summaryrefslogtreecommitdiffstatshomepage
path: root/src/lib/libjpeg/jdhuff.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/libjpeg/jdhuff.c')
-rw-r--r--src/lib/libjpeg/jdhuff.c1912
1 files changed, 956 insertions, 956 deletions
diff --git a/src/lib/libjpeg/jdhuff.c b/src/lib/libjpeg/jdhuff.c
index 8f0581fa172..ef3c9c72201 100644
--- a/src/lib/libjpeg/jdhuff.c
+++ b/src/lib/libjpeg/jdhuff.c
@@ -23,28 +23,28 @@
/* Derived data constructed for each Huffman table */
-#define HUFF_LOOKAHEAD 8 /* # of bits of lookahead */
+#define HUFF_LOOKAHEAD 8 /* # of bits of lookahead */
typedef struct {
- /* Basic tables: (element [0] of each array is unused) */
- INT32 maxcode[18]; /* largest code of length k (-1 if none) */
- /* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */
- INT32 valoffset[17]; /* huffval[] offset for codes of length k */
- /* valoffset[k] = huffval[] index of 1st symbol of code length k, less
- * the smallest code of length k; so given a code of length k, the
- * corresponding symbol is huffval[code + valoffset[k]]
- */
-
- /* Link to public Huffman table (needed only in jpeg_huff_decode) */
- JHUFF_TBL *pub;
-
- /* Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of
- * the input data stream. If the next Huffman code is no more
- * than HUFF_LOOKAHEAD bits long, we can obtain its length and
- * the corresponding symbol directly from these tables.
- */
- int look_nbits[1<<HUFF_LOOKAHEAD]; /* # bits, or 0 if too long */
- UINT8 look_sym[1<<HUFF_LOOKAHEAD]; /* symbol, or unused */
+ /* Basic tables: (element [0] of each array is unused) */
+ INT32 maxcode[18]; /* largest code of length k (-1 if none) */
+ /* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */
+ INT32 valoffset[17]; /* huffval[] offset for codes of length k */
+ /* valoffset[k] = huffval[] index of 1st symbol of code length k, less
+ * the smallest code of length k; so given a code of length k, the
+ * corresponding symbol is huffval[code + valoffset[k]]
+ */
+
+ /* Link to public Huffman table (needed only in jpeg_huff_decode) */
+ JHUFF_TBL *pub;
+
+ /* Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of
+ * the input data stream. If the next Huffman code is no more
+ * than HUFF_LOOKAHEAD bits long, we can obtain its length and
+ * the corresponding symbol directly from these tables.
+ */
+ int look_nbits[1<<HUFF_LOOKAHEAD]; /* # bits, or 0 if too long */
+ UINT8 look_sym[1<<HUFF_LOOKAHEAD]; /* symbol, or unused */
} d_derived_tbl;
@@ -66,8 +66,8 @@ typedef struct {
* necessary.
*/
-typedef INT32 bit_buf_type; /* type of bit-extraction buffer */
-#define BIT_BUF_SIZE 32 /* size of buffer in bits */
+typedef INT32 bit_buf_type; /* type of bit-extraction buffer */
+#define BIT_BUF_SIZE 32 /* size of buffer in bits */
/* If long is > 32 bits on your machine, and shifting/masking longs is
* reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE
@@ -76,23 +76,23 @@ typedef INT32 bit_buf_type; /* type of bit-extraction buffer */
* because not all machines measure sizeof in 8-bit bytes.
*/
-typedef struct { /* Bitreading state saved across MCUs */
- bit_buf_type get_buffer; /* current bit-extraction buffer */
- int bits_left; /* # of unused bits in it */
+typedef struct { /* Bitreading state saved across MCUs */
+ bit_buf_type get_buffer; /* current bit-extraction buffer */
+ int bits_left; /* # of unused bits in it */
} bitread_perm_state;
-typedef struct { /* Bitreading working state within an MCU */
- /* Current data source location */
- /* We need a copy, rather than munging the original, in case of suspension */
- const JOCTET * next_input_byte; /* => next byte to read from source */
- size_t bytes_in_buffer; /* # of bytes remaining in source buffer */
- /* Bit input buffer --- note these values are kept in register variables,
- * not in this struct, inside the inner loops.
- */
- bit_buf_type get_buffer; /* current bit-extraction buffer */
- int bits_left; /* # of unused bits in it */
- /* Pointer needed by jpeg_fill_bit_buffer. */
- j_decompress_ptr cinfo; /* back link to decompress master record */
+typedef struct { /* Bitreading working state within an MCU */
+ /* Current data source location */
+ /* We need a copy, rather than munging the original, in case of suspension */
+ const JOCTET * next_input_byte; /* => next byte to read from source */
+ size_t bytes_in_buffer; /* # of bytes remaining in source buffer */
+ /* Bit input buffer --- note these values are kept in register variables,
+ * not in this struct, inside the inner loops.
+ */
+ bit_buf_type get_buffer; /* current bit-extraction buffer */
+ int bits_left; /* # of unused bits in it */
+ /* Pointer needed by jpeg_fill_bit_buffer. */
+ j_decompress_ptr cinfo; /* back link to decompress master record */
} bitread_working_state;
/* Macros to declare and load/save bitread local variables. */
@@ -134,9 +134,9 @@ typedef struct { /* Bitreading working state within an MCU */
#define CHECK_BIT_BUFFER(state,nbits,action) \
{ if (bits_left < (nbits)) { \
- if (! jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits)) \
- { action; } \
- get_buffer = (state).get_buffer; bits_left = (state).bits_left; } }
+ if (! jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits)) \
+ { action; } \
+ get_buffer = (state).get_buffer; bits_left = (state).bits_left; } }
#define GET_BITS(nbits) \
(((int) (get_buffer >> (bits_left -= (nbits)))) & BIT_MASK(nbits))
@@ -167,24 +167,24 @@ typedef struct { /* Bitreading working state within an MCU */
#define HUFF_DECODE(result,state,htbl,failaction,slowlabel) \
{ register int nb, look; \
- if (bits_left < HUFF_LOOKAHEAD) { \
- if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \
- get_buffer = state.get_buffer; bits_left = state.bits_left; \
- if (bits_left < HUFF_LOOKAHEAD) { \
- nb = 1; goto slowlabel; \
- } \
- } \
- look = PEEK_BITS(HUFF_LOOKAHEAD); \
- if ((nb = htbl->look_nbits[look]) != 0) { \
- DROP_BITS(nb); \
- result = htbl->look_sym[look]; \
- } else { \
- nb = HUFF_LOOKAHEAD+1; \
+ if (bits_left < HUFF_LOOKAHEAD) { \
+ if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \
+ get_buffer = state.get_buffer; bits_left = state.bits_left; \
+ if (bits_left < HUFF_LOOKAHEAD) { \
+ nb = 1; goto slowlabel; \
+ } \
+ } \
+ look = PEEK_BITS(HUFF_LOOKAHEAD); \
+ if ((nb = htbl->look_nbits[look]) != 0) { \
+ DROP_BITS(nb); \
+ result = htbl->look_sym[look]; \
+ } else { \
+ nb = HUFF_LOOKAHEAD+1; \
slowlabel: \
- if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \
+ if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \
{ failaction; } \
- get_buffer = state.get_buffer; bits_left = state.bits_left; \
- } \
+ get_buffer = state.get_buffer; bits_left = state.bits_left; \
+ } \
}
@@ -196,8 +196,8 @@ slowlabel: \
*/
typedef struct {
- unsigned int EOBRUN; /* remaining EOBs in EOBRUN */
- int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
+ unsigned int EOBRUN; /* remaining EOBs in EOBRUN */
+ int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
} savable_state;
/* This macro is to work around compilers with missing or broken
@@ -211,106 +211,106 @@ typedef struct {
#if MAX_COMPS_IN_SCAN == 4
#define ASSIGN_STATE(dest,src) \
((dest).EOBRUN = (src).EOBRUN, \
- (dest).last_dc_val[0] = (src).last_dc_val[0], \
- (dest).last_dc_val[1] = (src).last_dc_val[1], \
- (dest).last_dc_val[2] = (src).last_dc_val[2], \
- (dest).last_dc_val[3] = (src).last_dc_val[3])
+ (dest).last_dc_val[0] = (src).last_dc_val[0], \
+ (dest).last_dc_val[1] = (src).last_dc_val[1], \
+ (dest).last_dc_val[2] = (src).last_dc_val[2], \
+ (dest).last_dc_val[3] = (src).last_dc_val[3])
#endif
#endif
typedef struct {
- struct jpeg_entropy_decoder pub; /* public fields */
+ struct jpeg_entropy_decoder pub; /* public fields */
- /* These fields are loaded into local variables at start of each MCU.
- * In case of suspension, we exit WITHOUT updating them.
- */
- bitread_perm_state bitstate; /* Bit buffer at start of MCU */
- savable_state saved; /* Other state at start of MCU */
+ /* These fields are loaded into local variables at start of each MCU.
+ * In case of suspension, we exit WITHOUT updating them.
