size 4 */ - words = i >> 2; - for (i = 0; i < words; i++) - data[i] = READ_UINT32(ctx->block + 4*i); - - if (words > (SHA1_DATA_LENGTH-2)) - { /* No room for length in this block. Process it and - * pad with another one */ - for (i = words ; i < SHA1_DATA_LENGTH; i++) - data[i] = 0; - sha1_transform(ctx->digest, data); - for (i = 0; i < (SHA1_DATA_LENGTH-2); i++) - data[i] = 0; - } - else - for (i = words ; i < SHA1_DATA_LENGTH - 2; i++) - data[i] = 0; - - /* There are 512 = 2^9 bits in one block */ - data[SHA1_DATA_LENGTH-2] = (ctx->count_high << 9) | (ctx->count_low >> 23); - data[SHA1_DATA_LENGTH-1] = (ctx->count_low << 9) | (ctx->index << 3); - sha1_transform(ctx->digest, data); -} - -/** - * @fn void sha1_digest(const struct sha1_ctx *ctx, unsigned length, uint8_t *digest) - * - * @brief Sha 1 digest. - * - * @param ctx The context. - * @param length The length. - * @param [in,out] digest If non-null, the digest. - */ - -void -sha1_digest(const struct sha1_ctx *ctx, - unsigned length, - uint8_t *digest) -{ - unsigned i; - unsigned words; - unsigned leftover; - - assert(length <= SHA1_DIGEST_SIZE); - - words = length / 4; - leftover = length % 4; - - for (i = 0; i < words; i++, digest += 4) - WRITE_UINT32(digest, ctx->digest[i]); - - if (leftover) - { - uint32_t word; - unsigned j = leftover; - - assert(i < _SHA1_DIGEST_LENGTH); - - word = ctx->digest[i]; - - switch (leftover) - { - default: - /* this is just here to keep the compiler happy; it can never happen */ - case 3: - digest[--j] = (word >> 8) & 0xff; - /* Fall through */ - case 2: - digest[--j] = (word >> 16) & 0xff; - /* Fall through */ - case 1: - digest[--j] = (word >> 24) & 0xff; - } - } -} |