+ */
+ bitread_perm_state bitstate; /* Bit buffer at start of MCU */
+ savable_state saved; /* Other state at start of MCU */
- /* These fields are NOT loaded into local working state. */
- boolean insufficient_data; /* set TRUE after emitting warning */
- unsigned int restarts_to_go; /* MCUs left in this restart interval */
+ /* These fields are NOT loaded into local working state. */
+ boolean insufficient_data; /* set TRUE after emitting warning */
+ unsigned int restarts_to_go; /* MCUs left in this restart interval */
- /* Following two fields used only in progressive mode */
+ /* Following two fields used only in progressive mode */
- /* Pointers to derived tables (these workspaces have image lifespan) */
- d_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
+ /* Pointers to derived tables (these workspaces have image lifespan) */
+ d_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
- d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */
+ d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */
- /* Following fields used only in sequential mode */
+ /* Following fields used only in sequential mode */
- /* Pointers to derived tables (these workspaces have image lifespan) */
- d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
- d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
+ /* Pointers to derived tables (these workspaces have image lifespan) */
+ d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
+ d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
- /* Precalculated info set up by start_pass for use in decode_mcu: */
+ /* Precalculated info set up by start_pass for use in decode_mcu: */
- /* Pointers to derived tables to be used for each block within an MCU */
- d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
- d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
- /* Whether we care about the DC and AC coefficient values for each block */
- int coef_limit[D_MAX_BLOCKS_IN_MCU];
+ /* Pointers to derived tables to be used for each block within an MCU */
+ d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
+ d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
+ /* Whether we care about the DC and AC coefficient values for each block */
+ int coef_limit[D_MAX_BLOCKS_IN_MCU];
} huff_entropy_decoder;
typedef huff_entropy_decoder * huff_entropy_ptr;
static const int jpeg_zigzag_order[8][8] = {
- { 0, 1, 5, 6, 14, 15, 27, 28 },
- { 2, 4, 7, 13, 16, 26, 29, 42 },
- { 3, 8, 12, 17, 25, 30, 41, 43 },
- { 9, 11, 18, 24, 31, 40, 44, 53 },
- { 10, 19, 23, 32, 39, 45, 52, 54 },
- { 20, 22, 33, 38, 46, 51, 55, 60 },
- { 21, 34, 37, 47, 50, 56, 59, 61 },
- { 35, 36, 48, 49, 57, 58, 62, 63 }
+ { 0, 1, 5, 6, 14, 15, 27, 28 },
+ { 2, 4, 7, 13, 16, 26, 29, 42 },
+ { 3, 8, 12, 17, 25, 30, 41, 43 },
+ { 9, 11, 18, 24, 31, 40, 44, 53 },
+ { 10, 19, 23, 32, 39, 45, 52, 54 },
+ { 20, 22, 33, 38, 46, 51, 55, 60 },
+ { 21, 34, 37, 47, 50, 56, 59, 61 },
+ { 35, 36, 48, 49, 57, 58, 62, 63 }
};
static const int jpeg_zigzag_order7[7][7] = {
- { 0, 1, 5, 6, 14, 15, 27 },
- { 2, 4, 7, 13, 16, 26, 28 },
- { 3, 8, 12, 17, 25, 29, 38 },
- { 9, 11, 18, 24, 30, 37, 39 },
- { 10, 19, 23, 31, 36, 40, 45 },
- { 20, 22, 32, 35, 41, 44, 46 },
- { 21, 33, 34, 42, 43, 47, 48 }
+ { 0, 1, 5, 6, 14, 15, 27 },
+ { 2, 4, 7, 13, 16, 26, 28 },
+ { 3, 8, 12, 17, 25, 29, 38 },
+ { 9, 11, 18, 24, 30, 37, 39 },
+ { 10, 19, 23, 31, 36, 40, 45 },
+ { 20, 22, 32, 35, 41, 44, 46 },
+ { 21, 33, 34, 42, 43, 47, 48 }
};
static const int jpeg_zigzag_order6[6][6] = {
- { 0, 1, 5, 6, 14, 15 },
- { 2, 4, 7, 13, 16, 25 },
- { 3, 8, 12, 17, 24, 26 },
- { 9, 11, 18, 23, 27, 32 },
- { 10, 19, 22, 28, 31, 33 },
- { 20, 21, 29, 30, 34, 35 }
+ { 0, 1, 5, 6, 14, 15 },
+ { 2, 4, 7, 13, 16, 25 },
+ { 3, 8, 12, 17, 24, 26 },
+ { 9, 11, 18, 23, 27, 32 },
+ { 10, 19, 22, 28, 31, 33 },
+ { 20, 21, 29, 30, 34, 35 }
};
static const int jpeg_zigzag_order5[5][5] = {
- { 0, 1, 5, 6, 14 },
- { 2, 4, 7, 13, 15 },
- { 3, 8, 12, 16, 21 },
- { 9, 11, 17, 20, 22 },
- { 10, 18, 19, 23, 24 }
+ { 0, 1, 5, 6, 14 },
+ { 2, 4, 7, 13, 15 },
+ { 3, 8, 12, 16, 21 },
+ { 9, 11, 17, 20, 22 },
+ { 10, 18, 19, 23, 24 }
};
static const int jpeg_zigzag_order4[4][4] = {
- { 0, 1, 5, 6 },
- { 2, 4, 7, 12 },
- { 3, 8, 11, 13 },
- { 9, 10, 14, 15 }
+ { 0, 1, 5, 6 },
+ { 2, 4, 7, 12 },
+ { 3, 8, 11, 13 },
+ { 9, 10, 14, 15 }
};
static const int jpeg_zigzag_order3[3][3] = {
- { 0, 1, 5 },
- { 2, 4, 6 },
- { 3, 7, 8 }
+ { 0, 1, 5 },
+ { 2, 4, 6 },
+ { 3, 7, 8 }
};
static const int jpeg_zigzag_order2[2][2] = {
- { 0, 1 },
- { 2, 3 }
+ { 0, 1 },
+ { 2, 3 }
};
@@ -321,122 +321,122 @@ static const int jpeg_zigzag_order2[2][2] = {
LOCAL(void)
jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
- d_derived_tbl ** pdtbl)
+ d_derived_tbl ** pdtbl)
{
- JHUFF_TBL *htbl;
- d_derived_tbl *dtbl;
- int p, i, l, si, numsymbols;
- int lookbits, ctr;
- char huffsize[257];
- unsigned int huffcode[257];
- unsigned int code;
-
- /* Note that huffsize[] and huffcode[] are filled in code-length order,
- * paralleling the order of the symbols themselves in htbl->huffval[].
- */
-
- /* Find the input Huffman table */
- if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
- ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
- htbl =
- isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
- if (htbl == NULL)
- ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
-
- /* Allocate a workspace if we haven't already done so. */
- if (*pdtbl == NULL)
- *pdtbl = (d_derived_tbl *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(d_derived_tbl));
- dtbl = *pdtbl;
- dtbl->pub = htbl; /* fill in back link */
-
- /* Figure C.1: make table of Huffman code length for each symbol */
-
- p = 0;
- for (l = 1; l <= 16; l++) {
- i = (int) htbl->bits[l];
- if (i < 0 || p + i > 256) /* protect against table overrun */
- ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
- while (i--)
- huffsize[p++] = (char) l;
- }
- huffsize[p] = 0;
- numsymbols = p;
-
- /* Figure C.2: generate the codes themselves */
- /* We also validate that the counts represent a legal Huffman code tree. */
-
- code = 0;
- si = huffsize[0];
- p = 0;
- while (huffsize[p]) {
- while (((int) huffsize[p]) == si) {
- huffcode[p++] = code;
- code++;
- }
- /* code is now 1 more than the last code used for codelength si; but
- * it must still fit in si bits, since no code is allowed to be all ones.
- */
- if (((INT32) code) >= (((INT32) 1) << si))
- ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
- code <<= 1;
- si++;
- }
-
- /* Figure F.15: generate decoding tables for bit-sequential decoding */
-
- p = 0;
- for (l = 1; l <= 16; l++) {
- if (htbl->bits[l]) {
- /* valoffset[l] = huffval[] index of 1st symbol of code length l,
- * minus the minimum code of length l
- */
- dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
- p += htbl->bits[l];
- dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
- } else {
- dtbl->maxcode[l] = -1; /* -1 if no codes of this length */
- }
- }
- dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
-
- /* Compute lookahead tables to speed up decoding.
- * First we set all the table entries to 0, indicating "too long";
- * then we iterate through the Huffman codes that are short enough and
- * fill in all the entries that correspond to bit sequences starting
- * with that code.
- */
-
- MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
-
- p = 0;
- for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
- for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
- /* l = current code's length, p = its index in huffcode[] & huffval[]. */
- /* Generate left-justified code followed by all possible bit sequences */
- lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
- for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
+ JHUFF_TBL *htbl;
+ d_derived_tbl *dtbl;
+ int p, i, l, si, numsymbols;
+ int lookbits, ctr;
+ char huffsize[257];
+ unsigned int huffcode[257];
+ unsigned int code;
+
+ /* Note that huffsize[] and huffcode[] are filled in code-length order,
+ * paralleling the order of the symbols themselves in htbl->huffval[].
+ */
+
+ /* Find the input Huffman table */
+ if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
+ ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
+ htbl =
+ isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
+ if (htbl == NULL)
+ ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
+
+ /* Allocate a workspace if we haven't already done so. */
+ if (*pdtbl == NULL)
+ *pdtbl = (d_derived_tbl *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(d_derived_tbl));
+ dtbl = *pdtbl;
+ dtbl->pub = htbl; /* fill in back link */
+
+ /* Figure C.1: make table of Huffman code length for each symbol */
+
+ p = 0;
+ for (l = 1; l <= 16; l++) {
+ i = (int) htbl->bits[l];
+ if (i < 0 || p + i > 256) /* protect against table overrun */
+ ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
+ while (i--)
+ huffsize[p++] = (char) l;
+ }
+ huffsize[p] = 0;
+ numsymbols = p;
+
+ /* Figure C.2: generate the codes themselves */
+ /* We also validate that the counts represent a legal Huffman code tree. */
+
+ code = 0;
+ si = huffsize[0];
+ p = 0;
+ while (huffsize[p]) {
+ while (((int) huffsize[p]) == si) {
+ huffcode[p++] = code;
+ code++;
+ }
+ /* code is now 1 more than the last code used for codelength si; but
+ * it must still fit in si bits, since no code is allowed to be all ones.
+ */
+ if (((INT32) code) >= (((INT32) 1) << si))
+ ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
+ code <<= 1;
+ si++;
+ }
+
+ /* Figure F.15: generate decoding tables for bit-sequential decoding */
+
+ p = 0;
+ for (l = 1; l <= 16; l++) {
+ if (htbl->bits[l]) {
+ /* valoffset[l] = huffval[] index of 1st symbol of code length l,
+ * minus the minimum code of length l
+ */
+ dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
+ p += htbl->bits[l];
+ dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
+ } else {
+ dtbl->maxcode[l] = -1; /* -1 if no codes of this length */
+ }
+ }
+ dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
+
+ /* Compute lookahead tables to speed up decoding.
+ * First we set all the table entries to 0, indicating "too long";
+ * then we iterate through the Huffman codes that are short enough and
+ * fill in all the entries that correspond to bit sequences starting
+ * with that code.
+ */
+
+ MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
+
+ p = 0;
+ for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
+ for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
+ /* l = current code's length, p = its index in huffcode[] & huffval[]. */
+ /* Generate left-justified code followed by all possible bit sequences */
+ lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
+ for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
dtbl->look_nbits[lookbits] = l;
dtbl->look_sym[lookbits] = htbl->huffval[p];
lookbits++;
- }
- }
- }
-
- /* Validate symbols as being reasonable.
- * For AC tables, we make no check, but accept all byte values 0..255.
- * For DC tables, we require the symbols to be in range 0..15.
- * (Tighter bounds could be applied depending on the data depth and mode,
- * but this is sufficient to ensure safe decoding.)
- */
- if (isDC) {
- for (i = 0; i < numsymbols; i++) {
- int sym = htbl->huffval[i];
- if (sym < 0 || sym > 15)
+ }
+ }
+ }
+
+ /* Validate symbols as being reasonable.
+ * For AC tables, we make no check, but accept all byte values 0..255.
+ * For DC tables, we require the symbols to be in range 0..15.
+ * (Tighter bounds could be applied depending on the data depth and mode,
+ * but this is sufficient to ensure safe decoding.)
+ */
+ if (isDC) {
+ for (i = 0; i < numsymbols; i++) {
+ int sym = htbl->huffval[i];
+ if (sym < 0 || sym > 15)
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
- }
- }
+ }
+ }
}
@@ -455,7 +455,7 @@ jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
*/
#ifdef SLOW_SHIFT_32
-#define MIN_GET_BITS 15 /* minimum allowable value */
+#define MIN_GET_BITS 15 /* minimum allowable value */
#else
#define MIN_GET_BITS (BIT_BUF_SIZE-7)
#endif
@@ -463,102 +463,102 @@ jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
LOCAL(boolean)
jpeg_fill_bit_buffer (bitread_working_state * state,
- register bit_buf_type get_buffer, register int bits_left,
- int nbits)
+ register bit_buf_type get_buffer, register int bits_left,
+ int nbits)
/* Load up the bit buffer to a depth of at least nbits */
{
- /* Copy heavily used state fields into locals (hopefully registers) */
- register const JOCTET * next_input_byte = state->next_input_byte;
- register size_t bytes_in_buffer = state->bytes_in_buffer;
- j_decompress_ptr cinfo = state->cinfo;
+ /* Copy heavily used state fields into locals (hopefully registers) */
+ register const JOCTET * next_input_byte = state->next_input_byte;
+ register size_t bytes_in_buffer = state->bytes_in_buffer;
+ j_decompress_ptr cinfo = state->cinfo;
- /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
- /* (It is assumed that no request will be for more than that many bits.) */
- /* We fail to do so only if we hit a marker or are forced to suspend. */
+ /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
+ /* (It is assumed that no request will be for more than that many bits.) */
+ /* We fail to do so only if we hit a marker or are forced to suspend. */
- if (cinfo->unread_marker == 0) { /* cannot advance past a marker */
- while (bits_left < MIN_GET_BITS) {
- register int c;
+ if (cinfo->unread_marker == 0) { /* cannot advance past a marker */
+ while (bits_left < MIN_GET_BITS) {
+ register int c;
- /* Attempt to read a byte */
- if (bytes_in_buffer == 0) {
+ /* Attempt to read a byte */
+ if (bytes_in_buffer == 0) {
if (! (*cinfo->src->fill_input_buffer) (cinfo))
- return FALSE;
+ return FALSE;
next_input_byte = cinfo->src->next_input_byte;
bytes_in_buffer = cinfo->src->bytes_in_buffer;
- }
- bytes_in_buffer--;
- c = GETJOCTET(*next_input_byte++);
+ }
+ bytes_in_buffer--;
+ c = GETJOCTET(*next_input_byte++);
- /* If it's 0xFF, check and discard stuffed zero byte */
- if (c == 0xFF) {
+ /* If it's 0xFF, check and discard stuffed zero byte */
+ if (c == 0xFF) {
/* Loop here to discard any padding FF's on terminating marker,
- * so that we can save a valid unread_marker value. NOTE: we will
- * accept multiple FF's followed by a 0 as meaning a single FF data
- * byte. This data pattern is not valid according to the standard.
- */
+ * so that we can save a valid unread_marker value. NOTE: we will
+ * accept multiple FF's followed by a 0 as meaning a single FF data
+ * byte. This data pattern is not valid according to the standard.
+ */
do {
- if (bytes_in_buffer == 0) {
- if (! (*cinfo->src->fill_input_buffer) (cinfo))
- return FALSE;
- next_input_byte = cinfo->src->next_input_byte;
- bytes_in_buffer = cinfo->src->bytes_in_buffer;
- }
- bytes_in_buffer--;
- c = GETJOCTET(*next_input_byte++);
+ if (bytes_in_buffer == 0) {
+ if (! (*cinfo->src->fill_input_buffer) (cinfo))
+ return FALSE;
+ next_input_byte = cinfo->src->next_input_byte;
+ bytes_in_buffer = cinfo->src->bytes_in_buffer;
+ }
+ bytes_in_buffer--;
+ c = GETJOCTET(*next_input_byte++);
} while (c == 0xFF);
if (c == 0) {
- /* Found FF/00, which represents an FF data byte */
- c = 0xFF;
+ /* Found FF/00, which represents an FF data byte */
+ c = 0xFF;
} else {
- /* Oops, it's actually a marker indicating end of compressed data.
- * Save the marker code for later use.
- * Fine point: it might appear that we should save the marker into
- * bitread working state, not straight into permanent state. But
- * once we have hit a marker, we cannot need to suspend within the
- * current MCU, because we will read no more bytes from the data
- * source. So it is OK to update permanent state right away.
- */
- cinfo->unread_marker = c;
- /* See if we need to insert some fake zero bits. */
- goto no_more_bytes;
+ /* Oops, it's actually a marker indicating end of compressed data.
+ * Save the marker code for later use.
+ * Fine point: it might appear that we should save the marker into
+ * bitread working state, not straight into permanent state. But
+ * once we have hit a marker, we cannot need to suspend within the
+ * current MCU, because we will read no more bytes from the data
+ * source. So it is OK to update permanent state right away.
+ */
+ cinfo->unread_marker = c;
+ /* See if we need to insert some fake zero bits. */
+ goto no_more_bytes;
}
- }
-
- /* OK, load c into get_buffer */
- get_buffer = (get_buffer << 8) | c;
- bits_left += 8;
- } /* end while */
- } else {
- no_more_bytes:
- /* We get here if we've read the marker that terminates the compressed
- * data segment. There should be enough bits in the buffer register
- * to satisfy the request; if so, no problem.
- */
- if (nbits > bits_left) {
- /* Uh-oh. Report corrupted data to user and stuff zeroes into
- * the data stream, so that we can produce some kind of image.
- * We use a nonvolatile flag to ensure that only one warning message
- * appears per data segment.
- */
- if (! ((huff_entropy_ptr) cinfo->entropy)->insufficient_data) {
+ }
+
+ /* OK, load c into get_buffer */
+ get_buffer = (get_buffer << 8) | c;
+ bits_left += 8;
+ } /* end while */
+ } else {
+ no_more_bytes:
+ /* We get here if we've read the marker that terminates the compressed
+ * data segment. There should be enough bits in the buffer register
+ * to satisfy the request; if so, no problem.
+ */
+ if (nbits > bits_left) {
+ /* Uh-oh. Report corrupted data to user and stuff zeroes into
+ * the data stream, so that we can produce some kind of image.
+ * We use a nonvolatile flag to ensure that only one warning message
+ * appears per data segment.
+ */
+ if (! ((huff_entropy_ptr) cinfo->entropy)->insufficient_data) {
WARNMS(cinfo, JWRN_HIT_MARKER);
((huff_entropy_ptr) cinfo->entropy)->insufficient_data = TRUE;
- }
- /* Fill the buffer with zero bits */
- get_buffer <<= MIN_GET_BITS - bits_left;
- bits_left = MIN_GET_BITS;
- }
- }
-
- /* Unload the local registers */
- state->next_input_byte = next_input_byte;
- state->bytes_in_buffer = bytes_in_buffer;
- state->get_buffer = get_buffer;
- state->bits_left = bits_left;
-
- return TRUE;
+ }
+ /* Fill the buffer with zero bits */
+ get_buffer <<= MIN_GET_BITS - bits_left;
+ bits_left = MIN_GET_BITS;
+ }
+ }
+
+ /* Unload the local registers */
+ state->next_input_byte = next_input_byte;
+ state->bytes_in_buffer = bytes_in_buffer;
+ state->get_buffer = get_buffer;
+ state->bits_left = bits_left;
+
+ return TRUE;
}
@@ -577,9 +577,9 @@ jpeg_fill_bit_buffer (bitread_working_state * state,
#define BIT_MASK(nbits) bmask[nbits]
#define HUFF_EXTEND(x,s) ((x) <= bmask[(s) - 1] ? (x) - bmask[s] : (x))
-static const int bmask[16] = /* bmask[n] is mask for n rightmost bits */
- { 0, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF,
- 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF };
+static const int bmask[16] = /* bmask[n] is mask for n rightmost bits */
+ { 0, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF,
+ 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF };
#endif /* AVOID_TABLES */
@@ -590,40 +590,40 @@ static const int bmask[16] = /* bmask[n] is mask for n rightmost bits */
LOCAL(int)
jpeg_huff_decode (bitread_working_state * state,
- register bit_buf_type get_buffer, register int bits_left,
- d_derived_tbl * htbl, int min_bits)
+ register bit_buf_type get_buffer, register int bits_left,
+ d_derived_tbl * htbl, int min_bits)
{
- register int l = min_bits;
- register INT32 code;
+ register int l = min_bits;
+ register INT32 code;
- /* HUFF_DECODE has determined that the code is at least min_bits */
- /* bits long, so fetch that many bits in one swoop. */
+ /* HUFF_DECODE has determined that the code is at least min_bits */
+ /* bits long, so fetch that many bits in one swoop. */
- CHECK_BIT_BUFFER(*state, l, return -1);
- code = GET_BITS(l);
+ CHECK_BIT_BUFFER(*state, l, return -1);
+ code = GET_BITS(l);
- /* Collect the rest of the Huffman code one bit at a time. */
- /* This is per Figure F.16 in the JPEG spec. */
+ /* Collect the rest of the Huffman code one bit at a time. */
+ /* This is per Figure F.16 in the JPEG spec. */
- while (code > htbl->maxcode[l]) {
- code <<= 1;
- CHECK_BIT_BUFFER(*state, 1, return -1);
- code |= GET_BITS(1);
- l++;
- }
+ while (code > htbl->maxcode[l]) {
+ code <<= 1;
+ CHECK_BIT_BUFFER(*state, 1, return -1);
+ code |= GET_BITS(1);
+ l++;
+ }
- /* Unload the local registers */
- state->get_buffer = get_buffer;
- state->bits_left = bits_left;
+ /* Unload the local registers */
+ state->get_buffer = get_buffer;
+ state->bits_left = bits_left;
- /* With garbage input we may reach the sentinel value l = 17. */
+ /* With garbage input we may reach the sentinel value l = 17. */
- if (l > 16) {
- WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
- return 0; /* fake a zero as the safest result */
- }
+ if (l > 16) {
+ WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
+ return 0; /* fake a zero as the safest result */
+ }
- return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
+ return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
}
@@ -635,36 +635,36 @@ jpeg_huff_decode (bitread_working_state * state,
LOCAL(boolean)
process_restart (j_decompress_ptr cinfo)
{
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- int ci;
-
- /* Throw away any unused bits remaining in bit buffer; */
- /* include any full bytes in next_marker's count of discarded bytes */
- cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
- entropy->bitstate.bits_left = 0;
-
- /* Advance past the RSTn marker */
- if (! (*cinfo->marker->read_restart_marker) (cinfo))
- return FALSE;
-
- /* Re-initialize DC predictions to 0 */
- for (ci = 0; ci < cinfo->comps_in_scan; ci++)
- entropy->saved.last_dc_val[ci] = 0;
- /* Re-init EOB run count, too */
- entropy->saved.EOBRUN = 0;
-
- /* Reset restart counter */
- entropy->restarts_to_go = cinfo->restart_interval;
-
- /* Reset out-of-data flag, unless read_restart_marker left us smack up
- * against a marker. In that case we will end up treating the next data
- * segment as empty, and we can avoid producing bogus output pixels by
- * leaving the flag set.
- */
- if (cinfo->unread_marker == 0)
- entropy->insufficient_data = FALSE;
-
- return TRUE;
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ int ci;
+
+ /* Throw away any unused bits remaining in bit buffer; */
+ /* include any full bytes in next_marker's count of discarded bytes */
+ cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
+ entropy->bitstate.bits_left = 0;
+
+ /* Advance past the RSTn marker */
+ if (! (*cinfo->marker->read_restart_marker) (cinfo))
+ return FALSE;
+
+ /* Re-initialize DC predictions to 0 */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++)
+ entropy->saved.last_dc_val[ci] = 0;
+ /* Re-init EOB run count, too */
+ entropy->saved.EOBRUN = 0;
+
+ /* Reset restart counter */
+ entropy->restarts_to_go = cinfo->restart_interval;
+
+ /* Reset out-of-data flag, unless read_restart_marker left us smack up
+ * against a marker. In that case we will end up treating the next data
+ * segment as empty, and we can avoid producing bogus output pixels by
+ * leaving the flag set.
+ */
+ if (cinfo->unread_marker == 0)
+ entropy->insufficient_data = FALSE;
+
+ return TRUE;
}
@@ -694,66 +694,66 @@ process_restart (j_decompress_ptr cinfo)
METHODDEF(boolean)
decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
{
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- int Al = cinfo->Al;
- register int s, r;
- int blkn, ci;
- JBLOCKROW block;
- BITREAD_STATE_VARS;
- savable_state state;
- d_derived_tbl * tbl;
- jpeg_component_info * compptr;
-
- /* Process restart marker if needed; may have to suspend */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0)
- if (! process_restart(cinfo))
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ int Al = cinfo->Al;
+ register int s, r;
+ int blkn, ci;
+ JBLOCKROW block;
+ BITREAD_STATE_VARS;
+ savable_state state;
+ d_derived_tbl * tbl;
+ jpeg_component_info * compptr;
+
+ /* Process restart marker if needed; may have to suspend */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0)
+ if (! process_restart(cinfo))
return FALSE;
- }
+ }
- /* If we've run out of data, just leave the MCU set to zeroes.
- * This way, we return uniform gray for the remainder of the segment.
- */
- if (! entropy->insufficient_data) {
+ /* If we've run out of data, just leave the MCU set to zeroes.
+ * This way, we return uniform gray for the remainder of the segment.
+ */
+ if (! entropy->insufficient_data) {
- /* Load up working state */
- BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
- ASSIGN_STATE(state, entropy->saved);
+ /* Load up working state */
+ BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
+ ASSIGN_STATE(state, entropy->saved);
- /* Outer loop handles each block in the MCU */
+ /* Outer loop handles each block in the MCU */
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- block = MCU_data[blkn];
- ci = cinfo->MCU_membership[blkn];
- compptr = cinfo->cur_comp_info[ci];
- tbl = entropy->derived_tbls[compptr->dc_tbl_no];
+ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+ block = MCU_data[blkn];
+ ci = cinfo->MCU_membership[blkn];
+ compptr = cinfo->cur_comp_info[ci];
+ tbl = entropy->derived_tbls[compptr->dc_tbl_no];
- /* Decode a single block's worth of coefficients */
+ /* Decode a single block's worth of coefficients */
- /* Section F.2.2.1: decode the DC coefficient difference */
- HUFF_DECODE(s, br_state, tbl, return FALSE, label1);
- if (s) {
+ /* Section F.2.2.1: decode the DC coefficient difference */
+ HUFF_DECODE(s, br_state, tbl, return FALSE, label1);
+ if (s) {
CHECK_BIT_BUFFER(br_state, s, return FALSE);
r = GET_BITS(s);
s = HUFF_EXTEND(r, s);
- }
+ }
- /* Convert DC difference to actual value, update last_dc_val */
- s += state.last_dc_val[ci];
- state.last_dc_val[ci] = s;
- /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */
- (*block)[0] = (JCOEF) (s << Al);
- }
+ /* Convert DC difference to actual value, update last_dc_val */
+ s += state.last_dc_val[ci];
+ state.last_dc_val[ci] = s;
+ /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */
+ (*block)[0] = (JCOEF) (s << Al);
+ }
- /* Completed MCU, so update state */
- BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
- ASSIGN_STATE(entropy->saved, state);
- }
+ /* Completed MCU, so update state */
+ BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
+ ASSIGN_STATE(entropy->saved, state);
+ }
- /* Account for restart interval (no-op if not using restarts) */
- entropy->restarts_to_go--;
+ /* Account for restart interval (no-op if not using restarts) */
+ entropy->restarts_to_go--;
- return TRUE;
+ return TRUE;
}
@@ -765,83 +765,83 @@ decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
METHODDEF(boolean)
decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
{
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- register int s, k, r;
- unsigned int EOBRUN;
- int Se, Al;
- const int * natural_order;
- JBLOCKROW block;
- BITREAD_STATE_VARS;
- d_derived_tbl * tbl;
-
- /* Process restart marker if needed; may have to suspend */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0)
- if (! process_restart(cinfo))
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ register int s, k, r;
+ unsigned int EOBRUN;
+ int Se, Al;
+ const int * natural_order;
+ JBLOCKROW block;
+ BITREAD_STATE_VARS;
+ d_derived_tbl * tbl;
+
+ /* Process restart marker if needed; may have to suspend */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0)
+ if (! process_restart(cinfo))
return FALSE;
- }
+ }
- /* If we've run out of data, just leave the MCU set to zeroes.
- * This way, we return uniform gray for the remainder of the segment.
- */
- if (! entropy->insufficient_data) {
+ /* If we've run out of data, just leave the MCU set to zeroes.
+ * This way, we return uniform gray for the remainder of the segment.
+ */
+ if (! entropy->insufficient_data) {
- Se = cinfo->Se;
- Al = cinfo->Al;
- natural_order = cinfo->natural_order;
+ Se = cinfo->Se;
+ Al = cinfo->Al;
+ natural_order = cinfo->natural_order;
- /* Load up working state.
- * We can avoid loading/saving bitread state if in an EOB run.
- */
- EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
+ /* Load up working state.
+ * We can avoid loading/saving bitread state if in an EOB run.
+ */
+ EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
- /* There is always only one block per MCU */
+ /* There is always only one block per MCU */
- if (EOBRUN > 0) /* if it's a band of zeroes... */
- EOBRUN--; /* ...process it now (we do nothing) */
- else {
- BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
- block = MCU_data[0];
- tbl = entropy->ac_derived_tbl;
+ if (EOBRUN > 0) /* if it's a band of zeroes... */
+ EOBRUN--; /* ...process it now (we do nothing) */
+ else {
+ BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
+ block = MCU_data[0];
+ tbl = entropy->ac_derived_tbl;
- for (k = cinfo->Ss; k <= Se; k++) {
+ for (k = cinfo->Ss; k <= Se; k++) {
HUFF_DECODE(s, br_state, tbl, return FALSE, label2);
r = s >> 4;
s &= 15;
if (s) {
- k += r;
- CHECK_BIT_BUFFER(br_state, s, return FALSE);
- r = GET_BITS(s);
- s = HUFF_EXTEND(r, s);
- /* Scale and output coefficient in natural (dezigzagged) order */
- (*block)[natural_order[k]] = (JCOEF) (s << Al);
+ k += r;
+ CHECK_BIT_BUFFER(br_state, s, return FALSE);
+ r = GET_BITS(s);
+ s = HUFF_EXTEND(r, s);
+ /* Scale and output coefficient in natural (dezigzagged) order */
+ (*block)[natural_order[k]] = (JCOEF) (s << Al);
} else {
- if (r == 15) { /* ZRL */
- k += 15; /* skip 15 zeroes in band */
- } else { /* EOBr, run length is 2^r + appended bits */
- EOBRUN = 1 << r;
- if (r) { /* EOBr, r > 0 */
- CHECK_BIT_BUFFER(br_state, r, return FALSE);
- r = GET_BITS(r);
- EOBRUN += r;
- }
- EOBRUN--; /* this band is processed at this moment */
- break; /* force end-of-band */
- }
+ if (r == 15) { /* ZRL */
+ k += 15; /* skip 15 zeroes in band */
+ } else { /* EOBr, run length is 2^r + appended bits */
+ EOBRUN = 1 << r;
+ if (r) { /* EOBr, r > 0 */
+ CHECK_BIT_BUFFER(br_state, r, return FALSE);
+ r = GET_BITS(r);
+ EOBRUN += r;
+ }
+ EOBRUN--; /* this band is processed at this moment */
+ break; /* force end-of-band */
+ }
}
- }
+ }
- BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
- }
+ BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
+ }
- /* Completed MCU, so update state */
- entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
- }
+ /* Completed MCU, so update state */
+ entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
+ }
- /* Account for restart interval (no-op if not using restarts) */
- entropy->restarts_to_go--;
+ /* Account for restart interval (no-op if not using restarts) */
+ entropy->restarts_to_go--;
- return TRUE;
+ return TRUE;
}
@@ -854,45 +854,45 @@ decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
METHODDEF(boolean)
decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
{
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
- int blkn;
- JBLOCKROW block;
- BITREAD_STATE_VARS;
-
- /* Process restart marker if needed; may have to suspend */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0)
- if (! process_restart(cinfo))
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
+ int blkn;
+ JBLOCKROW block;
+ BITREAD_STATE_VARS;
+
+ /* Process restart marker if needed; may have to suspend */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0)
+ if (! process_restart(cinfo))
return FALSE;
- }
+ }
- /* Not worth the cycles to check insufficient_data here,
- * since we will not change the data anyway if we read zeroes.
- */
+ /* Not worth the cycles to check insufficient_data here,
+ * since we will not change the data anyway if we read zeroes.
+ */
- /* Load up working state */
- BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
+ /* Load up working state */
+ BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
- /* Outer loop handles each block in the MCU */
+ /* Outer loop handles each block in the MCU */
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- block = MCU_data[blkn];
+ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+ block = MCU_data[blkn];
- /* Encoded data is simply the next bit of the two's-complement DC value */
- CHECK_BIT_BUFFER(br_state, 1, return FALSE);
- if (GET_BITS(1))
- (*block)[0] |= p1;
- /* Note: since we use |=, repeating the assignment later is safe */
- }
+ /* Encoded data is simply the next bit of the two's-complement DC value */
+ CHECK_BIT_BUFFER(br_state, 1, return FALSE);
+ if (GET_BITS(1))
+ (*block)[0] |= p1;
+ /* Note: since we use |=, repeating the assignment later is safe */
+ }
- /* Completed MCU, so update state */
- BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
+ /* Completed MCU, so update state */
+ BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
- /* Account for restart interval (no-op if not using restarts) */
- entropy->restarts_to_go--;
+ /* Account for restart interval (no-op if not using restarts) */
+ entropy->restarts_to_go--;
- return TRUE;
+ return TRUE;
}
@@ -903,150 +903,150 @@ decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
METHODDEF(boolean)
decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
{
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- register int s, k, r;
- unsigned int EOBRUN;
- int Se, p1, m1;
- const int * natural_order;
- JBLOCKROW block;
- JCOEFPTR thiscoef;
- BITREAD_STATE_VARS;
- d_derived_tbl * tbl;
- int num_newnz;
- int newnz_pos[DCTSIZE2];
-
- /* Process restart marker if needed; may have to suspend */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0)
- if (! process_restart(cinfo))
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ register int s, k, r;
+ unsigned int EOBRUN;
+ int Se, p1, m1;
+ const int * natural_order;
+ JBLOCKROW block;
+ JCOEFPTR thiscoef;
+ BITREAD_STATE_VARS;
+ d_derived_tbl * tbl;
+ int num_newnz;
+ int newnz_pos[DCTSIZE2];
+
+ /* Process restart marker if needed; may have to suspend */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0)
+ if (! process_restart(cinfo))
return FALSE;
- }
-
- /* If we've run out of data, don't modify the MCU.
- */
- if (! entropy->insufficient_data) {
-
- Se = cinfo->Se;
- p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
- m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */
- natural_order = cinfo->natural_order;
-
- /* Load up working state */
- BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
- EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
-
- /* There is always only one block per MCU */
- block = MCU_data[0];
- tbl = entropy->ac_derived_tbl;
-
- /* If we are forced to suspend, we must undo the assignments to any newly
- * nonzero coefficients in the block, because otherwise we'd get confused
- * next time about which coefficients were already nonzero.
- * But we need not undo addition of bits to already-nonzero coefficients;
- * instead, we can test the current bit to see if we already did it.
- */
- num_newnz = 0;
-
- /* initialize coefficient loop counter to start of band */
- k = cinfo->Ss;
-
- if (EOBRUN == 0) {
- for (; k <= Se; k++) {
+ }
+
+ /* If we've run out of data, don't modify the MCU.
+ */
+ if (! entropy->insufficient_data) {
+
+ Se = cinfo->Se;
+ p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
+ m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */
+ natural_order = cinfo->natural_order;
+
+ /* Load up working state */
+ BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
+ EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
+
+ /* There is always only one block per MCU */
+ block = MCU_data[0];
+ tbl = entropy->ac_derived_tbl;
+
+ /* If we are forced to suspend, we must undo the assignments to any newly
+ * nonzero coefficients in the block, because otherwise we'd get confused
+ * next time about which coefficients were already nonzero.
+ * But we need not undo addition of bits to already-nonzero coefficients;
+ * instead, we can test the current bit to see if we already did it.
+ */
+ num_newnz = 0;
+
+ /* initialize coefficient loop counter to start of band */
+ k = cinfo->Ss;
+
+ if (EOBRUN == 0) {
+ for (; k <= Se; k++) {
HUFF_DECODE(s, br_state, tbl, goto undoit, label3);
r = s >> 4;
s &= 15;
if (s) {
- if (s != 1) /* size of new coef should always be 1 */
- WARNMS(cinfo, JWRN_HUFF_BAD_CODE);
- CHECK_BIT_BUFFER(br_state, 1, goto undoit);
- if (GET_BITS(1))
- s = p1; /* newly nonzero coef is positive */
- else
- s = m1; /* newly nonzero coef is negative */
+ if (s != 1) /* size of new coef should always be 1 */
+ WARNMS(cinfo, JWRN_HUFF_BAD_CODE);
+ CHECK_BIT_BUFFER(br_state, 1, goto undoit);
+ if (GET_BITS(1))
+ s = p1; /* newly nonzero coef is positive */
+ else
+ s = m1; /* newly nonzero coef is negative */
} else {
- if (r != 15) {
- EOBRUN = 1 << r; /* EOBr, run length is 2^r + appended bits */
- if (r) {
- CHECK_BIT_BUFFER(br_state, r, goto undoit);
- r = GET_BITS(r);
- EOBRUN += r;
- }
- break; /* rest of block is handled by EOB logic */
- }
- /* note s = 0 for processing ZRL */
+ if (r != 15) {
+ EOBRUN = 1 << r; /* EOBr, run length is 2^r + appended bits */
+ if (r) {
+ CHECK_BIT_BUFFER(br_state, r, goto undoit);
+ r = GET_BITS(r);
+ EOBRUN += r;
+ }
+ break; /* rest of block is handled by EOB logic */
+ }
+ /* note s = 0 for processing ZRL */
}
/* Advance over already-nonzero coefs and r still-zero coefs,
- * appending correction bits to the nonzeroes. A correction bit is 1
- * if the absolute value of the coefficient must be increased.
- */
+ * appending correction bits to the nonzeroes. A correction bit is 1
+ * if the absolute value of the coefficient must be increased.
+ */
do {
- thiscoef = *block + natural_order[k];
- if (*thiscoef != 0) {
- CHECK_BIT_BUFFER(br_state, 1, goto undoit);
- if (GET_BITS(1)) {
- if ((*thiscoef & p1) == 0) { /* do nothing if already set it */
+ thiscoef = *block + natural_order[k];
+ if (*thiscoef != 0) {
+ CHECK_BIT_BUFFER(br_state, 1, goto undoit);
+ if (GET_BITS(1)) {
+ if ((*thiscoef & p1) == 0) { /* do nothing if already set it */
if (*thiscoef >= 0)
- *thiscoef += p1;
+ *thiscoef += p1;
else
- *thiscoef += m1;
- }
- }
- } else {
- if (--r < 0)
- break; /* reached target zero coefficient */
- }
- k++;
+ *thiscoef += m1;
+ }
+ }
+ } else {
+ if (--r < 0)
+ break; /* reached target zero coefficient */
+ }
+ k++;
} while (k <= Se);
if (s) {
- int pos = natural_order[k];
- /* Output newly nonzero coefficient */
- (*block)[pos] = (JCOEF) s;
- /* Remember its position in case we have to suspend */
- newnz_pos[num_newnz++] = pos;
+ int pos = natural_order[k];
+ /* Output newly nonzero coefficient */
+ (*block)[pos] = (JCOEF) s;
+ /* Remember its position in case we have to suspend */
+ newnz_pos[num_newnz++] = pos;
+ }
+ }
}
- }
- }
-
- if (EOBRUN > 0) {
- /* Scan any remaining coefficient positions after the end-of-band
- * (the last newly nonzero coefficient, if any). Append a correction
- * bit to each already-nonzero coefficient. A correction bit is 1
- * if the absolute value of the coefficient must be increased.
- */
- for (; k <= Se; k++) {
+
+ if (EOBRUN > 0) {
+ /* Scan any remaining coefficient positions after the end-of-band
+ * (the last newly nonzero coefficient, if any). Append a correction
+ * bit to each already-nonzero coefficient. A correction bit is 1
+ * if the absolute value of the coefficient must be increased.
+ */
+ for (; k <= Se; k++) {
thiscoef = *block + natural_order[k];
if (*thiscoef != 0) {
- CHECK_BIT_BUFFER(br_state, 1, goto undoit);
- if (GET_BITS(1)) {
- if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */
- if (*thiscoef >= 0)
+ CHECK_BIT_BUFFER(br_state, 1, goto undoit);
+ if (GET_BITS(1)) {
+ if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */
+ if (*thiscoef >= 0)
*thiscoef += p1;
- else
+ else
*thiscoef += m1;
- }
- }
+ }
+ }
+ }
+ }
+ /* Count one block completed in EOB run */
+ EOBRUN--;
}
- }
- /* Count one block completed in EOB run */
- EOBRUN--;
- }
- /* Completed MCU, so update state */
- BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
- entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
- }
+ /* Completed MCU, so update state */
+ BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
+ entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
+ }
- /* Account for restart interval (no-op if not using restarts) */
- entropy->restarts_to_go--;
+ /* Account for restart interval (no-op if not using restarts) */
+ entropy->restarts_to_go--;
- return TRUE;
+ return TRUE;
undoit:
- /* Re-zero any output coefficients that we made newly nonzero */
- while (num_newnz > 0)
- (*block)[newnz_pos[--num_newnz]] = 0;
+ /* Re-zero any output coefficients that we made newly nonzero */
+ while (num_newnz > 0)
+ (*block)[newnz_pos[--num_newnz]] = 0;
- return FALSE;
+ return FALSE;
}
@@ -1058,54 +1058,54 @@ undoit:
METHODDEF(boolean)
decode_mcu_sub (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
{
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- const int * natural_order;
- int Se, blkn;
- BITREAD_STATE_VARS;
- savable_state state;
-
- /* Process restart marker if needed; may have to suspend */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0)
- if (! process_restart(cinfo))
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ const int * natural_order;
+ int Se, blkn;
+ BITREAD_STATE_VARS;
+ savable_state state;
+
+ /* Process restart marker if needed; may have to suspend */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0)
+ if (! process_restart(cinfo))
return FALSE;
- }
+ }
- /* If we've run out of data, just leave the MCU set to zeroes.
- * This way, we return uniform gray for the remainder of the segment.
- */
- if (! entropy->insufficient_data) {
+ /* If we've run out of data, just leave the MCU set to zeroes.
+ * This way, we return uniform gray for the remainder of the segment.
+ */
+ if (! entropy->insufficient_data) {
- natural_order = cinfo->natural_order;
- Se = cinfo->lim_Se;
+ natural_order = cinfo->natural_order;
+ Se = cinfo->lim_Se;
- /* Load up working state */
- BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
- ASSIGN_STATE(state, entropy->saved);
+ /* Load up working state */
+ BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
+ ASSIGN_STATE(state, entropy->saved);
- /* Outer loop handles each block in the MCU */
+ /* Outer loop handles each block in the MCU */
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- JBLOCKROW block = MCU_data[blkn];
- d_derived_tbl * htbl;
- register int s, k, r;
- int coef_limit, ci;
+ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+ JBLOCKROW block = MCU_data[blkn];
+ d_derived_tbl * htbl;
+ register int s, k, r;
+ int coef_limit, ci;
- /* Decode a single block's worth of coefficients */
+ /* Decode a single block's worth of coefficients */
- /* Section F.2.2.1: decode the DC coefficient difference */
- htbl = entropy->dc_cur_tbls[blkn];
- HUFF_DECODE(s, br_state, htbl, return FALSE, label1);
+ /* Section F.2.2.1: decode the DC coefficient difference */
+ htbl = entropy->dc_cur_tbls[blkn];
+ HUFF_DECODE(s, br_state, htbl, return FALSE, label1);
- htbl = entropy->ac_cur_tbls[blkn];
- k = 1;
- coef_limit = entropy->coef_limit[blkn];
- if (coef_limit) {
+ htbl = entropy->ac_cur_tbls[blkn];
+ k = 1;
+ coef_limit = entropy->coef_limit[blkn];
+ if (coef_limit) {
/* Convert DC difference to actual value, update last_dc_val */
if (s) {
- CHECK_BIT_BUFFER(br_state, s, return FALSE);
- r = GET_BITS(s);
- s = HUFF_EXTEND(r, s);
+ CHECK_BIT_BUFFER(br_state, s, return FALSE);
+ r = GET_BITS(s);
+ s = HUFF_EXTEND(r, s);
}
ci = cinfo->MCU_membership[blkn];
s += state.last_dc_val[ci];
@@ -1116,65 +1116,65 @@ decode_mcu_sub (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
/* Section F.2.2.2: decode the AC coefficients */
/* Since zeroes are skipped, output area must be cleared beforehand */
for (; k < coef_limit; k++) {
- HUFF_DECODE(s, br_state, htbl, return FALSE, label2);
-
- r = s >> 4;
- s &= 15;
-
- if (s) {
- k += r;
- CHECK_BIT_BUFFER(br_state, s, return FALSE);
- r = GET_BITS(s);
- s = HUFF_EXTEND(r, s);
- /* Output coefficient in natural (dezigzagged) order.
- * Note: the extra entries in natural_order[] will save us
- * if k > Se, which could happen if the data is corrupted.
- */
- (*block)[natural_order[k]] = (JCOEF) s;
- } else {
- if (r != 15)
- goto EndOfBlock;
- k += 15;
- }
+ HUFF_DECODE(s, br_state, htbl, return FALSE, label2);
+
+ r = s >> 4;
+ s &= 15;
+
+ if (s) {
+ k += r;
+ CHECK_BIT_BUFFER(br_state, s, return FALSE);
+ r = GET_BITS(s);
+ s = HUFF_EXTEND(r, s);
+ /* Output coefficient in natural (dezigzagged) order.
+ * Note: the extra entries in natural_order[] will save us
+ * if k > Se, which could happen if the data is corrupted.
+ */
+ (*block)[natural_order[k]] = (JCOEF) s;
+ } else {
+ if (r != 15)
+ goto EndOfBlock;
+ k += 15;
+ }
}
- } else {
+ } else {
if (s) {
- CHECK_BIT_BUFFER(br_state, s, return FALSE);
- DROP_BITS(s);
+ CHECK_BIT_BUFFER(br_state, s, return FALSE);
+ DROP_BITS(s);
}
- }
+ }
- /* Section F.2.2.2: decode the AC coefficients */
- /* In this path we just discard the values */
- for (; k <= Se; k++) {
+ /* Section F.2.2.2: decode the AC coefficients */
+ /* In this path we just discard the values */
+ for (; k <= Se; k++) {
HUFF_DECODE(s, br_state, htbl, return FALSE, label3);
r = s >> 4;
s &= 15;
if (s) {
- k += r;
- CHECK_BIT_BUFFER(br_state, s, return FALSE);
- DROP_BITS(s);
+ k += r;
+ CHECK_BIT_BUFFER(br_state, s, return FALSE);
+ DROP_BITS(s);
} else {
- if (r != 15)
- break;
- k += 15;
+ if (r != 15)
+ break;
+ k += 15;
}
- }
+ }
- EndOfBlock: ;
- }
+ EndOfBlock: ;
+ }
- /* Completed MCU, so update state */
- BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
- ASSIGN_STATE(entropy->saved, state);
- }
+ /* Completed MCU, so update state */
+ BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
+ ASSIGN_STATE(entropy->saved, state);
+ }
- /* Account for restart interval (no-op if not using restarts) */
- entropy->restarts_to_go--;
+ /* Account for restart interval (no-op if not using restarts) */
+ entropy->restarts_to_go--;
- return TRUE;
+ return TRUE;
}
@@ -1186,50 +1186,50 @@ decode_mcu_sub (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
METHODDEF(boolean)
decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
{
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- int blkn;
- BITREAD_STATE_VARS;
- savable_state state;
-
- /* Process restart marker if needed; may have to suspend */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0)
- if (! process_restart(cinfo))
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ int blkn;
+ BITREAD_STATE_VARS;
+ savable_state state;
+
+ /* Process restart marker if needed; may have to suspend */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0)
+ if (! process_restart(cinfo))
return FALSE;
- }
+ }
- /* If we've run out of data, just leave the MCU set to zeroes.
- * This way, we return uniform gray for the remainder of the segment.
- */
- if (! entropy->insufficient_data) {
+ /* If we've run out of data, just leave the MCU set to zeroes.
+ * This way, we return uniform gray for the remainder of the segment.
+ */
+ if (! entropy->insufficient_data) {
- /* Load up working state */
- BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
- ASSIGN_STATE(state, entropy->saved);
+ /* Load up working state */
+ BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
+ ASSIGN_STATE(state, entropy->saved);
- /* Outer loop handles each block in the MCU */
+ /* Outer loop handles each block in the MCU */
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- JBLOCKROW block = MCU_data[blkn];
- d_derived_tbl * htbl;
- register int s, k, r;
- int coef_limit, ci;
+ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+ JBLOCKROW block = MCU_data[blkn];
+ d_derived_tbl * htbl;
+ register int s, k, r;
+ int coef_limit, ci;
- /* Decode a single block's worth of coefficients */
+ /* Decode a single block's worth of coefficients */
- /* Section F.2.2.1: decode the DC coefficient difference */
- htbl = entropy->dc_cur_tbls[blkn];
- HUFF_DECODE(s, br_state, htbl, return FALSE, label1);
+ /* Section F.2.2.1: decode the DC coefficient difference */
+ htbl = entropy->dc_cur_tbls[blkn];
+ HUFF_DECODE(s, br_state, htbl, return FALSE, label1);
- htbl = entropy->ac_cur_tbls[blkn];
- k = 1;
- coef_limit = entropy->coef_limit[blkn];
- if (coef_limit) {
+ htbl = entropy->ac_cur_tbls[blkn];
+ k = 1;
+ coef_limit = entropy->coef_limit[blkn];
+ if (coef_limit) {
/* Convert DC difference to actual value, update last_dc_val */
if (s) {
- CHECK_BIT_BUFFER(br_state, s, return FALSE);
- r = GET_BITS(s);
- s = HUFF_EXTEND(r, s);
+ CHECK_BIT_BUFFER(br_state, s, return FALSE);
+ r = GET_BITS(s);
+ s = HUFF_EXTEND(r, s);
}
ci = cinfo->MCU_membership[blkn];
s += state.last_dc_val[ci];
@@ -1240,65 +1240,65 @@ decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
/* Section F.2.2.2: decode the AC coefficients */
/* Since zeroes are skipped, output area must be cleared beforehand */
for (; k < coef_limit; k++) {
- HUFF_DECODE(s, br_state, htbl, return FALSE, label2);
-
- r = s >> 4;
- s &= 15;
-
- if (s) {
- k += r;
- CHECK_BIT_BUFFER(br_state, s, return FALSE);
- r = GET_BITS(s);
- s = HUFF_EXTEND(r, s);
- /* Output coefficient in natural (dezigzagged) order.
- * Note: the extra entries in jpeg_natural_order[] will save us
- * if k >= DCTSIZE2, which could happen if the data is corrupted.
- */
- (*block)[jpeg_natural_order[k]] = (JCOEF) s;
- } else {
- if (r != 15)
- goto EndOfBlock;
- k += 15;
- }
+ HUFF_DECODE(s, br_state, htbl, return FALSE, label2);
+
+ r = s >> 4;
+ s &= 15;
+
+ if (s) {
+ k += r;
+ CHECK_BIT_BUFFER(br_state, s, return FALSE);
+ r = GET_BITS(s);
+ s = HUFF_EXTEND(r, s);
+ /* Output coefficient in natural (dezigzagged) order.
+ * Note: the extra entries in jpeg_natural_order[] will save us
+ * if k >= DCTSIZE2, which could happen if the data is corrupted.
+ */
+ (*block)[jpeg_natural_order[k]] = (JCOEF) s;
+ } else {
+ if (r != 15)
+ goto EndOfBlock;
+ k += 15;
+ }
}
- } else {
+ } else {
if (s) {
- CHECK_BIT_BUFFER(br_state, s, return FALSE);
- DROP_BITS(s);
+ CHECK_BIT_BUFFER(br_state, s, return FALSE);
+ DROP_BITS(s);
}
- }
+ }
- /* Section F.2.2.2: decode the AC coefficients */
- /* In this path we just discard the values */
- for (; k < DCTSIZE2; k++) {
+ /* Section F.2.2.2: decode the AC coefficients */
+ /* In this path we just discard the values */
+ for (; k < DCTSIZE2; k++) {
HUFF_DECODE(s, br_state, htbl, return FALSE, label3);
r = s >> 4;
s &= 15;
if (s) {
- k += r;
- CHECK_BIT_BUFFER(br_state, s, return FALSE);
- DROP_BITS(s);
+ k += r;
+ CHECK_BIT_BUFFER(br_state, s, return FALSE);
+ DROP_BITS(s);
} else {
- if (r != 15)
- break;
- k += 15;
+ if (r != 15)
+ break;
+ k += 15;
}
- }
+ }
- EndOfBlock: ;
- }
+ EndOfBlock: ;
+ }
- /* Completed MCU, so update state */
- BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
- ASSIGN_STATE(entropy->saved, state);
- }
+ /* Completed MCU, so update state */
+ BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
+ ASSIGN_STATE(entropy->saved, state);
+ }
- /* Account for restart interval (no-op if not using restarts) */
- entropy->restarts_to_go--;
+ /* Account for restart interval (no-op if not using restarts) */
+ entropy->restarts_to_go--;
- return TRUE;
+ return TRUE;
}
@@ -1309,195 +1309,195 @@ decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
METHODDEF(void)
start_pass_huff_decoder (j_decompress_ptr cinfo)
{
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- int ci, blkn, tbl, i;
- jpeg_component_info * compptr;
-
- if (cinfo->progressive_mode) {
- /* Validate progressive scan parameters */
- if (cinfo->Ss == 0) {
- if (cinfo->Se != 0)
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ int ci, blkn, tbl, i;
+ jpeg_component_info * compptr;
+
+ if (cinfo->progressive_mode) {
+ /* Validate progressive scan parameters */
+ if (cinfo->Ss == 0) {
+ if (cinfo->Se != 0)
goto bad;
- } else {
- /* need not check Ss/Se < 0 since they came from unsigned bytes */
- if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se)
+ } else {
+ /* need not check Ss/Se < 0 since they came from unsigned bytes */
+ if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se)
goto bad;
- /* AC scans may have only one component */
- if (cinfo->comps_in_scan != 1)
+ /* AC scans may have only one component */
+ if (cinfo->comps_in_scan != 1)
goto bad;
- }
- if (cinfo->Ah != 0) {
- /* Successive approximation refinement scan: must have Al = Ah-1. */
- if (cinfo->Ah-1 != cinfo->Al)
+ }
+ if (cinfo->Ah != 0) {
+ /* Successive approximation refinement scan: must have Al = Ah-1. */
+ if (cinfo->Ah-1 != cinfo->Al)
goto bad;
- }
- if (cinfo->Al > 13) { /* need not check for < 0 */
- /* Arguably the maximum Al value should be less than 13 for 8-bit precision,
- * but the spec doesn't say so, and we try to be liberal about what we
- * accept. Note: large Al values could result in out-of-range DC
- * coefficients during early scans, leading to bizarre displays due to
- * overflows in the IDCT math. But we won't crash.
- */
- bad:
- ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
- cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
- }
- /* Update progression status, and verify that scan order is legal.
- * Note that inter-scan inconsistencies are treated as warnings
- * not fatal errors ... not clear if this is right way to behave.
- */
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
- int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
- if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
+ }
+ if (cinfo->Al > 13) { /* need not check for < 0 */
+ /* Arguably the maximum Al value should be less than 13 for 8-bit precision,
+ * but the spec doesn't say so, and we try to be liberal about what we
+ * accept. Note: large Al values could result in out-of-range DC
+ * coefficients during early scans, leading to bizarre displays due to
+ * overflows in the IDCT math. But we won't crash.
+ */
+ bad:
+ ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
+ cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
+ }
+ /* Update progression status, and verify that scan order is legal.
+ * Note that inter-scan inconsistencies are treated as warnings
+ * not fatal errors ... not clear if this is right way to behave.
+ */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
+ int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
+ if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
- for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
+ for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
if (cinfo->Ah != expected)
- WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
+ WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
coef_bit_ptr[coefi] = cinfo->Al;
- }
- }
+ }
+ }
- /* Select MCU decoding routine */
- if (cinfo->Ah == 0) {
- if (cinfo->Ss == 0)
+ /* Select MCU decoding routine */
+ if (cinfo->Ah == 0) {
+ if (cinfo->Ss == 0)
entropy->pub.decode_mcu = decode_mcu_DC_first;
- else
+ else
entropy->pub.decode_mcu = decode_mcu_AC_first;
- } else {
- if (cinfo->Ss == 0)
+ } else {
+ if (cinfo->Ss == 0)
entropy->pub.decode_mcu = decode_mcu_DC_refine;
- else
+ else
entropy->pub.decode_mcu = decode_mcu_AC_refine;
- }
-
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- /* Make sure requested tables are present, and compute derived tables.
- * We may build same derived table more than once, but it's not expensive.
- */
- if (cinfo->Ss == 0) {
- if (cinfo->Ah == 0) { /* DC refinement needs no table */
- tbl = compptr->dc_tbl_no;
- jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
- & entropy->derived_tbls[tbl]);
}
- } else {
+
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ /* Make sure requested tables are present, and compute derived tables.
+ * We may build same derived table more than once, but it's not expensive.
+ */
+ if (cinfo->Ss == 0) {
+ if (cinfo->Ah == 0) { /* DC refinement needs no table */
+ tbl = compptr->dc_tbl_no;
+ jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
+ & entropy->derived_tbls[tbl]);
+ }
+ } else {
tbl = compptr->ac_tbl_no;
jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
& entropy->derived_tbls[tbl]);
/* remember the single active table */
entropy->ac_derived_tbl = entropy->derived_tbls[tbl];
- }
- /* Initialize DC predictions to 0 */
- entropy->saved.last_dc_val[ci] = 0;
- }
-
- /* Initialize private state variables */
- entropy->saved.EOBRUN = 0;
- } else {
- /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
- * This ought to be an error condition, but we make it a warning because
- * there are some baseline files out there with all zeroes in these bytes.
- */
- if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 ||
+ }
+ /* Initialize DC predictions to 0 */
+ entropy->saved.last_dc_val[ci] = 0;
+ }
+
+ /* Initialize private state variables */
+ entropy->saved.EOBRUN = 0;
+ } else {
+ /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
+ * This ought to be an error condition, but we make it a warning because
+ * there are some baseline files out there with all zeroes in these bytes.
+ */
+ if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 ||
((cinfo->is_baseline || cinfo->Se < DCTSIZE2) &&
cinfo->Se != cinfo->lim_Se))
- WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
-
- /* Select MCU decoding routine */
- /* We retain the hard-coded case for full-size blocks.
- * This is not necessary, but it appears that this version is slightly
- * more performant in the given implementation.
- * With an improved implementation we would prefer a single optimized
- * function.
- */
- if (cinfo->lim_Se != DCTSIZE2-1)
- entropy->pub.decode_mcu = decode_mcu_sub;
- else
- entropy->pub.decode_mcu = decode_mcu;
-
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- /* Compute derived values for Huffman tables */
- /* We may do this more than once for a table, but it's not expensive */
- tbl = compptr->dc_tbl_no;
- jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
- & entropy->dc_derived_tbls[tbl]);
- if (cinfo->lim_Se) { /* AC needs no table when not present */
+ WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
+
+ /* Select MCU decoding routine */
+ /* We retain the hard-coded case for full-size blocks.
+ * This is not necessary, but it appears that this version is slightly
+ * more performant in the given implementation.
+ * With an improved implementation we would prefer a single optimized
+ * function.
+ */
+ if (cinfo->lim_Se != DCTSIZE2-1)
+ entropy->pub.decode_mcu = decode_mcu_sub;
+ else
+ entropy->pub.decode_mcu = decode_mcu;
+
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ /* Compute derived values for Huffman tables */
+ /* We may do this more than once for a table, but it's not expensive */
+ tbl = compptr->dc_tbl_no;
+ jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
+ & entropy->dc_derived_tbls[tbl]);
+ if (cinfo->lim_Se) { /* AC needs no table when not present */
tbl = compptr->ac_tbl_no;
jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
& entropy->ac_derived_tbls[tbl]);
- }
- /* Initialize DC predictions to 0 */
- entropy->saved.last_dc_val[ci] = 0;
- }
-
- /* Precalculate decoding info for each block in an MCU of this scan */
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- ci = cinfo->MCU_membership[blkn];
- compptr = cinfo->cur_comp_info[ci];
- /* Precalculate which table to use for each block */
- entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
- entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
- /* Decide whether we really care about the coefficient values */
- if (compptr->component_needed) {
+ }
+ /* Initialize DC predictions to 0 */
+ entropy->saved.last_dc_val[ci] = 0;
+ }
+
+ /* Precalculate decoding info for each block in an MCU of this scan */
+ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+ ci = cinfo->MCU_membership[blkn];
+ compptr = cinfo->cur_comp_info[ci];
+ /* Precalculate which table to use for each block */
+ entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
+ entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
+ /* Decide whether we really care about the coefficient values */
+ if (compptr->component_needed) {
ci = compptr->DCT_v_scaled_size;
i = compptr->DCT_h_scaled_size;
switch (cinfo->lim_Se) {
case (1*1-1):
- entropy->coef_limit[blkn] = 1;
- break;
+ entropy->coef_limit[blkn] = 1;
+ break;
case (2*2-1):
- if (ci <= 0 || ci > 2) ci = 2;
- if (i <= 0 || i > 2) i = 2;
- entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order2[ci - 1][i - 1];
- break;
+ if (ci <= 0 || ci > 2) ci = 2;
+ if (i <= 0 || i > 2) i = 2;
+ entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order2[ci - 1][i - 1];
+ break;
case (3*3-1):
- if (ci <= 0 || ci > 3) ci = 3;
- if (i <= 0 || i > 3) i = 3;
- entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order3[ci - 1][i - 1];
- break;
+ if (ci <= 0 || ci > 3) ci = 3;
+ if (i <= 0 || i > 3) i = 3;
+ entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order3[ci - 1][i - 1];
+ break;
case (4*4-1):
- if (ci <= 0 || ci > 4) ci = 4;
- if (i <= 0 || i > 4) i = 4;
- entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order4[ci - 1][i - 1];
- break;
+ if (ci <= 0 || ci > 4) ci = 4;
+ if (i <= 0 || i > 4) i = 4;
+ entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order4[ci - 1][i - 1];
+ break;
case (5*5-1):
- if (ci <= 0 || ci > 5) ci = 5;
- if (i <= 0 || i > 5) i = 5;
- entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order5[ci - 1][i - 1];
- break;
+ if (ci <= 0 || ci > 5) ci = 5;
+ if (i <= 0 || i > 5) i = 5;
+ entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order5[ci - 1][i - 1];
+ break;
case (6*6-1):
- if (ci <= 0 || ci > 6) ci = 6;
- if (i <= 0 || i > 6) i = 6;
- entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order6[ci - 1][i - 1];
- break;
+ if (ci <= 0 || ci > 6) ci = 6;
+ if (i <= 0 || i > 6) i = 6;
+ entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order6[ci - 1][i - 1];
+ break;
case (7*7-1):
- if (ci <= 0 || ci > 7) ci = 7;
- if (i <= 0 || i > 7) i = 7;
- entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order7[ci - 1][i - 1];
- break;
+ if (ci <= 0 || ci > 7) ci = 7;
+ if (i <= 0 || i > 7) i = 7;
+ entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order7[ci - 1][i - 1];
+ break;
default:
- if (ci <= 0 || ci > 8) ci = 8;
- if (i <= 0 || i > 8) i = 8;
- entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order[ci - 1][i - 1];
- break;
+ if (ci <= 0 || ci > 8) ci = 8;
+ if (i <= 0 || i > 8) i = 8;
+ entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order[ci - 1][i - 1];
+ break;
}
- } else {
+ } else {
entropy->coef_limit[blkn] = 0;
- }
- }
- }
+ }
+ }
+ }
- /* Initialize bitread state variables */
- entropy->bitstate.bits_left = 0;
- entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
- entropy->insufficient_data = FALSE;
+ /* Initialize bitread state variables */
+ entropy->bitstate.bits_left = 0;
+ entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
+ entropy->insufficient_data = FALSE;
- /* Initialize restart counter */
- entropy->restarts_to_go = cinfo->restart_interval;
+ /* Initialize restart counter */
+ entropy->restarts_to_go = cinfo->restart_interval;
}
@@ -1508,34 +1508,34 @@ start_pass_huff_decoder (j_decompress_ptr cinfo)
GLOBAL(void)
jinit_huff_decoder (j_decompress_ptr cinfo)
{
- huff_entropy_ptr entropy;
- int i;
+ huff_entropy_ptr entropy;
+ int i;
- entropy = (huff_entropy_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ entropy = (huff_entropy_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(huff_entropy_decoder));
- cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
- entropy->pub.start_pass = start_pass_huff_decoder;
-
- if (cinfo->progressive_mode) {
- /* Create progression status table */
- int *coef_bit_ptr, ci;
- cinfo->coef_bits = (int (*)[DCTSIZE2])
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- cinfo->num_components*DCTSIZE2*SIZEOF(int));
- coef_bit_ptr = & cinfo->coef_bits[0][0];
- for (ci = 0; ci < cinfo->num_components; ci++)
- for (i = 0; i < DCTSIZE2; i++)
+ cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
+ entropy->pub.start_pass = start_pass_huff_decoder;
+
+ if (cinfo->progressive_mode) {
+ /* Create progression status table */
+ int *coef_bit_ptr, ci;
+ cinfo->coef_bits = (int (*)[DCTSIZE2])
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ cinfo->num_components*DCTSIZE2*SIZEOF(int));
+ coef_bit_ptr = & cinfo->coef_bits[0][0];
+ for (ci = 0; ci < cinfo->num_components; ci++)
+ for (i = 0; i < DCTSIZE2; i++)
*coef_bit_ptr++ = -1;
- /* Mark derived tables unallocated */
- for (i = 0; i < NUM_HUFF_TBLS; i++) {
- entropy->derived_tbls[i] = NULL;
- }
- } else {
- /* Mark tables unallocated */
- for (i = 0; i < NUM_HUFF_TBLS; i++) {
- entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
- }
- }
+ /* Mark derived tables unallocated */
+ for (i = 0; i < NUM_HUFF_TBLS; i++) {
+ entropy->derived_tbls[i] = NULL;
+ }
+ } else {
+ /* Mark tables unallocated */
+ for (i = 0; i < NUM_HUFF_TBLS; i++) {
+ entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
+ }
+ }
}